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Abstract

This paper describes our development of the Starburst Rule System, an active
database rules facility integrated into the Starburst extensible relational database sys-
tem at the IBM Almaden Research Center. The Starburst rule language is based on
arbitrary database state transitions rather than tuple- or statement-level changes, yield-
ing a clear and flexible execution semantics. The rule system has been implemented
completely. Its rapid implementation was facilitated by the extensibility features of
Starburst, and rule management and rule processing is integrated into all aspects of
database processing.

Index terms: active database systems, database production rules, extensible database
systems, expert database systems

1 Introduction

Active database systems allow users to create rules—rules specify data manipulation oper-
ations to be executed automatically whenever certain events occur or conditions are met.
Active database rules provide a general and powerful mechanism for traditional database fea-
tures such as integrity constraint enforcement, view maintenance, and authorization check-
ing; active database rules also support non-traditional database features such as version
management and workflow control. Because active database rules are similar to the forward-
chaining production rules used by Artificial Intelligence applications, active database systems
also provide a convenient and efficient platform for large and efficient knowledge bases and
expert systems.

In this paper we describe our development of the Starburst Rule System, an active
database extension to the Starburst prototype extensible relational database system at the
IBM Almaden Research Center. We cover both our design of the rule language and our

implementation of rule processing as an extension to Starburst. The Starburst rule language

*This work was performed while the author was at the IBM Almaden Research Center, San Jose, CA.



differs from most other active database rule languages in that it is based on arbitrary database
state transitions rather than tuple- or statement-level changes, permitting an execution se-
mantics that is both cleanly-defined and flexible. The implementation of the Starburst Rule
System was completed rapidly and relies heavily on the extensibility features of Starburst.
The Starburst rule processor differs from most other active database rule systems in that
it is completely implemented, and it is fully integrated into all aspects of database process-
ing, including query and transaction processing, concurrency control, rollback recovery, error
handling, and authorization.

The paper proceeds as follows. In Section 2 we survey other active database rule systems.
In Section 3 we describe the syntax of the Starburst rule language and in Section 4 we specify
the semantics of rule execution; examples are given in Section 5. The architecture of the
rule system implementation is described in Section 6. Section 7 covers several implemen-
tation features in more detail, including transition information maintenance, concurrency
control, authorization, and error handling. Section 8 concludes and provides a retrospective
discussion of the Starburst Rule System, highlighting what we feel are the successes and the
failures of our language design and implementation. Finally, in Section 9 we mention several

applications of the Starburst Rule System, and we discuss future directions of this work.

2 Related Work

Numerous other active database systems have been designed and some have been imple-
mented. The three systems closest to the Starburst Rule System are Ariel [31], the second
version of the POSTGRES Rule System [42], and Chimera [12,14]. The Ariel system has a
rule language and execution semantics based closely on OPS5 [9], a production rule language
originally designed for expert systems. The Ariel project has focused on the design of an
OPS5-like rule language for the database setting, and on methods for highly efficient rule
condition testing using variations on the Rete and TREAT algorithms designed for OPS5
[44]. The Ariel rule language is fully implemented using the Exodus database toolkit [31].
The POSTGRES Rule System, sometimes referred to as PRS2 to distinguish it from an ear-
lier proposal [41], focuses in both its language and its implementation on providing several
different classes of rules, each appropriate for a particular suite of applications. There are
two implementations of the POSTGRES Rule System, one based on run-time marking of
tuples affected by rules, the other based on compile-time rewriting of queries to incorporate
the effects of rules [42]. The Chimera system combines object-oriented, deductive, and active
database technology. Its active rule language is based on Starburst’s, with extensions for
object-orientation and for “configurable” rule semantics (see Section 4). A first prototype of

Chimera has been implemented, employing some techniques adapted from Starburst [12].



There are several other relational active database systems, not as closely related to Star-
burst as the systems described above. Two projects, DATEX [8] and DIPS [38], implement
the OPS5 rule language using an underlying database system and special indexing techniques
to support efficient processing of large rule and data sets. The PARADISER project also
uses a database system for efficient processing of expert system rules, but in PARADISER
the focus is on distributed and parallel rule processing [23]. RPL (for Relational Produc-
tion Language) was an early project in relational active database systems; RPL includes
an OPS5-like rule language based on relational queries and a prototype implementation in
which rule processing is loosely coupled to a commercial relational DBMS [22]. A-RDL is an
extension to the RDL deductive database system that supports active rules [39]. The Alert
project explores how active rules can be supported on top of a passive database system with
minimal extensions [37]. Finally, Heraclitus is a relational database programming language
with delta relations as first-class objects; a primary goal of the Heraclitus language is to
simulate and support active rule processing [29].

One early project and numerous recent efforts (including Chimera) consider active object-
oriented database systems. Although some issues in active database systems are common
to both relational and object-oriented environments, there are many significant differences;
furthermore, to date most object-oriented active database systems do not have implementa-
tions that are as advanced as their relational counterparts. HiPAC was a pioneering project
in the area of active database systems; HiPAC includes a very powerful rule language for an
object-oriented data model, a flexible execution semantics, and several main-memory exper-
imental prototypes [20]. Recently there has been an explosion of projects in object-oriented
active database systems—many of these projects are still preliminary; see e.g. [3,4,6,7,10,11,
24,25,26,27,33,35].

Several previous papers have described language, implementation, or application devel-
opment issues related to the Starburst Rule System. An initial proposal for the Starburst
rule language appears in [49]. [48] describes how the extensibility features of the Starburst
prototype are used in implementing the rule system. Details of Starburst’s rule priority sys-
tem are given in [1]. A series of papers describe how rules in the Starburst language can be
generated automatically from specifications for particular applications: integrity constraints
are considered in [15], view maintenance in [16], deductive databases in [19], and heterogene-
ity management in [18]. A denotational semantics for the Starburst rule language is given
in [45], while [2] describes methods for static analysis of Starburst rules. Finally, [17] dis-
cusses how the Starburst Rule System can be extended for parallel and distributed database
environments. Except for a short overview in [46] and an unpublished user’s guide [47], this
is the first paper to provide a complete description of the final, operational, Starburst Rule

System.



3 Syntax of Rule Language

The syntax of the Starburst rule language is based on the extended version of SQL supported
by the Starburst database system [30]. The Starburst rule language includes five commands
for defining and manipulating rules: create rule, alter rule, deactivate rule, activate
rule, and drop rule. In addition, rules may be grouped into rule sets, which are defined
and manipulated by the commands create ruleset, alter ruleset, and drop ruleset. We
describe each of these eight commands below. The Starburst Rule System also includes some
simple user commands for querying and displaying rules, which we omit from this paper (see
[47] for details), and commands for user or application initiation of rule processing, which

we describe in Section 4.

3.1 Rule Creation

Rules are defined using the create rule command. The syntax of this command is:

create rule name on table
when triggering-operations
[ if condition |

then action-list

[ precedes rule-list |

[ follows rule-list |

The name names the rule, and each rule is defined on a table. Square brackets indicate
clauses that are optional.

The when clause specifies what causes the rule to be triggered. Rules can be triggered by
any of the three relational data modification operations: inserted, deleted, and updated.
The updated triggering operation may include a list of columns; specifying updated with-
out a column list indicates that the rule is triggered by updates to any column. Each rule
specifies one or more triggering operations in its when clause; any of the specified operations
on the rule’s table will trigger the rule.

The if clause specifies a condition to be evaluated once the rule is triggered. A rule con-
dition is expressed as an unrestricted select statement in Starburst’s SQL. The condition is
true if and only if the select statement produces at least one tuple. The if clause may be
omitted, in which case the rule’s condition is always true. Note that using an unrestricted
SQL select statement as the condition part of a rule is equivalent to using an unrestricted
SQL predicate: any SQL predicate can be transformed into an equivalent SQL select state-
ment (on a dummy table), while any SQL select statement can be transformed into an

equivalent SQL predicate (using exists).



The then clause specifies a list of actions to be executed when the rule is triggered and its
condition is true. Each action may be any database operation, including data manipulation
commands expressed using Starburst’s SQL (select, insert, delete, update), data defini-
tion commands (e.g. create table, drop rule), and rollback. The actions are executed
sequentially in the order listed.

The optional precedes and follows clauses are used to specify priority orderings between
rules. When a rule R; specifies a rule R, in its precedes list, this indicates that if both
rules are triggered at the same time, then R; will be considered first, i.e. Ry precedes Ry. If
R, specifies Ry in its follows list, this indicates that if both rules are triggered at the same
time, then Ry will be considered first. Cycles in priority ordering are not permitted.

Rule conditions and actions may refer to arbitrary database tables; they also may refer
to special transition tables. There are four transition tables: inserted, deleted, new-
updated, and old-updated. If a rule on a table T specifies inserted as a triggering
operation, then transition table inserted is a logical table containing the tuples that were
inserted into T' causing the rule to be triggered; similarly for deleted. Transition table new-
updated contains the current values of updated tuples; old-updated contains the original
values of those tuples.! A transition table may be referenced in a rule only if it corresponds
to one of the rule’s triggering operations.

Note that Starburst rules do not include a for each row option, or a before option for
triggering operations. (Readers may be familiar with these options from commercial SQL-
based trigger systems [32,34].) Neither option is appropriate in the context of rules that are

evaluated over arbitrary transitions; this issue is addressed further in Section 8.

3.2 Other Rule Commands

The components of a rule can be changed after the rule has been defined; this is done using

the alter rule command. The syntax of this command is:

alter rule name on table
[ if condition |

[ then action-list ]

[ precedes rule-list |

[ follows rule-list |

[ nopriority rule-list |

'If a rule is triggered by updated on any column, then transition tables new-updated and old-updated
contain tuples for which any column was updated. If a rule is triggered by updated on particular columns,
then transition tables new-updated and old-updated contain the entire tuples for which at least one of

the specified columns was updated.



The if, then, precedes, and follows clauses in this command use the same syntax as
the corresponding clauses in the create rule command. The if clause specifies a new rule
condition that replaces the existing one. Similarly, the then clause specifies a new list of
actions that replaces the existing list. The precedes and follows clauses specify rules to
be added to the existing precedes and follows lists, while the nopriority clause is used
to remove priority orderings. Notice that the when clause of a rule may not be altered; to
change triggering operations, a rule must be dropped and then re-created (this restriction is
due to implementation details).

An existing rule can be deleted by issuing the drop rule command:

drop rule name on table
Sometimes it is useful to temporarily deactivate rules (particularly for debugging pur-
poses). When a rule is deactivated, it will not be triggered and its actions will not be
executed, even if its triggering operations occur. A deactivated rule behaves as if the rule

were dropped, except it remains in the system and can easily be reactivated. A rule is

deactivated by issuing the command:

deactivate rule name on table

To reactivate a rule that has been deactivated, the following command is issued:

activate rule name on table

3.3 Rule Sets

We have provided a basic facility in the Starburst Rule System for grouping rules into sets.
Rule sets can be used to structure rule applications in conjunction with the process ruleset

command, described in Section 4.3.2 A rule set is defined using the create ruleset command:

create ruleset name

Rules are added to and deleted from a rule set using the alter ruleset command:

alter ruleset name
[ addrules rule-list |
[ delrules rule-list |

Each rule may be in any number of rule sets (including none), and each set may contain any

number of rules. A rule set is deleted by issuing the command:

drop ruleset name

2Rule sets might also be used to group rules for the purposes of shared priorities, activation/deactivation
of multiple rules, or inheriting common components, but such features are not provided in the current
Starburst Rule System.



4 Semantics of Rule Execution

In this section we explain the semantics of rule execution in Starburst, including the rela-
tionship of rule processing to query and transaction processing.® For the descriptions of rule
behavior in this section, we assume that some number of rules already have been created,
and we assume that these rules are not altered, deactivated, activated, or dropped. (The
subtle interactions between transactions in which rules are changed and other concurrently
executing transactions are discussed in Section 7.3.)

Rules are processed automatically at the end of each transaction that triggers at least one
rule. In addition, rules may be processed within a transaction when special user commands
are issued. The semantics of rule execution is closely tied to the notion of database state
transitions. Hence, we begin by describing transitions, then we describe end-of-transaction

rule processing, and finally we describe command-initiated rule processing.

4.1 Transitions

When we determine whether a rule is triggered, and when we evaluate a rule’s transition
tables, this is based on a precise notion of database state transition. A transition is the
transformation from one database state to another that results from the execution of a
sequence of SQL data manipulation operations. Since rule processing always occurs within
a transaction and is defined with respect to the operations performed in that transaction
only, we need not consider issues such as concurrent transactions and failures in defining
rule semantics. Furthermore, since rules are triggered by data modification only, and not by
data retrieval, execution of SQL select statements also need not be considered.

Suppose a sequence of SQL data modification operations (insert, delete, and/or up-
date) is executed, transforming the database from a state Sy to a state S;. We depict the

resulting transition 7 as:

So—"Sl
T

Rather than considering the individual operations creating a transition, rules consider
the net effect of transitions. The net effect of a transition consists of a set of inserted tuples,
a set of deleted tuples, and a set of updated tuples. Considering transition 7 above, we
associate with each inserted tuple its value in state 57, with each deleted tuple its value in
state Sy, and with each updated tuple its (old) value in Sy and its (new) value in S;. If a
tuple is modified more than once during a transition, it still appears in at most one set in

the net effect of the transition. Specifically:

3More detailed and formal treatments of Starburst’s rule execution semantics can be found in [45,49].



o If a tuple is inserted and then updated, we consider this as an insertion of the updated

tuple.

o If a tuple is updated and then deleted, we consider this as a deletion of the original

tuple.

o If a tuple is updated more than once, we consider this as an update from the original

value to the newest value.
o If a tuple is inserted and then deleted, we do not consider it in the net effect at all.

For clarity, we use dashed arrows to denote transitions that result from user- or application-
generated data manipulation operations, while we use solid arrows denote transitions that
result from rule-generated operations. For example, the following depicts a user-generated
transition followed by three rule-generated transitions:

SO """"""" »- Sl > SQ > 53 > 54

1 T2 T3 T4

Rules often consider composite transitions. For example, a rule might be triggered by a

composite transition 7 that is the net effect of transitions 71, 79, and 75. We depict this as:

r T Y
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4.2 End-of-Transaction Rule Processing

Suppose a transaction X is executed and suppose that the net effect of the data modification
operations performed by X includes at least one operation that triggers at least one rule;
then rule processing is invoked automatically at the end of transaction X, before X commits.
Transaction X itself creates the initial triggering transition. As rules are executed, they
create additional transitions that may trigger additional rules or may trigger the same rules
again. If a rule action executes rollback, then the entire transaction aborts. Otherwise, the
entire transaction commits when rule processing terminates.

Rule processing itself consists of an iterative loop. In each iteration:

1. A triggered rule R is selected for consideration such that no other triggered rule has

priority over R (details of rule selection are discussed in Section 4.4 below).
2. R’s condition is evaluated.

3. If R’s condition is true, R’s actions are executed.



For step 1, a rule is triggered if one or more of its triggering operations occurred in the
composite transition since the last time the rule was considered, or since the start of the
transaction if the rule has not yet been considered.

As illustration, suppose a user transaction creates transition 71. Suppose a rule R is
triggered by transition 7, it is selected for consideration, its condition is true, and its actions

are executed:

At this point, any rule that was not considered in state 57 is triggered if one or more of its
triggering operations occurred in the composite transition 7; R is triggered (again) if one or
more of its triggering operations occurred in transition 7.

We have chosen this particular semantics for rule execution in part because it has the
useful property that every rule considers every change exactly once.* This property is illus-
trated by the following example, which shows the (composite) transitions considered by a

rule R during several steps of rule processing:

. Y4 Y4 Y
> S
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The first time rule R is considered, at state S;, R uses the changes since initial state Sp,
i.e. the changes made by the initial user transaction and subsequent execution of a rule R’.
In its second consideration, at state S3, R uses the changes since S3. If R is considered
a third time, at state S, it uses the changes since state S3. The upper arrows depict the
(composite) transitions used by rule R each time it is considered, illustrating clearly that R
considers every change exactly once.

Finally, note that during condition evaluation and action execution, the contents of a

rule’s transition tables always reflect the rule’s triggering transition.

*Certainly there are many other possible choices for the semantics of rule execution. Our choice seems
appropriate for many applications; however, it is our belief that for every choice of semantics it is possible to
concoct a reasonable example for which that semantics is inconvenient or inappropriate. The recent Chimera
active rule system addresses this issue by allowing its users to choose between a number of alternative

semantics [14].



4.3 Rule Processing Commands

While end-of-transaction rule processing is sufficient for many applications, we have found
that in some cases it is useful for rules to be processed within a transaction (for example,
to verify consistency after some operations have been executed but before the transaction is

complete). For this, the Starburst Rule System provides three commands:

process rules
process ruleset set-name
process rule rule-name

Execution of the process rules command invokes rule processing with all rules eligible to
be considered and executed. The behavior of rule processing in response to a process rules
command is identical to end-of-transaction rule processing. In particular, recall from the
previous section that a rule is triggered if one or more of its triggering operations occurred
in the composite transition since the last time the rule was considered, or since the start of
the transaction if the rule has not yet been considered. This behavior is valid even if rules are
processed multiple times within a transaction as well as at the end of the transaction, and
this behavior retains the semantic property that every rule considers every change exactly
once.

Execution of the process ruleset command invokes rule processing with only those
rules in the specified set eligible to be considered and executed. Again, the behavior of rule
processing is identical to end-of-transaction rule processing, except in this case any rules that
are not in the specified set will not be considered for execution during rule processing, even
if they are triggered. (Such rules eventually will be considered for execution, however, at
end-of-transaction rule processing if not sooner.) The process ruleset command is useful,
for example, when rules are used to maintain integrity constraints [15] or materialized views
[16]. In this case, the rules associated with a particular constraint or view are grouped into
one set S. Whenever the constraint should be checked or the view refreshed (before the end
of a transaction), a process ruleset command is issued for set 5.

Execution of the process rule command invokes rule processing with only the specified
rule eligible to be considered and executed. Once again, the behavior of rule processing is
identical to end-of-transaction rule processing, except in this case any rules other than the
specified rule will not be considered for execution. Note that although only one rule is eligible
to be considered and executed, rule processing still may involve several rule executions if the
rule triggers itself.

Since process rules, process ruleset, and process rule are executable Starburst
commands, these commands may be used in rule actions. Execution of such rule actions

results in “nested” invocations of rule processing. This behavior is acceptable and well-

10



defined, and it may be useful in certain scenarios, however we have found that it can be

difficult to understand and frequently it results in infinite rule triggering.

4.4 Rule Selection

The precedes and follows clauses in rules allow them to be ordered in any way, as long as a
cycle is not produced. During rule processing, these user-specified priorities influence which
rule is selected for consideration when more than one rule is triggered (recall step 1 of the rule
processing algorithm in Section 4.2). Since the user-specified ordering on rules may be only
a partial ordering (indeed, no ordering is required), it still may be necessary for the system
to choose between multiple triggered rules. This selection is performed deterministically
by using an algorithm that induces a total ordering on all currently defined rules. The
total ordering is consistent with the user-specified partial ordering, and consequently also is
consistent with any ordering transitively implied by the user-specified ordering. (That is, if
rule Ry is specified to precede rule Ry, and rule R, is specified to precede rule Rs, then R,
will precede R3.) As a “tie-breaker”, rules that have no user-specified or transitively implied
ordering are ordered based on rule creation time (i.e. Ry is ordered before R, if and only
if Ry was created before Rs), unless this ordering is impossible given the user-specified and
transitively implied orderings. Details and a formalization of this deterministic rule ordering

strategy can be found in [1].

5 Examples

We now provide examples to illustrate the syntax of rule creation and the semantics of rule
execution. Our examples are relatively simple and contrived, but they serve to compactly
illustrate the salient features of the Starburst rule language syntax and semantics. For more
comprehensive examples making up a full rule application, the reader is referred to [15].

We use the following generic employee-department relational database schema:

emp(emp-no, name, salary, dept-no)
dept(dept-no, mgr-no)

Our first example rule, cascade, implements a variation on the cascaded delete method
of enforcing referential integrity constraints. The rule is triggered whenever managers are
deleted; its action deletes all employees in departments managed by deleted employees, then
deletes the departments themselves. We assume a hierarchical structure of employees and
departments, and we assume that employee numbers are not immediately reused—that is, a
single transaction will not delete an employee and then insert a new employee with the same

employee number.

11



create rule cascade on emp
when deleted
then delete from emp
where dept-no in
(select dept-no from dept
where mgr-no in (select emp-no from deleted));
delete from dept
where mgr-no in (select emp-no from deleted)

Notice in particular that this rule has no condition (i.e. its condition is always true), it has
two actions to be executed in order, and it references transition table deleted. As will be
shown below, the self-triggering property of this rule under the semantics specified in Section
4 correctly reflects the rule’s recursive nature.

Our second example rule, sal-control, controls employee salaries: Whenever employees
are inserted or salaries are updated, the rule checks the average salary. If the average salary

exceeds 50, then the rule deletes all inserted or updated employees whose salary exceeds 80.

create rule sal-control on emp
when inserted, updated(salary)
if (select avg(salary) from emp) > 50
then delete from emp
where emp-no in (select emp-no from inserted
union select emp-no from new-updated)
and salary > 80
precedes cascade

Notice in particular that this rule has two triggering operations (either of which will trigger
the rule), it has a condition, it references transition tables inserted and new-updated, and
it is specified to have priority over rule cascade.

Now consider rule processing when both of these rules are defined. Let the initial state
of the database include six employees—Jane, Mary, Jim, Bill, Sam, and Sue—with the

following management structure:

Jane
Y \\
\/
Mary Jim
Y \
\/
Bill Sam Sue

Refer to Figure 5. Suppose the initial user transaction 7 deletes employee Jane, and the
same transaction updates Mary’s salary to exceed 80 so that the average salary exceeds 50.

Both rules cascade and sal-control are triggered in state S; note that cascade is triggered

12



So > Sl > 52 > 53 > 54 > 55

1 T2 T3 T4 T5

So:  {Jane, Mary, Jim, Bill, Sam, Sue}

71:  deletes Jane, sets Mary salary > 80, average salary > 50
S1: {Mary, Jim, Bill, Sam, Sue}

To:  sal-control deletes Mary

Sy: {Jim, Bill, Sam, Sue}

731 cascade deletes Bill and Jim

Ss: {Sam, Sue}

74: cascade deletes Sam and Sue

Se 4}

75: cascade deletes nothing

553 {}
Figure 1: Transitions for example rules

with respect to set {Jane} of deleted employees. Since rule sal-control has priority over
rule cascade, sal-control is chosen for consideration. Its condition is true so it executes
its action, deleting employee Mary and creating transition 7; sal-control is not triggered
again. Now, in state 5;, rule cascade is triggered by the composite transition since the initial
state (transitions 71 and 73), so its set of deleted employees is {Jane, Mary}. Rule cascade
executes its actions, deleting all employees and departments whose manager is either Jane
or Mary. Employees Bill and Jim are deleted, creating transition 73, and rule cascade is
triggered a second time. Now, in state S5, the rule considers only the most recent transition
(73), so the set of deleted employees is {Bill, Jim}. The rule’s actions delete all employees and
departments managed by either Bill or Jim—employees Sam and Sue are deleted. Finally,
cascade executes a third time for transition 74 with deleted employees {Sam, Sue}, but no

additional employees are deleted.

6 System Architecture

The Starburst rule language as described in Sections 3 and 4 is fully implemented, with all
aspects of rule definition and execution integrated into normal database processing. The
implementation took about one woman-year to complete; it consists of about 28,000 lines
of C and C++ code including comments and blank lines (about 10,000 semicolons). Along
with the core capabilities of rule management and rule processing, we also have included

considerable infrastructure for program tracing, debugging, and user interaction.
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The implementation relies heavily on three extensibility features of the Starburst database
system: attachments, table functions, and event queues. We describe these extensibility
features here only in enough detail to understand how they are used by the rule system
implementation; further details on these and other extensibility features of Starburst can be

found in [30].

o The attachment feature is designed for extensions that require procedures to be called
after each tuple-level database operation on certain tables. An extension creates a new
attachment type by registering a set of procedures: a procedure to be invoked when an
attachment instance is created on a table, a procedure to be invoked when an instance
is dropped, a procedure to be invoked when an instance is altered, and procedures to
be invoked after each tuple-level insert, delete, or update operation on a table with one
or more attachment instances. Once an attachment type is established by registering
these procedures, instances of that type may be created, dropped, and altered on any
table. When an attachment instance is created on a table T, the procedure registered
for creation may build an attachment descriptor. This data structure is stored by the
system and provided to the extension whenever subsequent attachment procedures are

invoked for 7.

o A table function is a virtual table whose contents are generated at run time by a
host language procedure, rather than stored in the database. A new table function is
created by registering a name along with a procedure for producing the tuples of the
table. The procedure may perform any computations as long as it generates tuples
of the appropriate schema. Any table listed in the from clause of a Starburst select
operation may be a table function. When a query referencing a table function is

processed, the table function’s registered procedure is called to produce the contents

of the table.

o The event queue feature is designed for deferred execution of procedures. Once an
event queue has been declared, arbitrary procedures can be placed on the queue at any
time, to be executed the next time that queue is invoked. The rule system uses two
built-in event queues: one for procedures to be executed during the prepare-to-commit

phase of each transaction, and one for procedures to be executed in the case of rollback.

Figure 2 illustrates the general architecture of the rule system, showing most of the
execution modules and data structures, how they fit together, and how they interact with
Starburst itself. In the diagram, Starburst, its query processor, and its data repository
appear on the left. The ovals in the center column indicate execution modules of the rule

system. The rectangles on the right represent memory-resident data structures maintained
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Figure 2: Architecture of the Starburst Rule System

by the rule system. An arrow from an execution module to data indicates that the execution
module creates the data, while the reverse arrow indicates that the execution module uses
the data. A (double-headed) arrow from one execution module to another indicates that the
first module calls the second. When these arrows pass through or originate from a star, this
indicates that the call is made through an extensibility feature of Starburst. The invocation

arrows are labeled by the event causing a call to occur:
(a) Tuple-level insert, delete, or update on a table with one or more rules
(b) Reference to a transition table (transition tables are implemented as table functions)
(¢) Evaluation of a rule condition or execution of a rule action

(d) Prepare-to-commit (event queue) or execution of a process rules, process ruleset,

or process rule command

(e) Execution of a rule definition command (create rule, alter rule, drop rule, etc.)
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The data maintained by the rule system is divided into:

Rule Catalog: The Rule Catalog resides in the database; it stores all information about

the currently defined rules and rule sets.

Global Rule Information: For efficiency, some information regarding rules and rule
sets also is stored in main memory. This information is shared by all user processes,
and includes facts such as each rule’s triggering operations, the sets rules belong to,

priorities between rules, and whether rules have been deactivated.

Transition Log: This is a highly structured log of those operations occurring within a
transaction that are relevant to the currently defined rules. It is stored in main memory
and is called a transition log since, during rule processing, information about triggering
transitions is extracted from the log. The log also is used to produce transition tables.
This data structure is local, i.e. one Transition Log is maintained for each user process.®

Further details on the Transition Log are given in Section 7.1.

Rule Processing Information: This also is local to each process. It includes all infor-
mation pertinent to executing rules within a given transaction, including which rules
have been considered and when, and which rules are potentially triggered at a given

point in time.

In addition, we have registered an attachment type Rule in Starburst. A table has one

instance of this attachment type if and only if at least one rule is defined on the table. The

attachment descriptor for an instance contains an indicator of what information needs to

be written to the Transition Log when operations occur on the table (see Section 7.1 for
details).

The execution modules depicted in Figure 2 are:

o Rule Definition Module: This component processes all eight rule definition commands

described in Section 3. (Here we use “rule definition” generically to mean any command
that manipulates rules or rule sets.) The Rule Definition Module is responsible for
maintaining the Rule Catalog and updating the Global Rule Information. It also

creates, deletes, and modifies rule attachment instances and descriptors as appropriate.

Rule Attachment Procedures: This set of procedures writes to the Transition Log when-
ever relevant table modifications occur. A rule attachment procedure is called auto-
matically whenever an insert, delete, or update operation occurs on a table with at

least one rule.

°In Starburst, each user or application corresponds to one process, and each such process is comprised of

a sequence of transactions.
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o Transition Table Procedures: This set of procedures produces transition tables at run
time when they are referenced in rule conditions and actions. Transition tables are im-
plemented as table functions, so we have registered procedures for inserted, deleted,
new-updated, and old-updated with Starburst; these four procedures produce tran-

sition tables by extracting appropriate tuples from the Transition Log.

o Rule FErecution Module: This component is responsible for selecting and executing
triggered rules. It is invoked automatically at the commit point of every transaction
for which a rule may have been triggered; it also is invoked whenever the query pro-
cessor encounters a process rules, process ruleset, or process rule command. To
determine which rules are triggered, the Transition Log, the Global Rule Information,
and the local Rule Processing Information are examined to see which operations have
occurred and which rules are triggered by these operations. In the case of process
ruleset and process rule commands, the Rule Execution Module considers only the
specified subset of rules. Rule conditions are checked and actions are executed by
calling the Starburst query processor. Further details on rule execution are given in
Section 7.2.

The rule system also contains several components not illustrated in Figure 2:

o System Start-Up: Whenever Starburst is started or restarted, the rule system initializes
the Global Rule Information from the Rule Catalog. Rule attachments are initialized
automatically by Starburst.

o Process Start-Up and Transaction Clean-Up: At process start-up, the rule system
allocates its local data structures—the Transition Log and the Rule Processing Infor-
mation. Initially, these structures are empty. They are used during the course of each

transaction, then reset after end-of-transaction rule processing.

o Rollback Handler: The rule system must correctly handle a partial or complete rollback
at any time. The Rule Catalog and attachment information are rolled back automat-
ically by Starburst. However, the rule system must ensure that all memory-resident
data structures are modified to undo any changes made during the portion of the
transaction being rolled back. This is achieved by having each modification place an

appropriate undo operation on the rollback event queue.

17



7 Implementation Features

In the previous section we described the general architecture of the Starburst Rule System; in
this section we cover five specific and important features of the implementation in more detail:
transition information management, rule execution, concurrency control, authorization, and
error handling. Efficient transition information management and rule execution are crucial
for system performance, while concurrency control, authorization, and error handling are

necessary for full integration with database processing.

7.1 Transition Information

The attachment procedures that write to the Transition Log save information during query
processing so that the Rule Execution Module can determine which rules are triggered and
so the transition table references in rule conditions and actions can be evaluated. Since
the effect of rule action execution also is considered by rules, the Transition Log must be
maintained during rule processing as well; this happens automatically since rule actions are
executed by the Starburst query processor (recall Figure 2).

The semantics of rule execution dictates that, at any certain time, different rules may
need to be considered with respect to different transitions. To do this, we include a (logical)
time-stamp with each entry in the Transition Log. We also include with the Rule Processing
Information the most recent time at which each rule has been considered; the transition for
a given rule is then computed based on entries in the Transition Log occurring after that
time.

The triggering operations and transition table references in rules determine which opera-
tions and what information must be written to the Transition Log. As an example, suppose a
rule R is triggered by inserted on a table T, but does not reference the inserted transition
table. It is necessary to log the times at which insertions occur on T'; it also is necessary to
log the times at which deletions occur for tuples in T' that were previously inserted, since
the net effect of an insert followed by a delete is empty. Now suppose R does reference the
inserted transition table. In this case, the values of the inserted tuples must be logged.
In addition, the new values of updated tuples must be logged for those tuples that were
previously inserted, since the inserted transition table must contain current values for its
tuples. Finally, suppose R also is triggered by updated, and suppose it references transi-
tion table new-updated but not old-updated. Now, the new values of all updated tuples
must be logged; the old values need not be logged since transition table old-updated is

not referenced. Clearly there are many cases to consider, and we do not enumerate them

5Readers satisfied with the implementation overview provided in Section 6 may skip this section without

sacrificing the flow of the paper.
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here. From the set of rules on each table, the composite set of triggering operations and
transition table references is computed. Based on this set, an information code is stored
in the table’s rule attachment descriptor. When attachment procedures are invoked, they
use this code to determine what information should be written to the Transition Log. This
approach guarantees that all and only the necessary information is saved in the Transition
Log.

The data structure we use for the Transition Log is a “double hash table” storing lists of
records. Each record represents one tuple-level operation and contains the tuple identifier,
operation, time-stamp and, when necessary, new and/or old values for the tuple. Often it is
necessary to access all records representing a certain operation on a certain table occurring
after a certain time (e.g. all tuples inserted into 7' since a rule was last considered). For
this, a hash is performed on the operation and table to obtain a linked list of the relevant
records in descending order of time-stamp. [t sometimes is necessary to consider the history
of a given tuple to form the net effect of a transition (e.g. to merge updates, or to detect
if a deleted tuple was previously inserted). For this, records with the same tuple identifier
also are linked in descending order; these lists can be traversed from a given record or can
be obtained for a particular tuple by hashing on the tuple identifier. We have developed a

number of efficient algorithms for maintaining and traversing the Transition Log structure.

7.2 Rule Execution

The Rule Execution Module is invoked by the query processor whenever a process rules,
process ruleset, or process rule command is encountered. The Rule Execution Module
also must be invoked at the commit point of every transaction for which rules may have been
triggered. For end-of-transaction rule processing, the first time a rule attachment procedure
is called during a transaction—indicating that a relevant operation has occurred—the attach-
ment procedure places the Rule Execution Module on the prepare-to-commit event queue.
Then, when the transaction is ready to commit, rule execution is invoked automatically.”
An important advantage of this approach (over the straightforward approach of invoking the
Rule Execution Module at the end of every transaction) is that no overhead is incurred by
transactions for which no rules are triggered.

During rule processing, we maintain a data structure called Potential-Rules as part of
the local Rule Processing Information; this data structure contains references to those rules

potentially triggered at each point in time. The rules in this structure are only “potentially”

If other procedures placed on the prepare-to-commit event queue may modify the database, then it is
important for the Rule Execution Module to be invoked after such procedures during queue processing.
Currently in Starburst no other prepare-to-commit procedures modify data, so the execution order of the

Rule Execution Module relative to other queued procedures is unimportant.
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triggered because they are a conservative estimate—every triggered rule is in the set, but
there may be rules in the set that actually are not triggered: At the end of each transition,
all rules triggered by operations that occurred during the transition are added to Potential-
Rules without considering the net effect of the transition. Hence, for example, if tuples
were inserted into table T during the transition, then all rules triggered by inserted on T
are added to Potential-Rules, regardless of whether the inserted tuples subsequently were
deleted.

In practice, it is rare for operations in a transition to be “undone” in the net effect, so
Potential-Rules usually is not overly conservative. However, before processing a rule from
Potential-Rules, the net effect must be computed to verify that the rule is indeed triggered.
Note that by maintaining the potentially triggered rules, rather than the actually triggered
rules, we compute the net effect for only one rule in each “cycle” of rule execution, rather
than for all triggered rules.

When a rule is fetched from Potential-Rules for consideration, it must be chosen such
that no other rule with higher priority also may be triggered. This is achieved by maintaining
Potential-Rules as a sort structure based on the total ordering of rules described in Section
4.4.

7.3 Concurrency Control

Since Starburst is a multi-user database system, we must ensure that all aspects of the rule
system behave correctly in the presence of concurrently executing transactions.® For most
transactions, including those with triggered rules, concurrency control is handled automat-
ically by the database system since rule conditions and actions are executed through the
Starburst query processor. However, since rules themselves may be manipulated on-line, the
rule system must enforce concurrency control for transactions that perform rule definition
(i.e. transactions that create, delete, or modify rules or rule sets).

As examples of consistency issues involving rule definition, consider the following scenar-

10s:

e Suppose a transaction X modifies a table 1" while a concurrent transaction deactivates

rule R on T. Should R be triggered by X7

e Suppose a transaction X triggers rules Ry and R, while a concurrent transaction alters
the relative priority of R; and Ry. Which ordering should be used by X7

8Note, however, that Starburst is not a distributed database system, so issues of distributed access to

shared data and main memory structures are not relevant.
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e Suppose a transaction X executes “process ruleset S” while a concurrent transaction

adds rule R to set S. Should R be triggered by X7

We address these issues in the Starburst Rule System by ensuring that transactions are
serializable not only with respect to data but also with respect to rules (including rule
triggering and rule sets). Furthermore, we ensure that the equivalent serial transaction
schedule with respect to rules is the same as the equivalent serial schedule with respect to
data.

Let X; and X3 be transactions such that X; precedes X; in the serial schedule induced
by Starburst’s concurrency control mechanism for data. Serializability of X; and X, with

respect to rules is guaranteed by enforcing the following three consistency requirements:

(1) Triggering consistency: If X performs rule definition on a table T' (i.e. X; in some way
modifies rules pertaining to 7'), and X, modifies data in T', then X3’s rule processing
sees the effect of X;’s rule definition. If X; performs rule definition on a table modified

by Xy, then Xi’s rule processing does not see the effect of Xy’s rule definition.

(2) Rule set consistency: If Xy modifies a rule set S and X, includes “process ruleset 57,
then X3’s rule processing sees the effect of X;’s rule set modification. If X3 modifies
S and X; includes “process ruleset 5”7, then X;’s rule processing does not see the

effect of Xy’s rule set modification.

(3) Update consistency: If Xy and X5 both modify the same rule or rule set, then X3 sees
the effect of X’s modification and X; does not see the effect of X,’s modification.

In addition, the Starburst Rule System ensures consistency within a transaction by enforcing

the following two requirements:

(4) Intra-transaction triggering consistency: If a transaction X modifies a table T' then X

cannot subsequently perform rule definition on 7.

(5) Intra-transaction rule set consistency: If a transaction X executes a “process ruleset

S” operation then X cannot subsequently modify rule set S.
Lastly, the Starburst Rule System ensures consistency of rule ordering:

(6) Ordering consistency: If X is a transaction that triggers rules R; and Rj, then the
ordering between R; and R does not change during X from the first time this ordering

is used in rule selection.

All six consistency requirements are ensured by protocols that check and /or set locks on data,

rules, or rule sets. In Starburst, locks are acquired throughout a transaction as needed and
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are held until the transaction commits or rolls back. Hence, the equivalent serial schedule of
transactions with respect to data is based on commit time.

We enforce consistency requirements (1) and (4) as follows. When a transaction X
executes a rule definition command on table T', X first checks to see if it has modified T
(by checking if it holds any exclusive locks on data in T'). If so, then the rule definition
command is rejected. Otherwise, X obtains a table-level shared lock on T'. This forces X
to wait until all transactions currently modifying T" have committed, and it disallows future
modifications to T' by other transactions until X commits.

Consistency requirement (2) is enforced by locking rule sets. Before modifying (creating,
altering, or dropping) rule set S, a transaction must obtain an exclusive lock on S. Before
processing rule set 5, a transaction must obtain a shared lock on S. To enforce consistency
requirement (5), shared rule set locks cannot be upgraded to exclusive rule set locks.

Consistency requirement (6) is enforced by locking rules. When a rule R is added to data
structure Potential-Rules (recall Section 7.2), a shared lock is obtained on R. When a rule
definition command that affects rule ordering is executed (create rule, alter rule, or drop
rule), an exclusive lock is obtained on every rule whose ordering relative to other rules is
affected by the command. Note that even the ordering between unchanged rules may be
reversed, since transitive relationships may be introduced or dropped. To prevent ordering
relationships from changing within a transaction, shared rule locks cannot be upgraded to
exclusive rule locks.

Consistency requirement (3) is enforced automatically since rule and rule set modifi-
cations are reflected in the Rule Catalog, and the Rule Catalog is subject to Starburst’s
concurrency control mechanisms for data.

Further details of these locking protocols and proofs of their correctness appear in [21].

7.4 Authorization

In the authorization component of the Starburst Rule System we address a number of distinct
issues, including authorization to create rules on a given table, authorization to create rules
with given conditions and actions, authorization to alter or drop given rules, authorization
for rule sets, and authorization at rule execution time. In Starburst, lattices of privilege types
can be defined for arbitrary database objects, with higher types subsuming the privileges of
lower types. For example, for database tables the highest privilege is control; below this are
privileges write, alter, and attach; below write are privileges update, delete, and insert; below
update and delete is privilege read. When a table is created, its creator automatically obtains
control privilege on the table, which includes the ability to grant and revoke privileges on it.

For rules we have defined a simple linear lattice of privilege types: the highest privilege

is control, below this is alter, and privilege deactivate/activate is lowest. As with tables, a
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rule’s creator automatically obtains control privilege on the rule and may grant and revoke
privileges on it. To create a rule R on table T, R’s creator must have both attach and
read privileges on T.? During rule creation, R’s condition and actions are checked using
the creator’s privileges. If the condition or actions contain commands the creator is not
authorized to execute, then the create rule command is rejected. To drop a rule R on table
T, we require either control privilege on T' or attach privilege on T with control privilege
on R. To alter a rule, privilege alter is required; to deactivate or activate a rule, privilege
deactivate/activate is required. During rule processing, each rule’s condition and actions
are executed using the privileges of the rule’s creator (not the privileges of the transaction
triggering the rule).

We have defined two privilege types for rule sets, controland alter, with control subsuming
alter. A rule set’s creator obtains control privilege on the rule set and may grant and revoke
privileges on it. Privilege control is needed to drop a rule set; privilege alter is needed to
add or delete rules from a rule set. No privileges on rules are needed to add or delete them
from rule sets, and no privileges are needed to execute process rules, process ruleset, or
process rule statements.

The Starburst Rule System currently does not enforce any authorization requirements
when users examine the rules or rule sets in the system-—all rules may be queried and
inspected by any Starburst user. It is clear, however, that authorization requirements for

reading rules should ultimately be included in any complete active database system.

7.5 Error Handling

If an error occurs during the execution of a Starburst rule definition command (due to,
e.g., the creation of cyclic priorities, the inclusion of an action the creator is not authorized
to execute, or a syntactic flaw), then the rule definition command is rejected. During rule
processing, two types of errors can occur: an error may be generated during the evaluation of
a rule’s condition or execution of a rule’s action, or rules may trigger each other or themselves
indefinitely. In the first case, if an error is generated by the query processor when it executes
a rule condition or action, then the rule system terminates rule processing and aborts the
current transaction. For the second case, the rule system includes a “timeout” mechanism:
Once more than some number n of triggered rules have been considered, rule processing

terminates and the transaction is aborted; limit n is established by a system administrator.

°In general, attach privilege on a table indicates that the user is permitted to alter the performance of
that table. We require read privilege on table T since rule R can implicitly read the contents of T" through

transition tables without accessing 7" directly.
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8 Conclusions and Retrospective

The Starburst Rule System is a fully implemented extension to the Starburst prototype rela-
tional database system at the IBM Almaden Research Center. We have designed a rule lan-
guage that is flexible and general, with a well-defined semantics based on arbitrary database
state transitions. In addition to the usual commands for manipulating rules, our language
includes a basic rule set facility for application structuring, and it includes commands for
processing rules within transactions in addition to the automatic rule processing that occurs
at the end of each transaction. Rule processing in Starburst is completely integrated with
database query and transaction processing, including concurrency control, authorization,
rollback recovery, and error handling.

We have learned a number of interesting lessons from our careful development of the
Starburst rule language, from its thorough implementation, and from our experiments with
the running system on a variety of rule applications. With respect to our design of the

Starburst rule language, we make the following observations:

e Basing the semantics on arbitrary transitions offers considerable flexibility, and it gen-
erally provides a clean execution behavior. Although users may feel initially that they
better understand tuple- or statement-level rule triggering, there can be surprising
anomalies in such behavior that do not arise with the Starburst semantics. On the
other hand, for very simple rule processing tasks, tuple-level or statement-level rule
processing usually does behave as the user expects, and it can be both more natural
and more efficient than the Starburst approach.'® Note also that Starburst’s transition-
oriented semantics prohibits a natural before option for rule triggering [34]. However,
again, specifying before may result in surprising rule interactions, where such behavior

is avoided with Starburst’s rule semantics.

e Rule processing based on an iterative loop, as in Starburst, is intuitive, it seems to
be sufficient for most applications, and it is relatively easy to implement. Hence,
we believe that the more complex recursive rule processing algorithms used in, e.g.,

POSTGRES [42] or HiPAC [20], probably are not worthwhile.

e Complex conflict resolution policies, such as those used in OPS5 [9] and Ariel [31],
do not seem appropriate for most active rule applications. Simple relative priorities

appear to be sufficient, and they can be implemented easily and efficiently.

o A significant drawback in the Starburst rule language, as opposed to a number of other

active rule languages, is the lack of a language facility for “passing data” from a rule’s

19Consider, e.g., a rule that performs a simple modification to each inserted tuple and doesn’t trigger any

other rules.
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condition to its action. Note that the data associated with triggering operations is
available implicitly through transition tables. However, the data satisfying a rule’s
condition is not directly available in the rule’s action. In practice, users often write
Starburst rules that explicitly repeat the condition as a subquery in the action, or
that omit the condition altogether and place it in the action. A language feature for
referencing, in the action, the data satisfying the condition (as suggested in [15]) would

have been very useful.

e A convenient extension to the rule language would have been to allow rules that are
triggered by operations on multiple tables. In fact, this feature has no effect on the
semantics of the rule language [49], but was omitted due to the additional implementa-
tion effort. Another useful extension would have been to allow rule actions that invoke
arbitrary host language procedures. Currently, this behavior can be simulated through
Starburst’s foreign function feature in SQL [30], but host language procedures cannot

be called directly from rules.

e Rules in Starburst cannot be triggered by select operations. Although the reason for
this is partly implementation-dependent (the attachment extensibility feature is not
available for select operations), there are a number of semantic issues that would also
need to be addressed to add select as a triggering operation, such as whether rules are

triggered by nested select expressions.

With respect to our implementation of the Starburst Rule System, we make the following

observations:

o The extensibility features of Starburst offered a dramatic “head start” in implementing
the rule system. All three extensibility features that we used—attachments, event
queues, and table functions—were used heavily. Significant additional coding would

have been required had these features not been available.

e A number of main-memory data structures are maintained by the rule system (recall
Section 6). Because much of the work associated with rule processing involves ma-
nipulating these structures, rule processing itself is very fast. However, each structure
needed recovery procedures coded for each of its operations (in case of a complete
or partial rollback), and certain important aspects of rule processing—such as the
number of rules, or the number of tuple-level operations relevant to rules within a
given transaction—are limited by the fact that these structures reside in memory. The
system would have been easier to implement and it would be more scalable if these

main-memory structures were implemented as persistent, recoverable database objects.
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Unfortunately, one of the few things Starburst did not offer was a flexible facility for

such objects with the performance we desired for rule operations.

o Integrating rule processing directly into the database system, as opposed to a loosely
coupled approach, offers important advantages for both performance and functional-
ity. With a loosely coupled approach it would have been impossible to fully address
issues such as concurrency control, authorization, and recovery. In addition, significant
overhead would have been incurred by the need to intercept user commands and/or
database results at the client level rather than within the database system. Although
it may be unappealing (and, sometimes, impossible) to modify or extend the core code
of a database system, this appears to be a necessity if one wishes to build a fully

integrated active rule system with acceptable performance.

e Initial performance measurements have revealed that the vast majority of time spent in
rule processing is in fetching, compiling, and executing rule conditions and actions. In
Starburst we were unable to store precompiled queries, so rule conditions and actions
needed to be compiled each time they were executed. Once conditions and actions
are stored in compiled form, the main cost of rule processing will be in condition
evaluation and action execution (rather than other aspects pf rule processing, such as
finding triggered rules, selecting the highest priority rule, etc.). This lead us to believe
that performance improvements will be made not by streamlining rule management or
the rule processing algorithm itself, but rather by finding ways to optimize condition

evaluation and action execution.

9 Applications and Future Work

The Starburst Rule System has been used as a platform for developing a number of ap-
plications and for investigating various issues in active database systems. We have used
Starburst rules for enforcing integrity constraints [15], for maintaining materialized views
[16], and for implementing deductive databases [19], as well as for several other (more ad-
hoc) applications. We have studied how the Starburst Rule System can be supported in a
tightly-coupled distributed database environment with full distribution transparency [17];
we also have studied how the Starburst Rule System can be used to manage semantic het-
erogeneity across loosely-coupled databases [18]. Because predicting and understanding the
behavior of active database rules is an important facet of application development, we have
developed methods for statically analyzing sets of Starburst rules; these analysis methods
determine (conservatively) whether a set of rules is guaranteed to terminate, and whether

the rules are guaranteed to produce a unique final state [2]. Other researchers have used the
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Starburst Rule System as a basis for studying and implementing secure active databases [40],
dynamic integrity constraints [28,43], and automatically-generated compensating actions for
static constraints [13].

Although we do consider the Starburst Rule System to be complete at this time, there

are several directions in which it may be exercised, improved, and extended:

o Currently we have obtained only initial cursory performance results. We would like
to elaborate these results; this requires developing a mechanism for accurate measure-

ments and deriving a sufficient suite of test applications.

o As explained in Section 6, a rule’s condition is evaluated by executing a query over the
database. We do incorporate one important optimization, namely that a rule condition
is understood to be true as soon as the first tuple in the query is found. However, we
do not support incremental condition monitoring methods such as those used in Ariel
[44] and in OPS5 [9,36]. We have explored incremental condition evaluation in the
context of Starburst [5], and we plan to explore other run-time optimization methods
as well. We are interested also in compile-time optimization methods, such as static

combination of multiple rules that have related conditions and/or actions.

e Statement-level rule processing can be achieved in the Starburst Rule System by issuing
a “process rules” command after each statement; it would be useful to provide a
more convenient mechanism for this. For example, we could predefine a system rule
set called Statement. Users would then add rules to this set, and the system would
automatically execute “process ruleset Statement” after each statement. A similar

mechanism could be provided for tuple-level rule processing.

o Currently, the Starburst Rule System includes only basic facilities for rule tracing and
for interaction between rule processing and application programs. The areas of debug-

ging and application interfaces offer considerable opportunities for useful extensions.

In addition to these Starburst-specific areas of future work, we hope and expect that the
Starburst Rule System will continue to be used as a basis for further research in active

database systems.
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