Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
teaching:mfe:ia [2013/03/18 10:02]
bersini
teaching:mfe:ia [2014/05/13 17:21]
mdorigo
Line 1: Line 1:
-====== MFE 2012-2013 : Intelligence Artificielle ======+====== MFE 2013-2014 : Intelligence Artificielle ======
  
 ===== Introduction ===== ===== Introduction =====
Line 214: Line 214:
     * [[http://​iridia.ulb.ac.be/​~manuel|Manuel López-Ibáñez (IRIDIA)]]     * [[http://​iridia.ulb.ac.be/​~manuel|Manuel López-Ibáñez (IRIDIA)]]
     * [[http://​iridia.ulb.ac.be/​~jdubois|Jérémie Dubois-Lacoste (IRIDIA)]]     * [[http://​iridia.ulb.ac.be/​~jdubois|Jérémie Dubois-Lacoste (IRIDIA)]]
- 
- 
-===== Stochastic local search algorithms for weighted maximum clique problems. ====== 
- 
-The Maximum Clique Problem is an NP-hard combinatorial optimisation problem that asks to find the biggest completely 
-connected component of a graph. It has relevant applications in information retrieval, computer vision, social network 
-analysis, computational biochemistry,​ bioinformatics and genomics. ​ 
- 
-Among the possible generalisations of the problem there is the Vertex Weighted and Edge Weighted Maximum Clique which asks to find the clique of maximum weight. Being generalisations they are also NP-hard. The goal of the project is to devise heuristic algorithms or adapt existing algorithms of the Maximum Clique for weighted version. 
- 
-Required skills: good knowledge of C or C++ programming. ​ 
- 
- 
-  * Contacts :  
-    * [[http://​iridia.ulb.ac.be/​~stuetzle|Thomas Stützle (IRIDIA)]] ​ 
-    * [[http://​iridia.ulb.ac.be/​~fmascia|Franco Mascia (IRIDIA)]] ​   
  
  
Line 264: Line 248:
     * [[http://​iridia.ulb.ac.be/​~fmascia|Franco Mascia (IRIDIA)]] ​       * [[http://​iridia.ulb.ac.be/​~fmascia|Franco Mascia (IRIDIA)]] ​  
  
 +
 +===== Feature Extraction and Automatic Algorithm Selection. ======
 +
 +The performance of (Stochastic Local Search) algorithms for a given problem depends on the algorithm design and on the setting of the algorithm'​s parameter. Given a heterogeneous set of instances for a given problem a good algorithm design (or parameter configuration) for one instance is not necessary the best design for all instances. On the contrary a tuning of an algorithm on a specific family of similar instances may affect negatively its performance on other families of instances. ​
 +
 +The thesis will focus on devising automatic methods for extracting features from the instances, select the relevant features, and learning (in the framework of multi-class classification) the
 +relationship,​ if there is one, between the instances features and the best algorithm for the instance. The results will be instrumental for algorithm selection or the creation of portfolios of complementary algorithms suitable for large sets of diverse instances for a given problem.
 +
 +
 +Required skills: good knowledge of C or C++ programming and of a scripting language (e.g., python); good knowledge of machine learning methods would also be helpful. ​
 +
 +
 +  * Contacts : 
 +    * [[http://​iridia.ulb.ac.be/​~stuetzle|Thomas Stützle (IRIDIA)]] ​
 +    * [[http://​iridia.ulb.ac.be/​~fmascia|Franco Mascia (IRIDIA)]] ​  
  
  
Line 287: Line 286:
  
   * Contacts : [[http://​iridia.ulb.ac.be/​~mbiro|Mauro Birattari]] and Manuele Brambilla (IRIDIA)   * Contacts : [[http://​iridia.ulb.ac.be/​~mbiro|Mauro Birattari]] and Manuele Brambilla (IRIDIA)
 +
 +
 +===== ROBO-POINTER -- A New Device for Human-Robot Interaction =====
 +
 +In this project, the student will design and implement a novel human-robots interaction system.
 +The human uses a special laser pointer (called robo-pointer),​ and by simply pointing to a specific robot he can select it, check its status on a dedicated monitor and send to the robot instructions. ​
 +
 +Now, our arena is equipped with a multi-camera tracking system that allows to detect the 3D position of the robots.
 +The student will design a radio sensor network to detect the 3D position of the robo-pointer.  ​
 +The two pieces of information will be combined to trigger the selection of the pointed robot.
 +
 +* Contacts : [[http://​iridia.ulb.ac.be/​~mbiro|Mauro Birattari]] and Andreagiovanni Reina (IRIDIA)
 +
 +
 +===== Let a robot swarm get around home! =====
 +
 +Robot swarms have very limited knowledge of their environment and therefore, moving around a complex environment (i.e., room with obstacles, building, ...) is a complex task. The idea of this project is to allow an overhead multi-camera tracking system -- that has a complete vision and knowledge of the environment -- to interact with a robot swarm in order to help the swarm move to a specific goal in the environment (for instance, moving from the kitchen to a bedroom of a house). ​
 +The multi-camera tracking system'​s software is already developed. The student will be supposed to (i) develop a GUI that allows a human operator to specify a goal in the environment,​ (ii) design and implement a communication protocol (between the tracking system and the robot swarm) that guarantees efficiency and scalability and finally, (iii) test the interaction system in a simulated environment.
 +
 +* Contacts : [[http://​iridia.ulb.ac.be/​~mbiro|Mauro Birattari]],​ Gaëtan Podevijn, and Andreagiovanni Reina (IRIDIA)
 +
 +
 +
 +
 +===== Collective Decision Making with Heterogeneous Agents =====
 +
 +Swarm robotics is an interesting approach to the coordination of hundreds of robots as it promotes the realization of systems which are scalable, robust and flexible. ​
 +The master thesis will study how to provide a swarm system with the cognitive capability of collective decision making.
 +Each agent has partial knowledge of the available alternatives and of their quality estimate, however the swarm, as a whole, is able to decide for the best option. Recently, numerous works have studied strategies and algorithms to implement this process in distributed systems (often taking inspiration from biology, e.g., bees or cockroaches behaviour). One of the common characteristic of these works is that all the agents of the swarm has the same behaviour. In the Master Thesis project, the student will study how heterogeneity influences the global outcome. We will consider heterogeneity both in the individual behaviour (for instance, robots can estimate different option characteristics) and in the interaction network.
 +
 +In practice, the student is supposed to (i) model the collective decision making problem
 +(ii) design and implement multi-agents simulations,​ and (iii) analyse and discuss the obtained
 +results. Depending on the student skills and preferences,​ the work can focus more on theoretical
 +aspects, thus favouring the modelling and analysis of the problem, or can be more practical,
 +thus centring the thesis on the multi-agent implementation part. Possibly, a more practical
 +thesis could result (depending on the student skills) in the implementation of a real world
 +demonstrator with a swarm of up to 100 robots.
 +
 +* Contacts : [[http://​iridia.ulb.ac.be/​~mdorigo|Marco Dorigo]] and Andreagiovanni Reina (IRIDIA)
 +
 +
 +===== Online Framework to Compose Robotic Solutions =====
 +
 +The design of swarm robotics systems is a challenging task due to difficulties to predict and model swarm systems.
 +The most common approach is a trial-and-error process where the developer tries solutions, tests them in simulation and corrects the code to eventually achieve the desired global outcome. ​
 +
 +The project aims to ease this design process: the developer have access to the code of already solved problems (called code-modules),​ and he can graphically combine the code-modules through a graphical interface to create his own solution.
 +
 +The student is supposed to design this novel online framework that offers two main functionalities:​ (1) to compose new solutions combining the existing code-models to solve new open problems, and (2) to code new code-modules and submit them to the online system. ​
 +
 +* Contacts : [[http://​iridia.ulb.ac.be/​~mbiro|Mauro Birattari]],​ Andreagiovanni Reina, and Gianpiero Francesca (IRIDIA)
  
  
Line 376: Line 426:
   * Contact: [[http://​iridia.ulb.ac.be/​~mbiro|Mauro Birattari]] and Carlo Pinciroli (IRIDIA) ​   * Contact: [[http://​iridia.ulb.ac.be/​~mbiro|Mauro Birattari]] and Carlo Pinciroli (IRIDIA) ​
  
- 
-===== Self-organized visual coverage in a swarm of robots ===== 
- 
-Systems composed of several inter-connected cameras are already a reality in our everyday lives. The prime application of such systems is video-surveillance,​ but the possibilities off ered by multiple-camera systems can extend to other interesting scenarios, such as environment mapping, 3D shape-reconstruction and object recognition. In all these scenarios, the problem of finding the right 
-position of a set of cameras in order to maximize the visual field, or the amount of information available, is not always a simple one. Furthermore,​ systems consisting of cameras in a fixed position present obvious issues of robustness and flexibility. 
-Multi-robots systems can provide an interesting mean to overcome this issues. Robots navigating in the enviroment can change their position as a result of changes in the enviroment or in the overall system'​s objective. A centralized control solution for these systems is still not a desirable one, as it introduces a single point of failure and it can suff er from performance issues. 
-The Swarm Robotics paradigm o ffers a valid approach to the design of a multiple camera system. In this project, we want to study the possibility to develop a control strategy that enables a swarm of robots to position themselves into an unknown environment,​ maximizing the area covered by their visual fields, while relying only on their image processing system and on local communication. 
- 
-Required skills: The candidate should be acquainted with C/C++ programming and have a 
-working knowledge of the English language. 
- 
-  * Contact: [[http://​iridia.ulb.ac.be/​~mbiro|Mauro Birattari]] and Alessandro Stranieri (IRIDIA) 
  
 ===== Automatic fitness function definition in evolutionary robotics ===== ===== Automatic fitness function definition in evolutionary robotics =====
Line 414: Line 452:
 * Contact: [[http://​iridia.ulb.ac.be/​~vtrianni|Vito Trianni]], Marco Dorigo (IRIDIA) ​ * Contact: [[http://​iridia.ulb.ac.be/​~vtrianni|Vito Trianni]], Marco Dorigo (IRIDIA) ​
  
 +
 +===== Localisation and tracking of components in self-assembling systems =====
 +
 +The goal of this project is to apply computer vision techniques to track the growth of structures in self-assembling systems. The ability to track the growth of structures will shed light on the dynamics of self-assembly;​ an aspect of self-assembly that has not been well researched in the macroscopic context.
 +
 +As part of the project, the student will have to: (a) find suitable hardware (combination of camera, lens, lighting, etc.), (b) localise multiple components in an environment,​ (c) track the components in the environment,​ and (d) track the assembly of components in the environment.
 +
 +Required skills: the candidates should be able to program in C++ and have a working knowledge of the English language.
 +
 + * Contacts : [[http://​iridia.ulb.ac.be/​~mdorigo/​HomePageDorigo/​ | Marco Dorigo]] and Dhananjay Ipparthi (IRIDIA)
  
 ===== Simulation et optimisation de trafic routier ===== ===== Simulation et optimisation de trafic routier =====
 
teaching/mfe/ia.txt · Last modified: 2024/07/01 16:15 by stuetzle