
UNIVERSITE LIBRE DE BRUXELLES January 22, 2013
Faculté des Sciences Appliquées

INFO-H-415 Advanced Database Management Systems
January Exam

The exam is divided in four sections. All sub-questions are worth approximately the same
amount of points. However, some of these will only take you a minute, some require a bit more
thinking, and a couple would require weeks to answer perfectly. Make the best use of your
time.

1 Active Databases (3 points)

You’re designing a database for a personal event organizing tool. It allows users to organize
events (”Indian dinner”, ”Weekend in Paris”, ”Rihanna Concert”, etc.) by inviting their friends
and discuss the organization. (e.g. choosing a time and place for the event) The discussion
involves participants proposing alternatives (e.g. ”my place”, ”last week-end of february”,
”this tuesday”...) and voting on them. After some discussion the organizer makes the final
choice, confirms the event and asks all participants to confirm their attendance. Now that the
parameters of the event are well-known, each participant has the opportunity to confirm or
decline his participation.

Here is a partial diagram of part of the data model for the application:

organizes

*1User
id: Integer
Name: String

Event
id: Integer
status: {
 discussing,
 confirmed,
 canceled
}

Participates* 1

status: {
 invited,
 discussing,
 confirmed,
 declined
}

1 1

Describe the triggers needed to enforce the following integrity constraints. Whenever mul-
tiple triggers are needed to enforce a single integrity constraint, list all of them, but write the
code in full for only one of them. Throughout the entire question you should provide at least
one example for each of ON INSERT, ON UPDATE, and ON DELETE triggers :

1. Participants are always created ”invited”.

2. Participants can’t come back to being ”invited” from another status.

3. Participants can’t confirm their participation to an event that is not itself confirmed.

4. Participants can’t change their status for a confirmed event.

5. The organizer can’t revert an event to ”discussing” if some users have already confirmed.

2 Temporal Databases (7 points)

You’ve just joined wellread.com, a web startup that helps users keep track of the books they
read and want to read, suggest books to each others, rate and review books they’ve read. Here
is a conceptual temporal schema for this website:

1*

to

fromUser

id: Integer
Name: String

Book

id: Integer
publicatonDate: Date

Suggestion
*

*

1

1

ReadingStatus

status: {
 wants_to_read,
 currently_reading,
 already_read }

Review

rating: Integer
text: text

** **
1

1

1

1

Reminder: The ”empty clocks” denotes things that occur at one point in time, while the
”full clocks” denotes things that occur over an interval of time.

1. Define a relational model corresponding to this conceptual model. (Note: many possibil-
ities exist. Write down all assumptions you need to make.)

2. Write the code ensuring the following integrity constraints. Whenever multiple triggers
are needed to enforce a single integrity constraint, list all of them, but write the code in
full for only one of them. Throughout the entire question you should provide at least one
example for each of ON INSERT, ON UPDATE, and ON DELETE triggers :

(a) A User can only suggest a book during his lifecycle

(b) A User can’t write a review unless he’s already read the book

(c) After a User has read something, he can’t want-to-read it anymore

3. Write the following SQL queries :

(a) List all books that User ”Jean Valjean” wants to read

(b) List all books nobody has finished reading yet

(c) List the currently unpublished book with the most suggestions

(d) List all the people who are currently reading books that User ”Boris Verhaegen”
previously suggested to them

3 Object Databases (5 points)

You’re designing a database for an exercise tracking application, which allows users to log their
workouts. For example, user Jean worked out on january 25, doing 50 push-ups, 200 crunches
and running three kilometers. Each repetition of an exercise earns the user some points, for
example: 1 point per crunch, 2 points per push-up, 10 points for running a kilometer. Users
earn medals when they cross certain thresholds, for example having logged 1000 push-ups, or
reaching 5000 points.

Here’s a UML representation of the schema :

User

id: Integer
Name: String

Exercise

type: text
points: Integer

WorkOut

*

date: Date

WOExerciseSet

repetitions: Integer

Medals

id: Integer
Name: String

*

1

MExerciseSet

repetitions: Integer

* 1

* 1
*

1

*

1 *

And here is part of the associated types in Oracle:

CREATE TYPE TUser;

CREATE TYPE TWorkOut;

CREATE TYPE TWOExerciseSet;

CREATE TYPE TMExerciseSet;

CREATE TYPE TExercise;

CREATE TYPE TSetRefUsers AS TABLE OF REF TUser;

CREATE TYPE TSetRefWorkOut AS TABLE OF REF TWorkOut;

CREATE TYPE TSetRefWOExerciseSet AS TABLE OF REF TWOExerciseSet;

CREATE TYPE TSetRefMExerciseSet AS TABLE OF REF TMExerciseSet;

CREATE OR REPLACE TExercise AS OBJECT(

type VARCHAR2(40),

points INTEGER,

WOExerciseSetRefs TWOSetRefExerciseSet,

MExerciseSetRefs TMSetRefExerciseSet

);

CREATE OR REPLACE TYPE TWOExerciseSet AS OBJECT(

repetitions INTEGER,

exerciseRef REF TExercise,

workOutRef REF TWorkOut,

);

CREATE OR REPLACE TYPE TWorkOut(

date DATE,

userRef REF TUser,

WOExerciseSetRefs TSetRefExerciseSet

);

1. Write the type definitions for the User, Medals, and MExerciseSet objects, then write the
following Oracle queries:

2. List all of User ”Chuck Norris”’s workouts, listing the exercises he’s done.

3. List all the users who have the medal ”Fab’ulous”

4. List all the users who have earned the medal ”Fab’ulous” and how many of the exercise
”crunch” they’ve done.

5. Find all the users who are stored as having earned the medal ”Fab’ulous” but haven’t
actually logged all the exercises needed to earn it.

4 Spatial Databases (5 points)

You’ve just taken over maintaining a database for a travel agency that offers all-inclusive bus
trips. Each trip is composed of a succession of segments : tourists are taken by bus from
their starting location to the first stop, where they are left for a while to explore nearby points
of interests (museums, cafes, sights, etc.) They then board the bus and travel on the next
segment, eventually reaching the second stop. The process repeats until the trip loops back to
the original location.

Trips

id: Integer
Name: String

* POI

id: Integer
Name: String

*

Segment

Location

position: String

from to

near

composed_of **

* *

1 1

When you first look at the system however, (schema above) you’re shocked to discover
that it doesn’t use spatial databases at all: it’s a standard SQL database where locations are
stored as simple strings containing latitude and longitude coordinates, segments are simple
pairs of from/to locations with no information about the actual path followed by busses along
a segment, and the precise location of points of interest is never even recorded (only the fact
that they are ”near” the bus stops from where they should be visited). For all these reasons,
the system is no help at all for designing new trips or reorganizing segments.

You decide to refactor the database and turn it into a real PostGIS geographical database,
where all Points of Interests have their location stored and the actual path followed by busses
along segments are stored precisely.

1. In plain english, how would you modify the database (what would you add and/or remove)
to make it a postGIS geographical database that stores the information described above
?

2. Write down the PostGIS commands needed to add the needed geographical columns to
the existing schema

3. Select the name and length of the longest trip

4. Assuming you have an altitude table that contains a raster containing altitude data for
the entire region, select the highest POI in the dataset.

5. For each segment, list POIs that the bus passes by without stopping, i.e. POIs that are
less than 1km from the path of the bus but more than 5km from any of its stops.

You might need some of the following PostGIS functions:

1. AddGeometryColumn(table name, column name, 4326, varchar type, integer dimension)
Where type can be any of POINT, LINE, MULTILINE, MULTIPOLYGON, etc.

2. ST Length2D Spheroid(geom, SPHEROID[”GRS 1980”,6378137,298.257222101]) - com-
pute the length of the (linear) feature geom in meters.

3. Geography(geom) - Converts a geometry to geography

4. ST DWithin(geography 1, geography 2, distance meters) - returns true if both geographies
are within distance meters from each other

5. ST SummaryStats(rast, 1) - Returns min, max and average values for band 1 of raster
rast.

6. ST Value(rast, geom) - Returns the value of raster rast at the (point) geometry geom.

7. ST Intersects(geom, rast) - Returns true if the geometry and raster intersects.

	Active Databases (3 points)
	Temporal Databases (7 points)
	Object Databases (5 points)
	Spatial Databases (5 points)

