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di�ers frommost other active database rule languages in that it is based on arbitrary databasestate transitions rather than tuple- or statement-level changes, permitting an execution se-mantics that is both cleanly-de�ned and exible. The implementation of the Starburst RuleSystem was completed rapidly and relies heavily on the extensibility features of Starburst.The Starburst rule processor di�ers from most other active database rule systems in thatit is completely implemented, and it is fully integrated into all aspects of database process-ing, including query and transaction processing, concurrency control, rollback recovery, errorhandling, and authorization.The paper proceeds as follows. In Section 2 we survey other active database rule systems.In Section 3 we describe the syntax of the Starburst rule language and in Section 4 we specifythe semantics of rule execution; examples are given in Section 5. The architecture of therule system implementation is described in Section 6. Section 7 covers several implemen-tation features in more detail, including transition information maintenance, concurrencycontrol, authorization, and error handling. Section 8 concludes and provides a retrospectivediscussion of the Starburst Rule System, highlighting what we feel are the successes and thefailures of our language design and implementation. Finally, in Section 9 we mention severalapplications of the Starburst Rule System, and we discuss future directions of this work.2 Related WorkNumerous other active database systems have been designed and some have been imple-mented. The three systems closest to the Starburst Rule System are Ariel [31], the secondversion of the POSTGRES Rule System [42], and Chimera [12,14]. The Ariel system has arule language and execution semantics based closely on OPS5 [9], a production rule languageoriginally designed for expert systems. The Ariel project has focused on the design of anOPS5-like rule language for the database setting, and on methods for highly e�cient rulecondition testing using variations on the Rete and TREAT algorithms designed for OPS5[44]. The Ariel rule language is fully implemented using the Exodus database toolkit [31].The POSTGRES Rule System, sometimes referred to as PRS2 to distinguish it from an ear-lier proposal [41], focuses in both its language and its implementation on providing severaldi�erent classes of rules, each appropriate for a particular suite of applications. There aretwo implementations of the POSTGRES Rule System, one based on run-time marking oftuples a�ected by rules, the other based on compile-time rewriting of queries to incorporatethe e�ects of rules [42]. The Chimera system combines object-oriented, deductive, and activedatabase technology. Its active rule language is based on Starburst's, with extensions forobject-orientation and for \con�gurable" rule semantics (see Section 4). A �rst prototype ofChimera has been implemented, employing some techniques adapted from Starburst [12].2



There are several other relational active database systems, not as closely related to Star-burst as the systems described above. Two projects, DATEX [8] and DIPS [38], implementthe OPS5 rule language using an underlying database system and special indexing techniquesto support e�cient processing of large rule and data sets. The PARADISER project alsouses a database system for e�cient processing of expert system rules, but in PARADISERthe focus is on distributed and parallel rule processing [23]. RPL (for Relational Produc-tion Language) was an early project in relational active database systems; RPL includesan OPS5-like rule language based on relational queries and a prototype implementation inwhich rule processing is loosely coupled to a commercial relational DBMS [22]. A-RDL is anextension to the RDL deductive database system that supports active rules [39]. The Alertproject explores how active rules can be supported on top of a passive database system withminimal extensions [37]. Finally, Heraclitus is a relational database programming languagewith delta relations as �rst-class objects; a primary goal of the Heraclitus language is tosimulate and support active rule processing [29].One early project and numerous recent e�orts (including Chimera) consider active object-oriented database systems. Although some issues in active database systems are commonto both relational and object-oriented environments, there are many signi�cant di�erences;furthermore, to date most object-oriented active database systems do not have implementa-tions that are as advanced as their relational counterparts. HiPAC was a pioneering projectin the area of active database systems; HiPAC includes a very powerful rule language for anobject-oriented data model, a exible execution semantics, and several main-memory exper-imental prototypes [20]. Recently there has been an explosion of projects in object-orientedactive database systems|many of these projects are still preliminary; see e.g. [3,4,6,7,10,11,24,25,26,27,33,35].Several previous papers have described language, implementation, or application devel-opment issues related to the Starburst Rule System. An initial proposal for the Starburstrule language appears in [49]. [48] describes how the extensibility features of the Starburstprototype are used in implementing the rule system. Details of Starburst's rule priority sys-tem are given in [1]. A series of papers describe how rules in the Starburst language can begenerated automatically from speci�cations for particular applications: integrity constraintsare considered in [15], view maintenance in [16], deductive databases in [19], and heterogene-ity management in [18]. A denotational semantics for the Starburst rule language is givenin [45], while [2] describes methods for static analysis of Starburst rules. Finally, [17] dis-cusses how the Starburst Rule System can be extended for parallel and distributed databaseenvironments. Except for a short overview in [46] and an unpublished user's guide [47], thisis the �rst paper to provide a complete description of the �nal, operational, Starburst RuleSystem. 3



3 Syntax of Rule LanguageThe syntax of the Starburst rule language is based on the extended version of SQL supportedby the Starburst database system [30]. The Starburst rule language includes �ve commandsfor de�ning and manipulating rules: create rule, alter rule, deactivate rule, activaterule, and drop rule. In addition, rules may be grouped into rule sets, which are de�nedand manipulated by the commands create ruleset, alter ruleset, and drop ruleset. Wedescribe each of these eight commands below. The Starburst Rule System also includes somesimple user commands for querying and displaying rules, which we omit from this paper (see[47] for details), and commands for user or application initiation of rule processing, whichwe describe in Section 4.3.1 Rule CreationRules are de�ned using the create rule command. The syntax of this command is:create rule name on tablewhen triggering-operations[ if condition ]then action-list[ precedes rule-list ][ follows rule-list ]The name names the rule, and each rule is de�ned on a table. Square brackets indicateclauses that are optional.The when clause speci�es what causes the rule to be triggered. Rules can be triggered byany of the three relational data modi�cation operations: inserted, deleted, and updated.The updated triggering operation may include a list of columns; specifying updated with-out a column list indicates that the rule is triggered by updates to any column. Each rulespeci�es one or more triggering operations in itswhen clause; any of the speci�ed operationson the rule's table will trigger the rule.The if clause speci�es a condition to be evaluated once the rule is triggered. A rule con-dition is expressed as an unrestricted select statement in Starburst's SQL. The condition istrue if and only if the select statement produces at least one tuple. The if clause may beomitted, in which case the rule's condition is always true. Note that using an unrestrictedSQL select statement as the condition part of a rule is equivalent to using an unrestrictedSQL predicate: any SQL predicate can be transformed into an equivalent SQL select state-ment (on a dummy table), while any SQL select statement can be transformed into anequivalent SQL predicate (using exists). 4



The then clause speci�es a list of actions to be executed when the rule is triggered and itscondition is true. Each action may be any database operation, including data manipulationcommands expressed using Starburst's SQL (select, insert, delete, update), data de�ni-tion commands (e.g. create table, drop rule), and rollback. The actions are executedsequentially in the order listed.The optional precedes and follows clauses are used to specify priority orderings betweenrules. When a rule R1 speci�es a rule R2 in its precedes list, this indicates that if bothrules are triggered at the same time, then R1 will be considered �rst, i.e. R1 precedes R2. IfR1 speci�es R2 in its follows list, this indicates that if both rules are triggered at the sametime, then R2 will be considered �rst. Cycles in priority ordering are not permitted.Rule conditions and actions may refer to arbitrary database tables; they also may referto special transition tables. There are four transition tables: inserted, deleted, new-updated, and old-updated. If a rule on a table T speci�es inserted as a triggeringoperation, then transition table inserted is a logical table containing the tuples that wereinserted into T causing the rule to be triggered; similarly for deleted. Transition table new-updated contains the current values of updated tuples; old-updated contains the originalvalues of those tuples.1 A transition table may be referenced in a rule only if it correspondsto one of the rule's triggering operations.Note that Starburst rules do not include a for each row option, or a before option fortriggering operations. (Readers may be familiar with these options from commercial SQL-based trigger systems [32,34].) Neither option is appropriate in the context of rules that areevaluated over arbitrary transitions; this issue is addressed further in Section 8.3.2 Other Rule CommandsThe components of a rule can be changed after the rule has been de�ned; this is done usingthe alter rule command. The syntax of this command is:alter rule name on table[ if condition ][ then action-list ][ precedes rule-list ][ follows rule-list ][ nopriority rule-list ]1If a rule is triggered by updated on any column, then transition tables new-updated and old-updatedcontain tuples for which any column was updated. If a rule is triggered by updated on particular columns,then transition tables new-updated and old-updated contain the entire tuples for which at least one ofthe speci�ed columns was updated. 5



The if, then, precedes, and follows clauses in this command use the same syntax asthe corresponding clauses in the create rule command. The if clause speci�es a new rulecondition that replaces the existing one. Similarly, the then clause speci�es a new list ofactions that replaces the existing list. The precedes and follows clauses specify rules tobe added to the existing precedes and follows lists, while the nopriority clause is usedto remove priority orderings. Notice that the when clause of a rule may not be altered; tochange triggering operations, a rule must be dropped and then re-created (this restriction isdue to implementation details).An existing rule can be deleted by issuing the drop rule command:drop rule name on tableSometimes it is useful to temporarily deactivate rules (particularly for debugging pur-poses). When a rule is deactivated, it will not be triggered and its actions will not beexecuted, even if its triggering operations occur. A deactivated rule behaves as if the rulewere dropped, except it remains in the system and can easily be reactivated. A rule isdeactivated by issuing the command:deactivate rule name on tableTo reactivate a rule that has been deactivated, the following command is issued:activate rule name on table3.3 Rule SetsWe have provided a basic facility in the Starburst Rule System for grouping rules into sets.Rule sets can be used to structure rule applications in conjunction with the process rulesetcommand, described in Section 4.3.2 A rule set is de�ned using the create ruleset command:create ruleset nameRules are added to and deleted from a rule set using the alter ruleset command:alter ruleset name[ addrules rule-list ][ delrules rule-list ]Each rule may be in any number of rule sets (including none), and each set may contain anynumber of rules. A rule set is deleted by issuing the command:drop ruleset name2Rule sets might also be used to group rules for the purposes of shared priorities, activation/deactivationof multiple rules, or inheriting common components, but such features are not provided in the currentStarburst Rule System. 6



4 Semantics of Rule ExecutionIn this section we explain the semantics of rule execution in Starburst, including the rela-tionship of rule processing to query and transaction processing.3 For the descriptions of rulebehavior in this section, we assume that some number of rules already have been created,and we assume that these rules are not altered, deactivated, activated, or dropped. (Thesubtle interactions between transactions in which rules are changed and other concurrentlyexecuting transactions are discussed in Section 7.3.)Rules are processed automatically at the end of each transaction that triggers at least onerule. In addition, rules may be processed within a transaction when special user commandsare issued. The semantics of rule execution is closely tied to the notion of database statetransitions. Hence, we begin by describing transitions, then we describe end-of-transactionrule processing, and �nally we describe command-initiated rule processing.4.1 TransitionsWhen we determine whether a rule is triggered, and when we evaluate a rule's transitiontables, this is based on a precise notion of database state transition. A transition is thetransformation from one database state to another that results from the execution of asequence of SQL data manipulation operations. Since rule processing always occurs withina transaction and is de�ned with respect to the operations performed in that transactiononly, we need not consider issues such as concurrent transactions and failures in de�ningrule semantics. Furthermore, since rules are triggered by data modi�cation only, and not bydata retrieval, execution of SQL select statements also need not be considered.Suppose a sequence of SQL data modi�cation operations (insert, delete, and/or up-date) is executed, transforming the database from a state S0 to a state S1. We depict theresulting transition � as: S0 - S1�Rather than considering the individual operations creating a transition, rules considerthe net e�ect of transitions. The net e�ect of a transition consists of a set of inserted tuples,a set of deleted tuples, and a set of updated tuples. Considering transition � above, weassociate with each inserted tuple its value in state S1, with each deleted tuple its value instate S0, and with each updated tuple its (old) value in S0 and its (new) value in S1. If atuple is modi�ed more than once during a transition, it still appears in at most one set inthe net e�ect of the transition. Speci�cally:3More detailed and formal treatments of Starburst's rule execution semantics can be found in [45,49].7



� If a tuple is inserted and then updated, we consider this as an insertion of the updatedtuple.� If a tuple is updated and then deleted, we consider this as a deletion of the originaltuple.� If a tuple is updated more than once, we consider this as an update from the originalvalue to the newest value.� If a tuple is inserted and then deleted, we do not consider it in the net e�ect at all.For clarity, we use dashed arrows to denote transitions that result from user- or application-generated data manipulation operations, while we use solid arrows denote transitions thatresult from rule-generated operations. For example, the following depicts a user-generatedtransition followed by three rule-generated transitions:S0 - S1�1 - S2�2 - S3�3 - S4�4Rules often consider composite transitions. For example, a rule might be triggered by acomposite transition � that is the net e�ect of transitions �1, �2, and �3. We depict this as:S0 - S1�1 - S2�2 - S3�3� �?�4.2 End-of-Transaction Rule ProcessingSuppose a transaction X is executed and suppose that the net e�ect of the data modi�cationoperations performed by X includes at least one operation that triggers at least one rule;then rule processing is invoked automatically at the end of transaction X, before X commits.Transaction X itself creates the initial triggering transition. As rules are executed, theycreate additional transitions that may trigger additional rules or may trigger the same rulesagain. If a rule action executes rollback, then the entire transaction aborts. Otherwise, theentire transaction commits when rule processing terminates.Rule processing itself consists of an iterative loop. In each iteration:1. A triggered rule R is selected for consideration such that no other triggered rule haspriority over R (details of rule selection are discussed in Section 4.4 below).2. R's condition is evaluated.3. If R's condition is true, R's actions are executed.8



For step 1, a rule is triggered if one or more of its triggering operations occurred in thecomposite transition since the last time the rule was considered, or since the start of thetransaction if the rule has not yet been considered.As illustration, suppose a user transaction creates transition �1. Suppose a rule R istriggered by transition �1, it is selected for consideration, its condition is true, and its actionsare executed: S0 - S1�1 - S2�2 (R)� �?�At this point, any rule that was not considered in state S1 is triggered if one or more of itstriggering operations occurred in the composite transition � ; R is triggered (again) if one ormore of its triggering operations occurred in transition �2.We have chosen this particular semantics for rule execution in part because it has theuseful property that every rule considers every change exactly once.4 This property is illus-trated by the following example, which shows the (composite) transitions considered by arule R during several steps of rule processing:S0 - S1�1 - S2�2 (R0) - S3�3 (R) - S4�4 (R) - S5�5 (R0) - S6�6 (R0)� �?� �?� �?The �rst time rule R is considered, at state S2, R uses the changes since initial state S0,i.e. the changes made by the initial user transaction and subsequent execution of a rule R0.In its second consideration, at state S3, R uses the changes since S2. If R is considereda third time, at state S6, it uses the changes since state S3. The upper arrows depict the(composite) transitions used by rule R each time it is considered, illustrating clearly that Rconsiders every change exactly once.Finally, note that during condition evaluation and action execution, the contents of arule's transition tables always reect the rule's triggering transition.4Certainly there are many other possible choices for the semantics of rule execution. Our choice seemsappropriate for many applications; however, it is our belief that for every choice of semantics it is possible toconcoct a reasonable example for which that semantics is inconvenient or inappropriate. The recent Chimeraactive rule system addresses this issue by allowing its users to choose between a number of alternativesemantics [14]. 9



4.3 Rule Processing CommandsWhile end-of-transaction rule processing is su�cient for many applications, we have foundthat in some cases it is useful for rules to be processed within a transaction (for example,to verify consistency after some operations have been executed but before the transaction iscomplete). For this, the Starburst Rule System provides three commands:process rulesprocess ruleset set-nameprocess rule rule-nameExecution of the process rules command invokes rule processing with all rules eligible tobe considered and executed. The behavior of rule processing in response to a process rulescommand is identical to end-of-transaction rule processing. In particular, recall from theprevious section that a rule is triggered if one or more of its triggering operations occurredin the composite transition since the last time the rule was considered, or since the start ofthe transaction if the rule has not yet been considered. This behavior is valid even if rules areprocessed multiple times within a transaction as well as at the end of the transaction, andthis behavior retains the semantic property that every rule considers every change exactlyonce.Execution of the process ruleset command invokes rule processing with only thoserules in the speci�ed set eligible to be considered and executed. Again, the behavior of ruleprocessing is identical to end-of-transaction rule processing, except in this case any rules thatare not in the speci�ed set will not be considered for execution during rule processing, evenif they are triggered. (Such rules eventually will be considered for execution, however, atend-of-transaction rule processing if not sooner.) The process ruleset command is useful,for example, when rules are used to maintain integrity constraints [15] or materialized views[16]. In this case, the rules associated with a particular constraint or view are grouped intoone set S. Whenever the constraint should be checked or the view refreshed (before the endof a transaction), a process ruleset command is issued for set S.Execution of the process rule command invokes rule processing with only the speci�edrule eligible to be considered and executed. Once again, the behavior of rule processing isidentical to end-of-transaction rule processing, except in this case any rules other than thespeci�ed rule will not be considered for execution. Note that although only one rule is eligibleto be considered and executed, rule processing still may involve several rule executions if therule triggers itself.Since process rules, process ruleset, and process rule are executable Starburstcommands, these commands may be used in rule actions. Execution of such rule actionsresults in \nested" invocations of rule processing. This behavior is acceptable and well-10



de�ned, and it may be useful in certain scenarios, however we have found that it can bedi�cult to understand and frequently it results in in�nite rule triggering.4.4 Rule SelectionThe precedes and follows clauses in rules allow them to be ordered in any way, as long as acycle is not produced. During rule processing, these user-speci�ed priorities inuence whichrule is selected for consideration when more than one rule is triggered (recall step 1 of the ruleprocessing algorithm in Section 4.2). Since the user-speci�ed ordering on rules may be onlya partial ordering (indeed, no ordering is required), it still may be necessary for the systemto choose between multiple triggered rules. This selection is performed deterministicallyby using an algorithm that induces a total ordering on all currently de�ned rules. Thetotal ordering is consistent with the user-speci�ed partial ordering, and consequently also isconsistent with any ordering transitively implied by the user-speci�ed ordering. (That is, ifrule R1 is speci�ed to precede rule R2, and rule R2 is speci�ed to precede rule R3, then R1will precede R3.) As a \tie-breaker", rules that have no user-speci�ed or transitively impliedordering are ordered based on rule creation time (i.e. R1 is ordered before R2 if and onlyif R1 was created before R2), unless this ordering is impossible given the user-speci�ed andtransitively implied orderings. Details and a formalization of this deterministic rule orderingstrategy can be found in [1].5 ExamplesWe now provide examples to illustrate the syntax of rule creation and the semantics of ruleexecution. Our examples are relatively simple and contrived, but they serve to compactlyillustrate the salient features of the Starburst rule language syntax and semantics. For morecomprehensive examples making up a full rule application, the reader is referred to [15].We use the following generic employee-department relational database schema:emp(emp-no, name, salary, dept-no)dept(dept-no, mgr-no)Our �rst example rule, cascade, implements a variation on the cascaded delete methodof enforcing referential integrity constraints. The rule is triggered whenever managers aredeleted; its action deletes all employees in departments managed by deleted employees, thendeletes the departments themselves. We assume a hierarchical structure of employees anddepartments, and we assume that employee numbers are not immediately reused|that is, asingle transaction will not delete an employee and then insert a new employee with the sameemployee number. 11



create rule cascade on empwhen deletedthen delete from empwhere dept-no in(select dept-no from deptwhere mgr-no in (select emp-no from deleted));delete from deptwhere mgr-no in (select emp-no from deleted)Notice in particular that this rule has no condition (i.e. its condition is always true), it hastwo actions to be executed in order, and it references transition table deleted. As will beshown below, the self-triggering property of this rule under the semantics speci�ed in Section4 correctly reects the rule's recursive nature.Our second example rule, sal-control, controls employee salaries: Whenever employeesare inserted or salaries are updated, the rule checks the average salary. If the average salaryexceeds 50, then the rule deletes all inserted or updated employees whose salary exceeds 80.create rule sal-control on empwhen inserted, updated(salary)if (select avg(salary) from emp) > 50then delete from empwhere emp-no in (select emp-no from insertedunion select emp-no from new-updated)and salary > 80precedes cascadeNotice in particular that this rule has two triggering operations (either of which will triggerthe rule), it has a condition, it references transition tables inserted and new-updated, andit is speci�ed to have priority over rule cascade.Now consider rule processing when both of these rules are de�ned. Let the initial stateof the database include six employees|Jane, Mary, Jim, Bill, Sam, and Sue|with thefollowing management structure:Bill Sam SueMary JimJane��� @@@��� @@@Refer to Figure 5. Suppose the initial user transaction �1 deletes employee Jane, and thesame transaction updates Mary's salary to exceed 80 so that the average salary exceeds 50.Both rules cascade and sal-control are triggered in state S1; note that cascade is triggered12



S0 - S1�1 - S2�2 - S3�3 - S4�4 - S5�5S0: fJane, Mary, Jim, Bill, Sam, Sueg�1: deletes Jane, sets Mary salary > 80, average salary > 50S1: fMary, Jim, Bill, Sam, Sueg�2: sal-control deletes MaryS2: fJim, Bill, Sam, Sueg�3: cascade deletes Bill and JimS3: fSam, Sueg�4: cascade deletes Sam and SueS4: fg�5: cascade deletes nothingS5: fg Figure 1: Transitions for example ruleswith respect to set fJaneg of deleted employees. Since rule sal-control has priority overrule cascade, sal-control is chosen for consideration. Its condition is true so it executesits action, deleting employee Mary and creating transition �2; sal-control is not triggeredagain. Now, in state S2, rule cascade is triggered by the composite transition since the initialstate (transitions �1 and �2), so its set of deleted employees is fJane, Maryg. Rule cascadeexecutes its actions, deleting all employees and departments whose manager is either Janeor Mary. Employees Bill and Jim are deleted, creating transition �3, and rule cascade istriggered a second time. Now, in state S3, the rule considers only the most recent transition(�3), so the set of deleted employees is fBill, Jimg. The rule's actions delete all employees anddepartments managed by either Bill or Jim|employees Sam and Sue are deleted. Finally,cascade executes a third time for transition �4 with deleted employees fSam, Sueg, but noadditional employees are deleted.6 System ArchitectureThe Starburst rule language as described in Sections 3 and 4 is fully implemented, with allaspects of rule de�nition and execution integrated into normal database processing. Theimplementation took about one woman-year to complete; it consists of about 28,000 linesof C and C++ code including comments and blank lines (about 10,000 semicolons). Alongwith the core capabilities of rule management and rule processing, we also have includedconsiderable infrastructure for program tracing, debugging, and user interaction.13



The implementation relies heavily on three extensibility features of the Starburst databasesystem: attachments, table functions, and event queues. We describe these extensibilityfeatures here only in enough detail to understand how they are used by the rule systemimplementation; further details on these and other extensibility features of Starburst can befound in [30].� The attachment feature is designed for extensions that require procedures to be calledafter each tuple-level database operation on certain tables. An extension creates a newattachment type by registering a set of procedures: a procedure to be invoked when anattachment instance is created on a table, a procedure to be invoked when an instanceis dropped, a procedure to be invoked when an instance is altered, and procedures tobe invoked after each tuple-level insert, delete, or update operation on a table with oneor more attachment instances. Once an attachment type is established by registeringthese procedures, instances of that type may be created, dropped, and altered on anytable. When an attachment instance is created on a table T , the procedure registeredfor creation may build an attachment descriptor. This data structure is stored by thesystem and provided to the extension whenever subsequent attachment procedures areinvoked for T .� A table function is a virtual table whose contents are generated at run time by ahost language procedure, rather than stored in the database. A new table function iscreated by registering a name along with a procedure for producing the tuples of thetable. The procedure may perform any computations as long as it generates tuplesof the appropriate schema. Any table listed in the from clause of a Starburst selectoperation may be a table function. When a query referencing a table function isprocessed, the table function's registered procedure is called to produce the contentsof the table.� The event queue feature is designed for deferred execution of procedures. Once anevent queue has been declared, arbitrary procedures can be placed on the queue at anytime, to be executed the next time that queue is invoked. The rule system uses twobuilt-in event queues: one for procedures to be executed during the prepare-to-commitphase of each transaction, and one for procedures to be executed in the case of rollback.Figure 2 illustrates the general architecture of the rule system, showing most of theexecution modules and data structures, how they �t together, and how they interact withStarburst itself. In the diagram, Starburst, its query processor, and its data repositoryappear on the left. The ovals in the center column indicate execution modules of the rulesystem. The rectangles on the right represent memory-resident data structures maintained14



Figure 2: Architecture of the Starburst Rule Systemby the rule system. An arrow from an execution module to data indicates that the executionmodule creates the data, while the reverse arrow indicates that the execution module usesthe data. A (double-headed) arrow from one execution module to another indicates that the�rst module calls the second. When these arrows pass through or originate from a star, thisindicates that the call is made through an extensibility feature of Starburst. The invocationarrows are labeled by the event causing a call to occur:(a) Tuple-level insert, delete, or update on a table with one or more rules(b) Reference to a transition table (transition tables are implemented as table functions)(c) Evaluation of a rule condition or execution of a rule action(d) Prepare-to-commit (event queue) or execution of a process rules, process ruleset,or process rule command(e) Execution of a rule de�nition command (create rule, alter rule, drop rule, etc.)15



The data maintained by the rule system is divided into:� Rule Catalog: The Rule Catalog resides in the database; it stores all information aboutthe currently de�ned rules and rule sets.� Global Rule Information: For e�ciency, some information regarding rules and rulesets also is stored in main memory. This information is shared by all user processes,and includes facts such as each rule's triggering operations, the sets rules belong to,priorities between rules, and whether rules have been deactivated.� Transition Log: This is a highly structured log of those operations occurring within atransaction that are relevant to the currently de�ned rules. It is stored in main memoryand is called a transition log since, during rule processing, information about triggeringtransitions is extracted from the log. The log also is used to produce transition tables.This data structure is local, i.e. one Transition Log is maintained for each user process.5Further details on the Transition Log are given in Section 7.1.� Rule Processing Information: This also is local to each process. It includes all infor-mation pertinent to executing rules within a given transaction, including which ruleshave been considered and when, and which rules are potentially triggered at a givenpoint in time.In addition, we have registered an attachment type Rule in Starburst. A table has oneinstance of this attachment type if and only if at least one rule is de�ned on the table. Theattachment descriptor for an instance contains an indicator of what information needs tobe written to the Transition Log when operations occur on the table (see Section 7.1 fordetails).The execution modules depicted in Figure 2 are:� Rule De�nition Module: This component processes all eight rule de�nition commandsdescribed in Section 3. (Here we use \rule de�nition" generically to mean any commandthat manipulates rules or rule sets.) The Rule De�nition Module is responsible formaintaining the Rule Catalog and updating the Global Rule Information. It alsocreates, deletes, and modi�es rule attachment instances and descriptors as appropriate.� Rule Attachment Procedures: This set of procedures writes to the Transition Log when-ever relevant table modi�cations occur. A rule attachment procedure is called auto-matically whenever an insert, delete, or update operation occurs on a table with atleast one rule.5In Starburst, each user or application corresponds to one process, and each such process is comprised ofa sequence of transactions. 16



� Transition Table Procedures: This set of procedures produces transition tables at runtime when they are referenced in rule conditions and actions. Transition tables are im-plemented as table functions, so we have registered procedures for inserted, deleted,new-updated, and old-updated with Starburst; these four procedures produce tran-sition tables by extracting appropriate tuples from the Transition Log.� Rule Execution Module: This component is responsible for selecting and executingtriggered rules. It is invoked automatically at the commit point of every transactionfor which a rule may have been triggered; it also is invoked whenever the query pro-cessor encounters a process rules, process ruleset, or process rule command. Todetermine which rules are triggered, the Transition Log, the Global Rule Information,and the local Rule Processing Information are examined to see which operations haveoccurred and which rules are triggered by these operations. In the case of processruleset and process rule commands, the Rule Execution Module considers only thespeci�ed subset of rules. Rule conditions are checked and actions are executed bycalling the Starburst query processor. Further details on rule execution are given inSection 7.2.The rule system also contains several components not illustrated in Figure 2:� System Start-Up: Whenever Starburst is started or restarted, the rule system initializesthe Global Rule Information from the Rule Catalog. Rule attachments are initializedautomatically by Starburst.� Process Start-Up and Transaction Clean-Up: At process start-up, the rule systemallocates its local data structures|the Transition Log and the Rule Processing Infor-mation. Initially, these structures are empty. They are used during the course of eachtransaction, then reset after end-of-transaction rule processing.� Rollback Handler: The rule systemmust correctly handle a partial or complete rollbackat any time. The Rule Catalog and attachment information are rolled back automat-ically by Starburst. However, the rule system must ensure that all memory-residentdata structures are modi�ed to undo any changes made during the portion of thetransaction being rolled back. This is achieved by having each modi�cation place anappropriate undo operation on the rollback event queue.17



7 Implementation FeaturesIn the previous section we described the general architecture of the Starburst Rule System; inthis section we cover �ve speci�c and important features of the implementation in more detail:transition information management, rule execution, concurrency control, authorization, anderror handling. E�cient transition information management and rule execution are crucialfor system performance, while concurrency control, authorization, and error handling arenecessary for full integration with database processing.67.1 Transition InformationThe attachment procedures that write to the Transition Log save information during queryprocessing so that the Rule Execution Module can determine which rules are triggered andso the transition table references in rule conditions and actions can be evaluated. Sincethe e�ect of rule action execution also is considered by rules, the Transition Log must bemaintained during rule processing as well; this happens automatically since rule actions areexecuted by the Starburst query processor (recall Figure 2).The semantics of rule execution dictates that, at any certain time, di�erent rules mayneed to be considered with respect to di�erent transitions. To do this, we include a (logical)time-stamp with each entry in the Transition Log. We also include with the Rule ProcessingInformation the most recent time at which each rule has been considered; the transition fora given rule is then computed based on entries in the Transition Log occurring after thattime.The triggering operations and transition table references in rules determine which opera-tions and what information must be written to the Transition Log. As an example, suppose arule R is triggered by inserted on a table T , but does not reference the inserted transitiontable. It is necessary to log the times at which insertions occur on T ; it also is necessary tolog the times at which deletions occur for tuples in T that were previously inserted, sincethe net e�ect of an insert followed by a delete is empty. Now suppose R does reference theinserted transition table. In this case, the values of the inserted tuples must be logged.In addition, the new values of updated tuples must be logged for those tuples that werepreviously inserted, since the inserted transition table must contain current values for itstuples. Finally, suppose R also is triggered by updated, and suppose it references transi-tion table new-updated but not old-updated. Now, the new values of all updated tuplesmust be logged; the old values need not be logged since transition table old-updated isnot referenced. Clearly there are many cases to consider, and we do not enumerate them6Readers satis�ed with the implementation overview provided in Section 6 may skip this section withoutsacri�cing the ow of the paper. 18



here. From the set of rules on each table, the composite set of triggering operations andtransition table references is computed. Based on this set, an information code is storedin the table's rule attachment descriptor. When attachment procedures are invoked, theyuse this code to determine what information should be written to the Transition Log. Thisapproach guarantees that all and only the necessary information is saved in the TransitionLog.The data structure we use for the Transition Log is a \double hash table" storing lists ofrecords. Each record represents one tuple-level operation and contains the tuple identi�er,operation, time-stamp and, when necessary, new and/or old values for the tuple. Often it isnecessary to access all records representing a certain operation on a certain table occurringafter a certain time (e.g. all tuples inserted into T since a rule was last considered). Forthis, a hash is performed on the operation and table to obtain a linked list of the relevantrecords in descending order of time-stamp. It sometimes is necessary to consider the historyof a given tuple to form the net e�ect of a transition (e.g. to merge updates, or to detectif a deleted tuple was previously inserted). For this, records with the same tuple identi�eralso are linked in descending order; these lists can be traversed from a given record or canbe obtained for a particular tuple by hashing on the tuple identi�er. We have developed anumber of e�cient algorithms for maintaining and traversing the Transition Log structure.7.2 Rule ExecutionThe Rule Execution Module is invoked by the query processor whenever a process rules,process ruleset, or process rule command is encountered. The Rule Execution Modulealso must be invoked at the commit point of every transaction for which rules may have beentriggered. For end-of-transaction rule processing, the �rst time a rule attachment procedureis called during a transaction|indicating that a relevant operation has occurred|the attach-ment procedure places the Rule Execution Module on the prepare-to-commit event queue.Then, when the transaction is ready to commit, rule execution is invoked automatically.7An important advantage of this approach (over the straightforward approach of invoking theRule Execution Module at the end of every transaction) is that no overhead is incurred bytransactions for which no rules are triggered.During rule processing, we maintain a data structure called Potential-Rules as part ofthe local Rule Processing Information; this data structure contains references to those rulespotentially triggered at each point in time. The rules in this structure are only \potentially"7If other procedures placed on the prepare-to-commit event queue may modify the database, then it isimportant for the Rule Execution Module to be invoked after such procedures during queue processing.Currently in Starburst no other prepare-to-commit procedures modify data, so the execution order of theRule Execution Module relative to other queued procedures is unimportant.19



triggered because they are a conservative estimate|every triggered rule is in the set, butthere may be rules in the set that actually are not triggered: At the end of each transition,all rules triggered by operations that occurred during the transition are added to Potential-Rules without considering the net e�ect of the transition. Hence, for example, if tupleswere inserted into table T during the transition, then all rules triggered by inserted on Tare added to Potential-Rules, regardless of whether the inserted tuples subsequently weredeleted.In practice, it is rare for operations in a transition to be \undone" in the net e�ect, soPotential-Rules usually is not overly conservative. However, before processing a rule fromPotential-Rules, the net e�ect must be computed to verify that the rule is indeed triggered.Note that by maintaining the potentially triggered rules, rather than the actually triggeredrules, we compute the net e�ect for only one rule in each \cycle" of rule execution, ratherthan for all triggered rules.When a rule is fetched from Potential-Rules for consideration, it must be chosen suchthat no other rule with higher priority also may be triggered. This is achieved by maintainingPotential-Rules as a sort structure based on the total ordering of rules described in Section4.4.7.3 Concurrency ControlSince Starburst is a multi-user database system, we must ensure that all aspects of the rulesystem behave correctly in the presence of concurrently executing transactions.8 For mosttransactions, including those with triggered rules, concurrency control is handled automat-ically by the database system since rule conditions and actions are executed through theStarburst query processor. However, since rules themselves may be manipulated on-line, therule system must enforce concurrency control for transactions that perform rule de�nition(i.e. transactions that create, delete, or modify rules or rule sets).As examples of consistency issues involving rule de�nition, consider the following scenar-ios:� Suppose a transaction X modi�es a table T while a concurrent transaction deactivatesrule R on T . Should R be triggered by X?� Suppose a transaction X triggers rules R1 and R2 while a concurrent transaction altersthe relative priority of R1 and R2. Which ordering should be used by X?8Note, however, that Starburst is not a distributed database system, so issues of distributed access toshared data and main memory structures are not relevant.20



� Suppose a transaction X executes \process ruleset S" while a concurrent transactionadds rule R to set S. Should R be triggered by X?We address these issues in the Starburst Rule System by ensuring that transactions areserializable not only with respect to data but also with respect to rules (including ruletriggering and rule sets). Furthermore, we ensure that the equivalent serial transactionschedule with respect to rules is the same as the equivalent serial schedule with respect todata.Let X1 and X2 be transactions such that X1 precedes X2 in the serial schedule inducedby Starburst's concurrency control mechanism for data. Serializability of X1 and X2 withrespect to rules is guaranteed by enforcing the following three consistency requirements:(1) Triggering consistency: IfX1 performs rule de�nition on a table T (i.e.X1 in some waymodi�es rules pertaining to T ), and X2 modi�es data in T , then X2's rule processingsees the e�ect of X1's rule de�nition. If X2 performs rule de�nition on a table modi�edby X1, then X1's rule processing does not see the e�ect of X2's rule de�nition.(2) Rule set consistency: If X1 modi�es a rule set S and X2 includes \process ruleset S",then X2's rule processing sees the e�ect of X1's rule set modi�cation. If X2 modi�esS and X1 includes \process ruleset S", then X1's rule processing does not see thee�ect of X2's rule set modi�cation.(3) Update consistency: If X1 and X2 both modify the same rule or rule set, then X2 seesthe e�ect of X1's modi�cation and X1 does not see the e�ect of X2's modi�cation.In addition, the Starburst Rule System ensures consistency within a transaction by enforcingthe following two requirements:(4) Intra-transaction triggering consistency: If a transaction X modi�es a table T then Xcannot subsequently perform rule de�nition on T .(5) Intra-transaction rule set consistency: If a transaction X executes a \process rulesetS" operation then X cannot subsequently modify rule set S.Lastly, the Starburst Rule System ensures consistency of rule ordering:(6) Ordering consistency: If X is a transaction that triggers rules R1 and R2, then theordering between R1 and R2 does not change during X from the �rst time this orderingis used in rule selection.All six consistency requirements are ensured by protocols that check and/or set locks on data,rules, or rule sets. In Starburst, locks are acquired throughout a transaction as needed and21



are held until the transaction commits or rolls back. Hence, the equivalent serial schedule oftransactions with respect to data is based on commit time.We enforce consistency requirements (1) and (4) as follows. When a transaction Xexecutes a rule de�nition command on table T , X �rst checks to see if it has modi�ed T(by checking if it holds any exclusive locks on data in T ). If so, then the rule de�nitioncommand is rejected. Otherwise, X obtains a table-level shared lock on T . This forces Xto wait until all transactions currently modifying T have committed, and it disallows futuremodi�cations to T by other transactions until X commits.Consistency requirement (2) is enforced by locking rule sets. Before modifying (creating,altering, or dropping) rule set S, a transaction must obtain an exclusive lock on S. Beforeprocessing rule set S, a transaction must obtain a shared lock on S. To enforce consistencyrequirement (5), shared rule set locks cannot be upgraded to exclusive rule set locks.Consistency requirement (6) is enforced by locking rules. When a rule R is added to datastructure Potential-Rules (recall Section 7.2), a shared lock is obtained on R. When a rulede�nition command that a�ects rule ordering is executed (create rule, alter rule, or droprule), an exclusive lock is obtained on every rule whose ordering relative to other rules isa�ected by the command. Note that even the ordering between unchanged rules may bereversed, since transitive relationships may be introduced or dropped. To prevent orderingrelationships from changing within a transaction, shared rule locks cannot be upgraded toexclusive rule locks.Consistency requirement (3) is enforced automatically since rule and rule set modi�-cations are reected in the Rule Catalog, and the Rule Catalog is subject to Starburst'sconcurrency control mechanisms for data.Further details of these locking protocols and proofs of their correctness appear in [21].7.4 AuthorizationIn the authorization component of the Starburst Rule System we address a number of distinctissues, including authorization to create rules on a given table, authorization to create ruleswith given conditions and actions, authorization to alter or drop given rules, authorizationfor rule sets, and authorization at rule execution time. In Starburst, lattices of privilege typescan be de�ned for arbitrary database objects, with higher types subsuming the privileges oflower types. For example, for database tables the highest privilege is control; below this areprivileges write, alter, and attach; below write are privileges update, delete, and insert; belowupdate and delete is privilege read. When a table is created, its creator automatically obtainscontrol privilege on the table, which includes the ability to grant and revoke privileges on it.For rules we have de�ned a simple linear lattice of privilege types: the highest privilegeis control, below this is alter, and privilege deactivate/activate is lowest. As with tables, a22



rule's creator automatically obtains control privilege on the rule and may grant and revokeprivileges on it. To create a rule R on table T , R's creator must have both attach andread privileges on T .9 During rule creation, R's condition and actions are checked usingthe creator's privileges. If the condition or actions contain commands the creator is notauthorized to execute, then the create rule command is rejected. To drop a rule R on tableT , we require either control privilege on T or attach privilege on T with control privilegeon R. To alter a rule, privilege alter is required; to deactivate or activate a rule, privilegedeactivate/activate is required. During rule processing, each rule's condition and actionsare executed using the privileges of the rule's creator (not the privileges of the transactiontriggering the rule).We have de�ned two privilege types for rule sets, control and alter, with control subsumingalter. A rule set's creator obtains control privilege on the rule set and may grant and revokeprivileges on it. Privilege control is needed to drop a rule set; privilege alter is needed toadd or delete rules from a rule set. No privileges on rules are needed to add or delete themfrom rule sets, and no privileges are needed to execute process rules, process ruleset, orprocess rule statements.The Starburst Rule System currently does not enforce any authorization requirementswhen users examine the rules or rule sets in the system|all rules may be queried andinspected by any Starburst user. It is clear, however, that authorization requirements forreading rules should ultimately be included in any complete active database system.7.5 Error HandlingIf an error occurs during the execution of a Starburst rule de�nition command (due to,e.g., the creation of cyclic priorities, the inclusion of an action the creator is not authorizedto execute, or a syntactic aw), then the rule de�nition command is rejected. During ruleprocessing, two types of errors can occur: an error may be generated during the evaluation ofa rule's condition or execution of a rule's action, or rules may trigger each other or themselvesinde�nitely. In the �rst case, if an error is generated by the query processor when it executesa rule condition or action, then the rule system terminates rule processing and aborts thecurrent transaction. For the second case, the rule system includes a \timeout" mechanism:Once more than some number n of triggered rules have been considered, rule processingterminates and the transaction is aborted; limit n is established by a system administrator.9In general, attach privilege on a table indicates that the user is permitted to alter the performance ofthat table. We require read privilege on table T since rule R can implicitly read the contents of T throughtransition tables without accessing T directly. 23



8 Conclusions and RetrospectiveThe Starburst Rule System is a fully implemented extension to the Starburst prototype rela-tional database system at the IBM Almaden Research Center. We have designed a rule lan-guage that is exible and general, with a well-de�ned semantics based on arbitrary databasestate transitions. In addition to the usual commands for manipulating rules, our languageincludes a basic rule set facility for application structuring, and it includes commands forprocessing rules within transactions in addition to the automatic rule processing that occursat the end of each transaction. Rule processing in Starburst is completely integrated withdatabase query and transaction processing, including concurrency control, authorization,rollback recovery, and error handling.We have learned a number of interesting lessons from our careful development of theStarburst rule language, from its thorough implementation, and from our experiments withthe running system on a variety of rule applications. With respect to our design of theStarburst rule language, we make the following observations:� Basing the semantics on arbitrary transitions o�ers considerable exibility, and it gen-erally provides a clean execution behavior. Although users may feel initially that theybetter understand tuple- or statement-level rule triggering, there can be surprisinganomalies in such behavior that do not arise with the Starburst semantics. On theother hand, for very simple rule processing tasks, tuple-level or statement-level ruleprocessing usually does behave as the user expects, and it can be both more naturaland more e�cient than the Starburst approach.10 Note also that Starburst's transition-oriented semantics prohibits a natural before option for rule triggering [34]. However,again, specifying beforemay result in surprising rule interactions, where such behavioris avoided with Starburst's rule semantics.� Rule processing based on an iterative loop, as in Starburst, is intuitive, it seems tobe su�cient for most applications, and it is relatively easy to implement. Hence,we believe that the more complex recursive rule processing algorithms used in, e.g.,POSTGRES [42] or HiPAC [20], probably are not worthwhile.� Complex conict resolution policies, such as those used in OPS5 [9] and Ariel [31],do not seem appropriate for most active rule applications. Simple relative prioritiesappear to be su�cient, and they can be implemented easily and e�ciently.� A signi�cant drawback in the Starburst rule language, as opposed to a number of otheractive rule languages, is the lack of a language facility for \passing data" from a rule's10Consider, e.g., a rule that performs a simple modi�cation to each inserted tuple and doesn't trigger anyother rules. 24



condition to its action. Note that the data associated with triggering operations isavailable implicitly through transition tables. However, the data satisfying a rule'scondition is not directly available in the rule's action. In practice, users often writeStarburst rules that explicitly repeat the condition as a subquery in the action, orthat omit the condition altogether and place it in the action. A language feature forreferencing, in the action, the data satisfying the condition (as suggested in [15]) wouldhave been very useful.� A convenient extension to the rule language would have been to allow rules that aretriggered by operations on multiple tables. In fact, this feature has no e�ect on thesemantics of the rule language [49], but was omitted due to the additional implementa-tion e�ort. Another useful extension would have been to allow rule actions that invokearbitrary host language procedures. Currently, this behavior can be simulated throughStarburst's foreign function feature in SQL [30], but host language procedures cannotbe called directly from rules.� Rules in Starburst cannot be triggered by select operations. Although the reason forthis is partly implementation-dependent (the attachment extensibility feature is notavailable for select operations), there are a number of semantic issues that would alsoneed to be addressed to add select as a triggering operation, such as whether rules aretriggered by nested select expressions.With respect to our implementation of the Starburst Rule System, we make the followingobservations:� The extensibility features of Starburst o�ered a dramatic \head start" in implementingthe rule system. All three extensibility features that we used|attachments, eventqueues, and table functions|were used heavily. Signi�cant additional coding wouldhave been required had these features not been available.� A number of main-memory data structures are maintained by the rule system (recallSection 6). Because much of the work associated with rule processing involves ma-nipulating these structures, rule processing itself is very fast. However, each structureneeded recovery procedures coded for each of its operations (in case of a completeor partial rollback), and certain important aspects of rule processing|such as thenumber of rules, or the number of tuple-level operations relevant to rules within agiven transaction|are limited by the fact that these structures reside in memory. Thesystem would have been easier to implement and it would be more scalable if thesemain-memory structures were implemented as persistent, recoverable database objects.25



Unfortunately, one of the few things Starburst did not o�er was a exible facility forsuch objects with the performance we desired for rule operations.� Integrating rule processing directly into the database system, as opposed to a looselycoupled approach, o�ers important advantages for both performance and functional-ity. With a loosely coupled approach it would have been impossible to fully addressissues such as concurrency control, authorization, and recovery. In addition, signi�cantoverhead would have been incurred by the need to intercept user commands and/ordatabase results at the client level rather than within the database system. Althoughit may be unappealing (and, sometimes, impossible) to modify or extend the core codeof a database system, this appears to be a necessity if one wishes to build a fullyintegrated active rule system with acceptable performance.� Initial performance measurements have revealed that the vast majority of time spent inrule processing is in fetching, compiling, and executing rule conditions and actions. InStarburst we were unable to store precompiled queries, so rule conditions and actionsneeded to be compiled each time they were executed. Once conditions and actionsare stored in compiled form, the main cost of rule processing will be in conditionevaluation and action execution (rather than other aspects pf rule processing, such as�nding triggered rules, selecting the highest priority rule, etc.). This lead us to believethat performance improvements will be made not by streamlining rule management orthe rule processing algorithm itself, but rather by �nding ways to optimize conditionevaluation and action execution.9 Applications and Future WorkThe Starburst Rule System has been used as a platform for developing a number of ap-plications and for investigating various issues in active database systems. We have usedStarburst rules for enforcing integrity constraints [15], for maintaining materialized views[16], and for implementing deductive databases [19], as well as for several other (more ad-hoc) applications. We have studied how the Starburst Rule System can be supported in atightly-coupled distributed database environment with full distribution transparency [17];we also have studied how the Starburst Rule System can be used to manage semantic het-erogeneity across loosely-coupled databases [18]. Because predicting and understanding thebehavior of active database rules is an important facet of application development, we havedeveloped methods for statically analyzing sets of Starburst rules; these analysis methodsdetermine (conservatively) whether a set of rules is guaranteed to terminate, and whetherthe rules are guaranteed to produce a unique �nal state [2]. Other researchers have used the26



Starburst Rule System as a basis for studying and implementing secure active databases [40],dynamic integrity constraints [28,43], and automatically-generated compensating actions forstatic constraints [13].Although we do consider the Starburst Rule System to be complete at this time, thereare several directions in which it may be exercised, improved, and extended:� Currently we have obtained only initial cursory performance results. We would liketo elaborate these results; this requires developing a mechanism for accurate measure-ments and deriving a su�cient suite of test applications.� As explained in Section 6, a rule's condition is evaluated by executing a query over thedatabase. We do incorporate one important optimization, namely that a rule conditionis understood to be true as soon as the �rst tuple in the query is found. However, wedo not support incremental condition monitoring methods such as those used in Ariel[44] and in OPS5 [9,36]. We have explored incremental condition evaluation in thecontext of Starburst [5], and we plan to explore other run-time optimization methodsas well. We are interested also in compile-time optimization methods, such as staticcombination of multiple rules that have related conditions and/or actions.� Statement-level rule processing can be achieved in the Starburst Rule System by issuinga \process rules" command after each statement; it would be useful to provide amore convenient mechanism for this. For example, we could prede�ne a system ruleset called Statement. Users would then add rules to this set, and the system wouldautomatically execute \process ruleset Statement" after each statement. A similarmechanism could be provided for tuple-level rule processing.� Currently, the Starburst Rule System includes only basic facilities for rule tracing andfor interaction between rule processing and application programs. The areas of debug-ging and application interfaces o�er considerable opportunities for useful extensions.In addition to these Starburst-speci�c areas of future work, we hope and expect that theStarburst Rule System will continue to be used as a basis for further research in activedatabase systems.AcknowledgmentsSincere thanks go to Stefano Ceri, Bobbie Cochrane, Shel Finkelstein, and Bruce Lindsay,all of whom made important contributions to one aspect or another of the Starburst RuleSystem. 27
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