INFO-H-415: Advanced Databases

Lecturer

Teaching Assistant

Volume

  • Theory 24 h - Exercises 24h - Project 12h
  • 5 ECTS credits

Study Programme

  • Master in Computer Science and Engineering [MA-IRIF]
  • Master in Computer Sciences [INFO]
  • Erasmus Mundus Master in Big Data Management and Analytics (BDMA)

Schedule

The course is given during the first semester

  • Lectures on Thursdays from 2 pm to 4 pm at the room S.UA4.218
  • Exercises on Mondays from 4 pm to 6 pm at the room S.UB4.130

Objectives

Today, databases are moving away from typical management applications, and address new application areas. For this, databases must consider (1) recent developments in computer technology, as the object paradigm and distribution, and (2) management of new data types such as spatial or temporal data. This course introduces the concepts and techniques of some innovative database applications.

Content

Active Databases

Taxonomy of concepts. Applications of active databases: integrity maintenance, derived data, replication. Design of active databases: termination, confluence, determinism, modularisation.

Temporal Databases

Temporal data and applications. Time ontology. Conceptual modeling of temporal aspects. Manipulation of temporal data with standard SQL.

Object Databases

Object-oriented model. Object Persistance. ODMG standard: Object Definition Language and Object Query Language.

Spatial Databases

Spatial data and applications. Space ontology. Conceptual modeling of spatial aspects. Manipulation of spatial data with standard SQL.

Reference Books

  • C. Zaniolo et al., Advanced Database Systems, Morgan Kaufmann, 1997
  • R.T. Snodgrass, Developing Time-Oriented Database Applications in SQL, Morgan Kaufmann, 2000 (version pdf)
  • Tom Johnston, Bitemporal Data: Theory and Practice, Morgan Kaufmann, 2014
  • R.T. Snodgrass, The TSQL2 Temporal Query Language, Kluwer Academic Publishers, 1995
  • S.W. Dietrich, S.D. Urban, Fundamentals of Object Databases: Object-Oriented and Object-Relational Design, Morgan & Claypool, 2011
  • Jim Melton and Alan R. Simon, SQL: 1999 - Understanding Relational Language Components, Morgan Kaufmann, 2001
  • Jim Melton, Advanced SQL: 1999 - Understanding Object-Relational and Other Advanced Features, Morgan Kaufmann, 2002
  • R.G.G. Cattel et al., The Object Database Standard: ODMG 3.0, Morgan Kaufmann, 2000
  • Philippe Rigaux, Michel Scholl, Agnès Voisard, Spatial Databases: With Application to GIS, Morgan Kaufmann, 2001

Additional documentation

  • Norman W. Paton, Oscar Díaz, Active Database Systems, ACM Computer Surveys, 31(1): 63-103, 1999. (version pdf)
  • Jennifer Widom, The Starbust Active Database Rule System, IEEE Transactions on Knowledge and Data Engineering, 8(4): 583-595 1996 (version pdf)
  • E. Zimányi, Temporal Aggregates and Temporal Universal Quantifiers in Standard SQL, SIGMOD Record, 35(2):16-21, 2006. (version pdf)
  • Krishna Kulkarni, Jan-Eike Michels, Temporal features in SQL:2011, SIGMOD Record, 41(3):34-43, 2012. (version pdf)
  • Gregory Sannik, Fred Daniels, Enabling the Temporal Data Warehouse, Teradata White paper. (version pdf)
  • Richard T. Snodgrass, A Case Study of Temporal Data, Teradata White paper. (version pdf)
  • Teradata, Temporal Table Support. (version pdf)
  • Teradata, ANSI Temporal Table Support. (version pdf)
  • IBM, A Matter of Time: Temporal Data Management in DB2 for z/OS. (version pdf)
  • Temporal databases
    • TimeCenter, an international research centre for temporal databases.
    • TimeDB, a temporal relational database
  • Object databases
  • Post-relationnal databases

Course Slides

Exercises

Project

Students, in groups of two, will realize a project in a topic relevant to advanced databases. Examples of topics are given in the next section of this document.

Each group will study a database technology and illustrate it with an application developed ​​in a database management system to be chosen (e.g., Oracle, PostgreSQL, DB2, SQL Server, mySQL, etc..). The topic should be addressed in a technical way, to explain the underlying technologies. The application must use the specific technology manipulated.

The choice of topic and the application must be made ​​in agreement with the lecturer. The topic should not be included in the programme of the Master in Computer Science and Engineering. The project will be presented to the lecturer and the fellow students at the end of the semester. This presentation will be supported by a slideshow. A written report containing the contents of the presentation is also required. The presentation and written report will explain the possibilities offered by the database management system chosen and give a general description of the application implemented.

The evaluation of the project focuses on the following criteria:

  • Quality of the presentation,
  • Master of the topic presented, and
  • Quality of written report.

The project will count for 25% of the final grade.

The project must be submitted by Monday, December 18, 2017.

Examples of topics from the previous academic year

  • Analytical databases and Endeca
  • Cloud databases and Microsoft Azure
  • Column stores and Cassandra, Hbase, …
  • Database Security and Oracle
  • Deductive Databases and XSB
  • Distributed databases and SQL Server, DynamoDB, …
  • Document stores and Cloudant, Couchbase, CouchDB, MongoDB, RavenDB, RethinkDB, …
  • Embedded databases and BerkeleyDB
  • Graph Databases and Neo4J, OrientDB, …
  • In-memory databases and Kdb+, MemSQL, Oracle TimesTen, ….
  • Key-value stores and Redis, Voldermort, …
  • Multimedia databases and Oracle
  • Multi-model databases and MarkLogic
  • NewSQL databases and VoltDB
  • Object-oriented databases and db4o
  • Object-relational mappings and Entity Framework, Hibernate, Java Data Objects, …
  • Real-time databases and Firebase
  • Spatial databases and SQL Server
  • Spatial 3D Databases and PostgreSQL
  • XML databases and BaseX

Topics for the current academic year

  • Kaïs Albichari, Tanguy d'Hose: Document stores and MongoDB
  • Alexis Reynouard, Rémy Detobel: Search engines and Elastic Search
  • Tiffany Ong Lopez, Sergio Ruiz Sainz: In-memory databases and Apache Ignite
  • Sofia Yfantidou, Noor Zehra: Time series DBs and InfluxDB
  • Todi Thanasi, Lev Denisov: NoSQL databases and Cassandra
  • Mi Zhou, Prabhdeep Minhas: XML Databases and BaseX
  • Lucie Bauwin, Nicolas Baudoux: Real-time databases and Firebase
  • Antoine Vandevenne, Akira Baes: Document stores and RethinkDB
  • Marc Garnica, Batuhan Tuter: Stream databases and PipelineDB
  • Maksim Hrytsenia, Rui Liu: Column stores and HBase
  • Kumar Kshitij, Arthur Valingot: Stream databases and StreamSQL
  • Ozge Koroglu, Anna Turu Pi: Graph databases and Neo4J
  • Kashif Rabbani, Ivan Putera Masli: NewSQL Databases and CockroachDB
  • Jayanthi Kambayatughar, Marie Elisabeth Heinrich: Cloud databases and Microsoft Azure
  • Dagoberto Herrera, Keneth Ubeda: Time series databases and OpenTSDB
  • Bruno Baldez Correa, Yue Wang: Object-relational mapping tools and Hibernate
  • Raisa Uku, Fatemeh Shafiee: Key-value stores and Redis
  • Dany Efila: Multimedia databases and Oracle
  • Anastasiia Zavolozhina, Ferdiansyah Dolot: Object oriented databases and Db4o
  • Batra Shubham, Liccardo Nathan: Embedded databases and BerkeleyDB
  • Yasin Arslan, Jacky Trinh: Document stores and RavenDB
  • Alex Buléon, Antoine Chédin: Multi-model databases and OrientDB
  • Beyens Ziad, Nougba Hamza: Document stores and CouchDB
  • Aleksei Karetnikov, David Pieschacon: Graph stores and ArangoDB
  • Dany-Simone Efila Efila, Michel Noucha: Document stores and Cloudant
  • George Kagramanyan, Léni Poliseno: Document stores and Couchbase
  • Hajji Issam, Toure Ibrahim: newSQL databases and nuoDB

Examinations from Previous Years

 
teaching/infoh415.txt · Last modified: 2017/10/19 18:09 by ezimanyi