Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
teaching:mfe:ia [2016/03/14 16:14]
mdorigo [Evolution of Modular Controllers for Simulated and Real Robots]
teaching:mfe:ia [2016/03/14 16:19]
mdorigo [Développer un programme informatique permettant une analyse statistique en vue de l'évaluation d'un module psychothérapeutique.]
Line 6: Line 6:
  
 Ces sujets sont prêt à être encadrer, mais il va s'en dire qu'ils ne sont pas uniques. Les étudiants sont vivement encouragés à prendre contact avec Hugues Bersini (bersini AT ulb.ac.be) ou Marco Dorigo (mdorigo AT ulb.ac.be) afin de discuter de l'une ou l'​autre initiative inspirée pouvant faire l'​objet dun autre sujet de MFE ou de préciser le cadres, le contenu et les attentes relatives au sujets présentés. Ces sujets sont prêt à être encadrer, mais il va s'en dire qu'ils ne sont pas uniques. Les étudiants sont vivement encouragés à prendre contact avec Hugues Bersini (bersini AT ulb.ac.be) ou Marco Dorigo (mdorigo AT ulb.ac.be) afin de discuter de l'une ou l'​autre initiative inspirée pouvant faire l'​objet dun autre sujet de MFE ou de préciser le cadres, le contenu et les attentes relatives au sujets présentés.
 +
 +
 +===== Swarm construction:​ Development of remote monitoring software for intelligent structures =====
 +
 +S-blocks are dynamically reconfigurable blocks used for autonomous construction applications. When two or more S-blocks are assembled they are capable of communicating with each other over a near field communication (NFC) wireless interface. The goal of this master thesis is to develop software to monitor (and control) the blocks in an intelligent structure remotely over the auxiliary Zigbee-based wireless interface. As only one block in the structure is fitted with this wireless interface, it is required that the other blocks communicate with the PC, via routing messages through the block-to-block NFC interfaces. This will require the software on the S-Blocks to be enhanced to use preemptive task swapping, to allow multiple blocks to communicate with each other simultaneously. ​
 +
 +Required skills: The candidates should understand low level computer concepts such as: interrupts, timers, and registers, have some experience with C/C++ programming,​ and have a working knowledge of the English language.
 + 
 +* Contact: [[http://​iridia.ulb.ac.be/​~mdorigo|Marco Dorigo]] (IRIDIA) ​
 +
 +
 +
 +===== Design of a holonomic drive system for autonomous robots in a swarm =====
 +
 +Unlike a differential drive system, a holonomic drive system has the advantage of being able to move in any direction at a given instant. The goal of this master thesis is to design and evaluate the performance of a holonomic drive system. The drive system will be assembled from a combination of off-the-shelf components and 3D printed parts. In order to evaluate the drive system, close loop controllers need to be designed and evaluated in C/C++.
 +
 +Required skills: The candidates should have some experience with programming in C/C++, and some experience with 3D modelling (preferably Solidworks). The candidates should be able to use basic kinematics to solve simple physics problems, and have a working knowledge of the English language.
 + 
 +* Contact: [[http://​iridia.ulb.ac.be/​~mdorigo|Marco Dorigo]] (IRIDIA) ​
 +
  
  
Line 220: Line 240:
  
  
- 
-===== Development of remote monitoring software for intelligent structures ===== 
- 
-S-blocks are dynamically reconfigurable blocks used for autonomous construction applications. When two or more S-blocks are assembled they are capable of communicating with each other over a near field communication (NFC) wireless interface. The goal of this master thesis is to develop software to monitor (and control) the blocks in an intelligent structure remotely over the auxiliary Zigbee-based wireless interface. As only one block in the structure is fitted with this wireless interface, it is required that the other blocks communicate with the PC, via routing messages through the block-to-block NFC interfaces. This will require the software on the S-Blocks to be enhanced to use preemptive task swapping, to allow multiple blocks to communicate with each other simultaneously. ​ 
- 
-Required skills: The candidates should understand low level computer concepts such as: interrupts, timers, and registers, have some experience with C/C++ programming,​ and have a working knowledge of the English language. 
-  
-* Contact: [[http://​iridia.ulb.ac.be/​~mdorigo|Marco Dorigo]] (IRIDIA) ​ 
- 
- 
- 
-===== Localisation and tracking of components in self-assembling systems ===== 
- 
-The goal of this project is to apply computer vision techniques to track the growth of structures in self-assembling systems. The ability to track the growth of structures will shed light on the dynamics of self-assembly;​ an aspect of self-assembly that has not been well researched in the macroscopic context. 
- 
-As part of the project, the student will have to: (a) find suitable hardware (combination of camera, lens, lighting, etc.), (b) localise multiple components in an environment,​ (c) track the components in the environment,​ and (d) track the assembly of components in the environment. 
- 
-Required skills: the candidates should be able to program in C++ and have a working knowledge of the English language. 
- 
- * Contacts : [[http://​iridia.ulb.ac.be/​~mdorigo/​HomePageDorigo/​ | Marco Dorigo]] and Dhananjay Ipparthi (IRIDIA) 
  
  
 
teaching/mfe/ia.txt · Last modified: 2024/06/12 11:11 by stuetzle