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Symbolic Trajectories

RALF HARTMUT GÜTING and FABIO VALDÉS, FernUniversität Hagen
MARIA LUISA DAMIANI, University of Milan

Due to the proliferation of GPS-enabled devices in vehicles or with people, large amounts of position data
are recorded every day and the management of such mobility data, also called trajectories, is a very active
research field. A lot of effort has gone into discovering “semantics” from the raw geometric trajectories by
relating them to the spatial environment or finding patterns, for example, by data mining techniques. A
question is how the resulting “meaningful” trajectories can be represented or further queried.

In this article, we propose a systematic study of annotated trajectory databases. We define a very simple
generic model called symbolic trajectory to capture a wide range of meanings derived from a geometric
trajectory. Essentially, a symbolic trajectory is just a time-dependent label; variants have sets of labels,
places, or sets of places. They are modeled as abstract data types and integrated into a well-established
framework of data types and operations for moving objects. Symbolic trajectories can represent, for example,
the names of roads traversed obtained by map matching, transportation modes, speed profile, cells of a
cellular network, behaviors of animals, cinemas within 2km distance, and so forth. Symbolic trajectories can
be combined with geometric trajectories to obtain annotated trajectories.

Besides the model, the main technical contribution of the article is a language for pattern matching
and rewriting of symbolic trajectories. A symbolic trajectory can be represented as a sequence of pairs
(called units) consisting of a time interval and a label. A pattern consists of unit patterns (specifications for
time interval and/or label) and wildcards, matching units and sequences of units, respectively, and regular
expressions over such elements. It may further contain variables that can be used in conditions and in
rewriting. Conditions and expressions in rewriting may use arbitrary operations available for querying in
the host DBMS environment, which makes the language extensible and quite powerful.

We formally define the data model and syntax and semantics of the pattern language. Query operations
are offered to integrate pattern matching, rewriting, and classification of symbolic trajectories into a DBMS
querying environment. Implementation of the model using finite state machines is described in detail. An
experimental evaluation demonstrates the efficiency of the implementation. In particular, it shows dramatic
improvements in storage space and response time in a comparison of symbolic and geometric trajectories for
some simple queries that can be executed on both symbolic and raw trajectories.
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1. INTRODUCTION

Due to the widespread use of GPS-enabled devices such as smartphones and car navi-
gation systems, the recording of position data has become very easy, and huge amounts
of such data are collected every day. In response to this, the research field of trajectory
data management, also termed moving objects databases, has been very active in the
last 15 years [Zheng and Zhou 2011; Güting and Schneider 2005].

A trajectory describes the movement of an entity, for example, a person, a vehicle,
or an animal, over time. At a low level of abstraction, it is a sequence of positions
with timestamps, corresponding to the way data are recorded by devices. At a higher
level of abstraction, it is a continuous function from time into 2D space that may be
represented by an abstract data type.

There is a large body of research on trajectories of this kind (later called raw or
geometric trajectories). For example, they have been integrated into DBMS data models
and query languages in the form of abstract data types with suitable operations [Güting
et al. 2000], index structures have been developed [Pfoser et al. 2000; Nguyen-Dinh
et al. 2010], modeling has addressed movement in networks [Speicys et al. 2003] and
uncertainty [Trajcevski et al. 2004], similarity measures for trajectories have been
studied [Chen et al. 2005], and techniques for visual analysis have been explored
[Andrienko and Andrienko 2013]. Two prototype database systems implementing the
model of Güting et al. [2000] exist, SECONDO [Güting et al. 2010] and Hermes [Pelekis
et al. 2008].

A lot of effort has gone into data mining on large sets of trajectories [Giannotti
and Pedreschi 2008]. Whereas the general goal is to discover any kind of interesting
phenomena on such datasets, an important aspect is to associate some meaning with a
trajectory as a whole or parts of it. For example, for a tourist, rather than being at some
geographic coordinate in France for an interval of time, we would like to understand
that he or she is visiting the Louvre or having dinner at a restaurant. For a car, we
want to be aware that it was in a traffic jam during a certain period. For an animal
observation, we would like to understand that this is migration behavior, or a bird
flying in a swarm. For a person moving around, we would like to know whether he or
she is walking, going by bicycle, or using a bus.

Obviously such “semantic” information is derived from the original geometric trajec-
tory and will be represented in some symbolic form. It can be viewed as a trajectory
annotation or the derived symbolic version of the trajectory can afterward be handled
independently. We can distinguish three kinds of trajectory annotations:

(1) Semantic information obtained by data mining
(2) Relating a trajectory to the spatiotemporal environment
(3) Properties that can be derived directly from the geometric trajectory

Figure 1 shows some examples of data mining annotations. Several research works
have tried to determine transportation modes [Zheng et al. 2010a; Reddy et al. 2010;
Stenneth et al. 2011]. For taxis, one is interested in the periods when they are occupied
or free. More generally, a goal is activity recognition and the discovery of meaningful
places. Activities may be walking, driving, or sleeping, for example. Significant locations
can be home, workplace, bus stops and parkings typically used, homes of friends, and
stores the person frequently shops in [Liao et al. 2005; Liu et al. 2006].
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Fig. 1. Trajectory annotation with results of data mining.

One approach to defining “semantic trajectories” is to view a trajectory as a sequence
of stops and moves [Spaccapietra et al. 2008]. Stops are the meaningful places that a
person has visited and moves are the transitions between them.

In the field of animal ecology, one is interested in the behavior of animals as expressed
by their movements. A major challenge is to discover their home ranges and migration
patterns. There may be occasional excursions from the home range, to be distinguished
from migration, which may contain stopovers as shorter breaks in the migration trip
[Li et al. 2011; Kie et al. 2010; Urbano et al. 2010].

An important step in analysis is to relate geometric trajectories to their environment
in space and/or time (e.g., temperature, weather). One fundamental task is to find for
a vehicle the roads that have been used, called map matching [Quddus et al. 2007;
Newson and Krumm 2009]. Another important abstraction is to describe a trajectory
relative to a partition of the plane (e.g., states or districts of a country) as a sequence of
labels of regions traversed. This has been the basis of earlier work on pattern matching
languages for trajectories [du Mouza and Rigaux 2005; Vieira et al. 2010], discussed
in Section 8 in detail. Yet another symbolic representation concerns the cell towers of
mobile phone providers that a cell phone has registered with during the movement. This
kind of data is often obtained without geometric trajectories, collected from providers.
Movement and activity analysis can be based on these symbolic representations [Eagle
and Pentland 2006; Ahas et al. 2008], possibly deriving geometric trajectories from the
known locations of cell towers [Wu et al. 2014].

Finally, some properties such as direction of movement [Frank 1996], speed, acceler-
ation, and altitude can be derived by introducing a classification on the value ranges
in a symbolic form, which makes them available to new types of queries as developed
in this article.

The data mining community, interested in finding meaningful aspects of trajectories,
has recognized the need for representing the results of analysis, and there has been
a trend to consider so-called “semantic trajectories” [Spaccapietra et al. 2008, 2013].
Initially, the modeling focused on stops and moves; later this was a bit generalized. A
detailed discussion is provided in Section 8. Generally, this line of research has focused
on the process of deriving semantic information and has looked at representations
from the point of view of conceptual modeling, providing extended entity-relationship
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models. For querying, they need to be mapped to corresponding sets of relations. These
representations are not suitable for simple and elegant querying.

The database problem of representing annotated trajectories (or just the semantic
annotation) in a way that allows for easy, flexible, and efficient querying (e.g., including
indexing techniques) has so far been addressed only in a very limited way.

The purpose of this article is threefold:

(i) We propose annotated trajectory databases as a new direction of research, focusing
on the database rather than the conceptual modeling aspects.

(ii) We define a class of simple generic models for trajectory annotations, called sym-
bolic trajectories. They can represent all annotations discussed earlier and so
provide a data model for annotated trajectory databases.

(iii) We propose a new query language for symbolic and annotated trajectories based
on pattern matching.

(i) The work of this article is just a first step into the study of annotated trajectory
databases. There are many more interesting issues to be explored. Some of them are
mentioned in Section 9.

(ii) A symbolic trajectory is in its basic form just a time-dependent label, that is,
a function from time into label values. Labels are just short character strings. Such
a function can be represented as a sequence of pairs <(i1, l1), . . . , (in, ln)>, where i j is
a time interval and lj a label. Time intervals are disjoint (possibly adjacent) and the
pairs in the sequence are ordered by time. For example, a simple symbolic trajectory
would be1

< ([8:30 - 8:45], walk), ([8:45 - 9:13], train), ([9:13 - 9:19], walk) >

We follow the framework of Güting et al. [2000] and represent a symbolic trajectory as
an abstract data type called moving(label), or mlabel for short. The framework has data
types such as moving(point) / mpoint to represent a geometric trajectory, moving(real) /
mreal to represent a time-dependent real (e.g., speed, heading, or the distance between
two moving objects), and so forth. The new type is seamlessly integrated into the
framework and inherits generic operations (e.g., atinstant to evaluate it at some
instant of time, deftime to get the total time interval when it is defined).

These data types can all be used as attribute types in a relational model; hence, one
can construct a relation describing moving objects (each tuple representing one moving
object) with attributes describing geometric together with symbolic information. For
example, we may have a relation schema

Vehicles (Id: int, Trip: mpoint, RoadName: mlabel, Speed: mlabel)

where the road name is obtained from map matching and the speed from a classification
of speeds. Hence, this relation represents a set of annotated trajectories. Queries on
the symbolic part can be used to retrieve the tuples with the geometric trajectories,
hence the complete annotated trajectory.

A crucial aspect of this model is that the symbolic trajectories include the time inter-
val for each symbolic value. This allows one to come back to the geometric trajectory
and identify the parts with certain properties.

Beyond the basic type moving(label), three more types for symbolic trajectories are
provided that allow one to have time-dependent sets of labels, (symbolic references to)
places, and sets of places. They are motivated when they are introduced.

1This representation is simplified. Time intervals do contain absolute dates. More precise notations for time
intervals are defined later in the article.
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(iii) The main technical contribution of this article is a language for pattern matching
and rewriting of symbolic trajectories. Matching is used to retrieve symbolic trajectories
fulfilling a given pattern. Rewriting can be used to translate a symbolic trajectory into
some other form, classify it into certain categories, or retrieve the parts of a symbolic
trajectory matching a pattern.

The basic idea of the language is illustrated next:

* (_ taxi) (_ bus) *

This pattern matches symbolic trajectories containing adjacent pairs (called units)
where a transfer occurs from taxi to bus. A pattern to match a unit is denoted as
(x y), x a time interval specification, y a label specification; the symbol * matches any
sequence of units. In contrast, the pattern

* (monday taxi) X (_ bus) * // duration(X.time) > 20 * minute

requires that the transfer occurs on a Monday and that the bus trip takes more than
20 minutes. This pattern contains a variable X and a condition.

Patterns can be extended to rules that can be used in rewriting:

* W (monday taxi) X (_ bus) * // duration(X.time) > 20 * minute
=> W X

This rule returns for each input trajectory all symbolic trajectories that can be obtained
from it by selecting two adjacent units matching the pattern

(monday taxi) (_ bus)

Hence, one can retrieve all transitions from taxi to bus occurring in the possibly long
symbolic trajectory.

A few works exist that provide simple symbolic representations designed to support
querying or data mining (e.g., du Mouza and Rigaux [2005], Vieira et al. [2010, 2011],
Zheng et al. [2013], and Zhang et al. [2014]). Among them, du Mouza and Rigaux
[2005], [Vieira et al. 2010], and Vieira et al. [2011] provide a pattern query language.
These works are discussed in detail in the related work section (Section 8). Compared
to our proposal, they have severe shortcomings:

—All these proposals address special cases and provide ad hoc representations. For
example, du Mouza and Rigaux [2005] address sequences of labels arising from
traversal of a partition of the plane; labels are not associated with precise time
intervals. The proposal in Vieira et al. [2010, 2011] does not provide a data model at
all; it basically uses raw trajectories and derives time intervals and labels internally
in a data structure. Again, labels are fixed to describe traversed regions of the
plane. The model of Zheng et al. [2013] does not have time at all and otherwise
is a sequence of locations annotated with sets of activities. The model of Zhang
et al. [2014] is a sequence of timestamped locations annotated with a semantic label
where timestamps are instants of time, not time intervals. All these models are not
suitable for representing and querying generic annotations.

—The only approach that associates precise time intervals with symbolic information
is Vieira et al. [2010, 2011]. Even in this approach, the handling and querying of time
intervals is quite limited. Precise time intervals are important to come back from
a query on symbolic annotations to the geometric trajectory, for example, to extract
from it the pieces retrieved by the symbolic query.

—The data models used for geometric trajectories are primitive (sequences of
timestamped points) and ignore the state of the art [Güting 2009].
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—None of these approaches is concerned about connecting the particular query mech-
anism offered (patterns, knn queries) with querying on geometric trajectories. The
querying mechanisms offered do not integrate with any querying environment of
the DBMS handling the geometric trajectories. However, in annotated trajectory
databases, it is crucial to have a consistent framework for querying both symbolic
and geometric trajectories (as demonstrated in Section 4).

—None of the approaches is presented in a system context where the system and the
proposal is publicly available.

—None of these approaches provides rewriting of trajectories into other forms.
—All of these approaches provide a closed language; there is no extensibility.

In contrast, the novel contributions of this article are the following:

—We introduce the concept of symbolic trajectories as a generic representation of mean-
ings for trajectories. Symbolic trajectories can be used as annotations of geometric
trajectories as they contain precise time information. They are formalized as abstract
data types and integrated into an existing comprehensive framework of data types
for moving objects, inheriting generic operations from the framework.

—A language for pattern matching and rewriting of symbolic trajectories is defined,
providing rigorous formal definitions for the syntax and semantics. In contrast to
earlier work,
—it is not restricted to special cases (e.g., labels of a sequence of areas traversed) but

handles symbolic trajectories in full generality,
—it not only refers to labels but also provides sophisticated specification of temporal

conditions,
—it provides not only pattern matching but also rewriting and classification of tra-

jectories,
—the language is not closed but connects to the full power of the querying environ-

ment, allowing one to use any available operation for conditions or assignments in
rewriting.

—Data model and language have been fully implemented in the DBMS prototype
SECONDO. Efficient implementation of the language is presented in detail.

—An experimental evaluation based on the well-known BerlinMOD benchmark pro-
vides detailed insight about the efficiency of the implementation. It demonstrates
the advantages of using symbolic trajectories over raw trajectories for the aspects
covered by the symbolic trajectory representation.

—The implementation is freely available for experiments and practical use together
with the SECONDO DBMS prototype. It has already been demonstrated in Valdés et al.
[2013] and Damiani et al. [2014b].

The rest of the article is structured as follows: Symbolic trajectories are introduced
in Section 2. Section 3 presents the pattern language including formal definitions of
syntax and semantics. Section 4 presents example queries from two real-life annotated
trajectory databases to demonstrate usability. Section 5 compares our approach to the
idea of “querying by regular expressions” and systematically discusses the features
going beyond that. Section 6 explains in detail data structures and algorithms for
implementing the model and illustrates them by examples. Section 7 first provides an
experimental evaluation of the main query operations for pattern matching, rewriting,
and classification. In a second set of experiments, raw trajectories from the BerlinMOD
benchmark [Düntgen et al. 2009] are mapped to symbolic trajectories (for names of
roads traversed) and the two representations are compared with respect to storage
consumption and query time. Section 8 discusses related work, and Section 9 concludes
with an outlook on future work.
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2. SYMBOLIC TRAJECTORIES

The model of symbolic trajectories proposed in this article fits into and extends a
comprehensive framework for representing and querying moving objects in databases
[Erwig et al. 1999; Güting et al. 2000; Forlizzi et al. 2000]. The general idea is to
provide a collection of abstract data types to describe moving objects and the operations
applicable to them. For example, moving point (or mpoint, for short) is a data type to
represent a time-dependent location in the Euclidean plane, line is a spatial data type
describing a continuous curve in the plane, and mreal is a type to represent time-
dependent real values. Operation trajectory maps a moving point to a line value,
and operation distance, applied to two mpoint values, returns their time-dependent
distance as an mreal. An mpoint m may represent the trip of a car, trajectory(m)
would be the path in the plane taken, and distance(m1, m2) may be the time-dependent
distance between two cars.

This is embedded into a DBMS data model (e.g., an object-relational model) as follows.
The data types can be used as attribute types. Hence, we can have a relation describing
car trips with schema:

Vehicles (Id: string, Trip: mpoint)

The operations can be used in queries. For example, one can find pairs of vehicles
that have been closer to each other than 100 meters by a query

SELECT v1.Id, v2.Id
FROM Vehicles as v1, Vehicles as v2
WHERE minimum(distance(v1.Trip, v2.Trip)) < 0.1

using a further operation minimum that maps an mreal into a real.
A symbolic trajectory is in the most simple form just a time-dependent symbol, called

a label, where a label is simply a character string. Hence, conceptually, a symbolic
trajectory is a function

f : Ainstant → Alabel,

where instant is the data type representing time, and label is the type of labels. For a
data type t, let At denote its domain, that is, the set of possible values.

The framework of Güting et al. [2000] provides a type constructor called moving.
Given a type α, moving(α) is the type whose values are partial continuous functions
from Ainstant into Aα. Obviously, this is exactly what we need as a conceptual model for
a symbolic trajectory, which is therefore represented as a type moving(label), mlabel
for short.

There are three further variants: a time-dependent set of labels, a time-dependent
place, or a time-dependent set of places. We will introduce corresponding data types
moving(labels), moving(place), and moving(places) with abbreviations mlabels, mplace,
mplaces, respectively.

A place is a pair consisting of a label and an integer such as (cinema, 114), where
the integer component is a reference to some repository of geometries. Geometries can
be of data types point, line, or region. Hence, a place is a symbolic representation of an
entity in space with a reference to its precise geometric location or extent.

The motivation for these additional data types is the following. First, places (mplace)
are useful in the case of relating raw trajectories into the environment; we not only
can use the names (labels) of entities in the environment but also can formulate condi-
tions on the geometries. For example, for a symbolic trajectory that describes regions
traversed, we can require that the first and last region are adjacent. Second, having
sets of places is useful in relating a raw trajectory to a set of overlapping regions, for
example, or a set of nearest neighbors. This is illustrated in Figure 2, where a trajectory
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Fig. 2. Trajectory annotation with places for overlapping regions. Black dots represent cinemas; circles
show the area within a 500-meter distance.

is mapped to a symbolic form having the set of cinemas within a 500-meter distance.
Third, data types mlabels and mplaces are closed under set operations ∪,∩, and \ on

symbolic trajectories. For example, let f be a symbolic trajectory representing the se-
quence of roads traversed, and g a symbolic trajectory representing the transportation
mode; then f ∪ g is the symbolic trajectory representing for each instant of time both
the current road and the transportation mode.

Formally, we introduce four data types, label, labels, place, and places. Their seman-
tics are defined by the sets of possible values, that is, the domain, or the carrier sets in
algebraic terminology.

Definition 2.1. The carrier sets for the types label, labels, place, and places are
defined as

Alabel := V ∗ ∪ {⊥}, where V is a finite alphabet,
Alabels := 2V ∗ ∪ {⊥},
Aplace := (V ∗ × N) ∪ {⊥},
Aplaces := 2V ∗×N ∪ {⊥}.

Each carrier set contains an undefined value ⊥ consistent with definitions in Güting
et al. [2000]. The moving constructor in Güting et al. [2000] defines the related time-
dependent types moving(label), moving(labels), moving(place), and moving(places).

Discrete Model. So far we have considered symbolic trajectories within the so-called
abstract model, viewing them just as functions of time. For implementation, one needs
to provide a so-called discrete model that describes the values of data types in terms
of finite representations [Forlizzi et al. 2000]. At this level, a symbolic trajectory is
represented as a sequence of pairs (called units), where each unit consists of a time
interval and a value from the respective type (label, labels, place, places).2 Within the
sequence, the time intervals of units are disjoint (but possibly adjacent) and units are
ordered by time intervals.

Hence, a symbolic trajectory may be denoted as u1 . . . un for n ≥ 0, where ui is a
unit, or as a sequence of pairs <(i1, l1), . . . , (in, ln)>, where i j is a time interval and lj
a label (set of labels, respectively, etc.). Time intervals are represented as four-tuples

2We also have related data types to represent single units called ulabel and so forth.

ACM Transactions on Spatial Algorithms and Systems, Vol. 1, No. 2, Article 7, Publication date: July 2015.



Symbolic Trajectories 7:9

Table I. Operations for Interaction of Temporal Values
with Values in Domain and Range

Operator Signature
atinstant: moving(α) × instant → intime(α)
atperiods: moving(α) × periods → moving(α)
initial, final: moving(α) → intime(α)
present: moving(α) × instant → bool

present: moving(α) × periods → bool

at: moving(α) × α → moving(α) [1D]
at: moving(α) × β → moving(α) [2D]
atmin,atmax: moving(α) → moving(α) [1D]
passes: moving(α) × β → bool

(s, e, lc, rc), where s and e are instants with s < e, and lc and rc are Booleans denoting
whether the interval is left-closed and/or right-closed. This makes it possible to have
adjacent but disjoint intervals. See Forlizzi et al. [2000] for full formal definitions.

Hence, an example symbolic trajectory of type mlabel is

< ( (2013-01-17-9:02:30, 2013-01-17-9:05:51, T, F), "Queen Anne St"),
( (2013-01-17-9:05:51, 2013-01-17-9:10:16, T, F), "Wimpole St"),
. . .

( (2013-01-17-9:18:44, 2013-01-17-9:20:10, T, F), "Queen Anne St") >

It represents the sequence of road names of roads traversed by someone who did a
round-walk of about a quarter of an hour on January 17, 2013.

Operations on Symbolic Trajectories. Due to the integration into the model of Güting
et al. [2000], we inherit a comprehensive set of generic operations. For example,
Table I shows one class of operations that deals with the interaction of temporal values
(i.e., functions of time) with values in their domain and range (Güting et al. [2000],
Table XV).

We may substitute any of our new types label, labels, place, and places for α
and obtain a valid signature, for example, atperiods: moving(label) × periods →
moving(label). This operation restricts a symbolic trajectory of type mlabel to a certain
set of disjoint time intervals (represented by type periods). For detailed explanations
of Table I, see Güting et al. [2000].

As a result, we already have an expressive query language for querying trajectories
of various kinds including symbolic trajectories. This is illustrated in the following
example.

Example 2.2. Assume we have a relation with symbolic trips of people captured as
road profiles (road names of roads traversed). The schema is

SymTrips (Name: string, Trip: mlabel)

We can formulate the following queries (operations used3 are shown in Table II):

—Find all trips passing through Baker street.

SELECT * FROM SymTrips WHERE Trip passes "Baker St"

—For these trips, determine the time intervals when they were in Baker street.

3Operations sometimes and theInstant are not defined in Güting et al. [2000]. sometimes is shown
to be a derived operation in Güting and Schneider [2005], Exercise 4.5. theInstant is available in the
implementation in the SECONDO system.
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Table II. Operations Used in Queries of Example 2.2

Operator Signature Syntax
passes: moving(label) × label → bool _ # _
at: moving(label) × label → moving(label) _ # _
deftime: moving(label) → periods # ( _ )
atinstant: moving(label) × instant → intime(label) _ # _
val: intime(label) → label # ( _ )
intersection: moving(label) × moving(label) → moving(label) # ( _, _ )
=: moving(label) × moving(label) → moving(bool) _ # _
sometimes: moving(bool) → bool # ( _ )
theInstant: int × int × int × int × int → instant # (_,_,_,_,_)

SELECT Name, deftime(Trip at "Baker St") as AtBaker
FROM SymTrips
WHERE Trip passes "Baker St"

—In which road was John on January 17, 2013, at 6:30 a.m.?

SELECT val(Trip atinstant theInstant(2013, 1, 17, 6, 30)) as Road
FROM SymTrips
WHERE Name = "John"

—Find any pairs of people that have been in the same road at the same time. Provide
the parts of the trips where they have been in the same road.

SELECT s1.Name, s2.Name, intersection(s1.Trip, s2.Trip) as CommonRoads
FROM SymTrips as s1, SymTrips as s2
WHERE sometimes(s1.Trip = s2.Trip)

The operations used in Example 2.2 are shown in Table II with the specific instan-
tiations of the generic signature used in the query. For each operator, its syntax is
specified in the last column; here # denotes the operator and _ an argument.

The report version of this article [Güting et al. 2013] describes more formally the
integration of the new types into the type system of Güting et al. [2000] and into
the mechanisms for defining generic operations; this was omitted here due to space
restrictions.

3. PATTERN MATCHING AND REWRITING

The generic operations inherited for symbolic trajectories from Güting et al. [2000]
already permit expressive queries. Nevertheless, we are now interested in making the
language even more expressive by providing an additional facility to retrieve symbolic
trajectories matching a user-defined pattern and to manipulate trajectories by rewrit-
ing them into some other form. For example, rewriting allows one to extract certain
pieces of interest, to aggregate subsequences of units to some higher-level semantics
(expressed by a corresponding label), or even to classify the whole trajectory by as-
signing an adequate label. Note that rewriting in particular allows one to determine
positions where matches occur—with matching alone this is not possible.

We discuss pattern matching and rewriting for the most simple type, mlabel. It is
straightforward to extend this to the other three types of symbolic trajectories.

3.1. Overview

The proposed language provides patterns that can match symbolic trajectories. Pat-
terns may contain variables, which in the process of matching are bound to either
single units or subsequences of a symbolic trajectory. After binding, properties of the
bound units or sequences can be accessed via attributes of the variables and then be
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used in conditions. These conditions further restrict what is matched. Conditions may
use arbitrary operations available in the host DBMS. The syntax for patterns with
conditions is

<pattern> // <conditions>

and an example is

D (_ "Queen Anne St") * A (_ "Queen Anne St")
// (A.end - D.start) < (20 * minute)

This query pattern will match all symbolic trajectories (defined over street names
passed), which are round trips starting and ending at Queen Anne Street taking less
than 20 minutes. Here the first line contains the pattern, the second the condition.
Within the pattern, the unit patterns shown for the first and the last unit contain the
label “Queen Anne St.” In between, the * matches the intermediate sequence of units.
D and A are variables that will be bound in matching to the first and last unit of a
trajectory. Via attributes A.end and D.start, the condition can be formulated that the
duration of the entire trip should be less than 20 minutes.

Moreover, after matching, interesting parts of a symbolic trajectory can be retrieved
by a rewrite rule, constructing a derived symbolic trajectory. The derived trajectory
can be modified by assigning values to fields within units. So, for example, new labels
can be written. The syntax for rewrite rules is an extension for that of patterns with
conditions

<pattern> // <conditions> => <result pattern> // <assignments>

and an example is

* X (monday "Wimpole St.") * => X // X.label := "at stadium"

This rule finds all trajectories passing on a Monday through Wimpole Street, re-
trieves the units where this happens (so one can find out the exact times, for example)
and resets the label to “at stadium”.

In the following subsections, all these concepts will be introduced in more detail.
Their semantics are defined formally, to have a precise specification for users and
implementors.

3.2. Patterns

In Section 2, we have seen that a symbolic trajectory can be represented as a list of the
form

< ((s1 e1 lc1 rc1) l1) . . . ((sn en lcn rcn) ln) >

or, a bit more abstractly,

(t1 l1) . . . (tn ln)

This is a list of units where each unit is a pair consisting of a time interval and a label.
The time interval consists of the four components start, end, leftclosed, and rightclosed.

A pattern describes such a list with some desired structure or contents by approxi-
mating this notation. It might look as follows:

(_ a) (_ b) * (_ c) *

Here a pair in parentheses denotes a unit pattern; that is, it matches a unit. The
underscore symbol matches any corresponding element of a unit pair; hence, any time
intervals are matches. The label of the pattern matches a unit label if they are equal.
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The symbol * matches a sequence of units (0 or more). Hence, the pattern matches a
sequence (an mlabel value) having first a unit with label a, then a unit with label b,
then an arbitrary sequence of units, then a unit with label c, then an arbitrary sequence
of units. Beyond the symbol * there are further patterns that can match sequences, for
example, alternatives or repeating subsequences:

[(_ a) | (_ b)]
[(_ a) (_ b)]*

Here the first line denotes a pattern that matches a single unit with label either a
or b. The second matches a sequence with alternating labels a and b. In other words,
we support notations for regular expressions. For them, square brackets are used, as
parentheses are already employed for unit patterns.

We now formalize this, calling it a simple pattern. A pattern will later be a simple
pattern extended by variables.

Definition 3.1. A simple pattern is a sequence of simple pattern elements
<p1, . . . , pn>, where each pi is a unit pattern or a sequence pattern.

(i) A unit pattern has one of the forms ( t l ), ( _ l ), ( t _ ), or (), where t is a time
interval specification, l is a label specification, and _ is a wildcard symbol. In the
most simple cases, t ∈ Dinstant × Dinstant and l ∈ Dlabel.

(ii) A sequence pattern has one of the forms *, +, [p], [p1 | p2], [p]+, [p]*, or [p]?,
where p, p1, p2 are simple patterns.

More complex time or label specifications are addressed in Section 3.6. Unit patterns
and sequence patterns of the forms * and + are called atomic pattern elements (atoms,
for short). This notion is relevant in the implementation (Section 6).

Definition 3.2 (Pattern Matching).

(i) Unit Patterns. Let u = (ut, ul) be a unit of type ulabel (i.e., a unit with ul of type
label).
—( t l ) matches u :⇔ ut ⊆ t ∧ ul = l.
—( _ l ) matches u :⇔ ul = l.
—( t _ ) matches u :⇔ ut ⊆ t.
—() matches u.
When a unit pattern p matches a unit u, then it also matches the single unit
sequence U =< u >.

(ii) Sequence Patterns. Let U = <u1, . . . , un>, n ≥ 0 be a sequence of units, each ui of
type ulabel.
—* matches U .
—+ matches U :⇔ n > 0.
—[p] matches U :⇔ p matches U .
—[p1 | p2] matches U :⇔ p1 matches U ∨ p2 matches U .
—[p]+ matches U :⇔ there exists a partitioning of U into subsequences

U1 . . .Um, m ≥ 1 such that U = U1 ◦ · · · ◦ Um and ∀i ∈ {1, . . . , m}, p matches
Ui, where ◦ denotes concatenation.

—[p]* matches U :⇔ [p]+ matches U ∨ n = 0.
—[p]? matches U :⇔ [p] matches U ∨ n = 0.

(iii) Let U =< u1, . . . , un >, n ≥ 0 be a sequence of units, each ui of type ulabel. Let
P = p1 . . . pm be a simple pattern.
P matches U :⇔ there exists a partitioning of U into subsequences U1 . . .Um such
that U = U1 ◦ . . . ◦ Um and ∀i ∈ {1, . . . , m}, pi matches Ui.
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Example 3.3. In Section 2, we have seen an example trajectory in a database of
personal trips:

< ( (2013-01-17-9:02:30, 2013-01-17-9:05:51, T, F), "Queen Anne St"),
( (2013-01-17-9:05:51, 2013-01-17-9:10:16, T, F), "Wimpole St"),
. . .

( (2013-01-17-9:18:44, 2013-01-17-9:20:10, T, F), "Queen Anne St") >

The pattern

(_ "Queen Anne St") * (_ "Queen Anne St")

could be used to retrieve all round trips starting and ending in Queen Anne Street,
including the one shown previously.

3.3. Variables

We now add variables to patterns. Their purpose is twofold: (1) to allow us to specify
further conditions on subsequences matched by pattern elements, and (2) to control
rewriting. Variables are written as words starting with a capital letter (as in Prolog).
Usually we denote them by just one letter. They can be associated with unit patterns or
sequence patterns and accordingly be bound to units or sequences of units. Once they
are bound, we can access properties of the unit or the sequence via attributes of the
variables. We write variables in front of the patterns to which they are associated. For
example:

X (_ a) Y (_ b) Z * (_ c) *

This pattern has five elements. If the pattern matches an mlabel, then variable X is
bound to the first unit, variable Y is bound to the second unit, and variable Z is bound
to the sequence of units between the two units with labels b and c. No variables exist
for the last two elements of the pattern.

Because variables are bound to distinct subsequences—even if the labels are equal,
the time intervals differ—it does not make sense to have the same variable more than
once in a pattern. We therefore require that all variables occurring in a pattern are
distinct.

Definition 3.4. Let V be a domain of variable names. A pattern is a sequence of
pattern elements P =< e1, . . . , en >, where each ei is either a pair (vi, pi) of a variable
vi ∈ V and a simple pattern element pi or just a simple pattern element pi. In the first
case, ei is called a variable element, otherwise a free element. In a variable element
(v, p), v is called a unit variable (a sequence variable) if p is a unit pattern (a sequence
pattern). All variables are distinct, that is, i �= j ⇒ vi �= v j .

For a pattern P, simple(P) denotes the corresponding simple pattern < p1, . . . , pn >
and var(P) denotes the set of variables occurring in P.

Definition 3.5. A binding is a set of pairs B = {(v1,U1), . . . , (vk,Uk)}, where each pair
consists of a variable vi and a sequence of units Ui of type ulabel. All variables are
distinct. var(B) = {v1, . . . , vk} denotes the set of variables occurring in B.

Definition 3.6 (Pattern Matching with Binding). Let U = <u1, . . . , un>, n ≥ 0 be
a sequence of units, each ui of type ulabel. Let P = <e1, . . . , em> be a pattern and
simple(P) = <p1, . . . , pm>.

P matches U with binding B :⇔ there exists a partitioning of U into subsequences
U1 . . .Um such that U = U1 ◦ . . . ◦ Um and ∀i ∈ {1, . . . , m}, pi matches Ui. The binding
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is B = ⋃m
i=1 Bi, where

Bi =
{ {(vi,Ui)} if ei = (vi, pi)

∅ if ei = pi.

As mentioned before, once a variable is bound to a unit or a sequence of units, we
can access properties via attributes of the variable. The following definition determines
these attributes and their contents.

Definition 3.7 (Attributes). Let B be a binding and b = (v,U ) ∈ B.

(i) v is a unit variable and U =< (ut, ul) >, ut = (s, e, lc, rc). Then v has attributes
—label of type label with value ul
—time of type periods with value ut
—start of type instant with value s
—end of type instant with value e
—leftclosed of type bool with value lc
—rightclosed of type bool with value rc

(ii) v is a sequence variable and U =< (t1, l1), . . . , (tn, ln) >, n ≥ 1, with ti =
(si, ei, lci, rci). Then v has attributes
—labels of type labels with value {l1, . . . , ln}
—time of type periods with value

⋃n
i=1 ti

—card of type int with value n
—start of type instant with value s1
—end of type instant with value en
—leftclosed of type bool with value lc1
—rightclosed of type bool with value rcn

(iii) v is a sequence variable and U =<> (the empty sequence). Then v has the same
attributes as in case (ii) and v.labels = ∅, v.card = 0, and all other values are
undefined, for example, v.time =⊥.

For an attribute attr of variable v we denote by type(v.attr, B) its type and by
val(v.attr, B) its value.

Example 3.8. Continuing the previous examples, we now show the complete trajec-
tory:

< ( (2013-01-17-9:02:30, 2013-01-17-9:05:51, T, F), "Queen Anne St"),
( (2013-01-17-9:05:51, 2013-01-17-9:10:16, T, F), "Wimpole St"),
( (2013-01-17-9:10:16, 2013-01-17-9:13:48, T, F), "Welbeck Way"),
( (2013-01-17-9:13:48, 2013-01-17-9:18:44, T, F), "Welbeck St"),
( (2013-01-17-9:18:44, 2013-01-17-9:20:10, T, F), "Queen Anne St") >

The pattern

(_ "Queen Anne St") T * A (_ "Queen Anne St")

matches the previous trajectory with binding

{(T, < ( (2013-01-17-9:05:51, 2013-01-17-9:10:16, T, F), "Wimpole St"),
( (2013-01-17-9:10:16, 2013-01-17-9:13:48, T, F), "Welbeck Way"),
( (2013-01-17-9:13:48, 2013-01-17-9:18:44, T, F), "Welbeck St") > ),

(A, < ( (2013-01-17-9:18:44, 2013-01-17-9:20:10, T, F), "Queen Anne St") > )}

Attribute values for variable T are

T.labels = {"Wimpole St", "Welbeck Way", "Welbeck St"}
T.time = (2013-01-17-9:05:51, 2013-01-17-9:18:44, T, F)
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T.card = 3
T.start = 2013-01-17-9:05:51, T.end = 2013-01-17-9:18:44
T.leftclosed = true, T.rightclosed = false

3.4. Patterns with Conditions

Patterns with variables can now be used to specify additional conditions on the match-
ing of such a pattern with a symbolic trajectory. Conditions are Boolean expressions
over attributes of the variables, constants, and database objects using arbitrary opera-
tions available on the respective data types. We write a pattern with conditions in the
form

<pattern with variables> // <condition 1>, . . ., <condition q>

Example 3.9. For example, we can restrict the previous round-trip query to trips
taking no more than 20 minutes:

D (_ "Queen Anne St") * A (_ "Queen Anne St")
// (A.end - D.start) < (20 * minute)

where minute is a database object representing a duration of 1 minute. We can also
find round trips starting and ending at some arbitrary street and passing through no
more than 10 different streets:

D () T * A () // D.label = A.label, T.card <= 9

We now formalize these concepts.

Definition 3.10 (Databases, Constants, and Operations).

(i) A database is a set of triples DB ⊆ {(n, t, v) | n ∈ N, t ∈ T , v ∈ dom(t)}, where N
is the set of allowed object names, T the set of available data types, and dom(t)
the domain of values of type t ∈ T . Object names are distinct (i.e., there are no
distinct triples with the same object name).

(ii) A domain of constants is a set of triples C = {(c, t, v) | c ∈ Cd, t ∈ T , v ∈ dom(t)},
where Cd is a set of constant denotations. Distinct triples have different constant
denotations.

(iii) A set of operations is given as a family of sets � = {�wt|w ∈ T ∗, t ∈ T }. For an
operator σ ∈ �wt, w = t1 . . . tn are the argument types and t is the result type. The
operator’s evaluation function is fσ : dom(t1) × · · · × dom(tn) → dom(t).

Definition 3.11 (Expressions Over P). Let P be a pattern and B a binding for the
variables in var(P). Let DB be a database, C a domain of constants, and � a set of
operations. The set of expressions over P denoted E(P) is defined next. Further, for an
expression e ∈ E(P), its evaluation for binding B is defined as well, denoted eval(e, B).

(i) (o, t, v) ∈ DB ⇒ o is an expression of type t, and eval(o, B) = v.
(ii) (c, t, v) ∈ C ⇒ c is an expression of type t, and eval(c, B) = v.

(iii) v ∈ var(P) ∧ attr is an attribute of v of type t ⇒ v.attr is an expression of type t,
and eval(v.attr, B) = val(v.attr, B).

(iv) For m ≥ 0, e1, . . . , em are expressions of types t1, . . . , tm, respectively, and σ ∈
�t1,...,tm,t ⇒ σ (e1, . . . , em) is an expression of type t, and eval(σ (e1, . . . , em), B) =
fσ (eval(e1, B), . . . , eval(em, B)).

Definition 3.12. A pattern with conditions is a pair (P, C), where P is a pattern and
C a set of expressions of type bool over P.
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Definition 3.13 (Pattern Matching for Patterns with Conditions). Let U = <u1, . . . ,
un>, n ≥ 0 be a sequence of units, each ui of type ulabel. Let (P, C) be a pattern with
conditions. U matches (P, C) with binding B :⇔ U matches P with binding B and
∀c ∈ C : eval(c, B) = true.

3.5. Rewriting

Patterns with variables allow us to rewrite a given trajectory into some other form.

Result Patterns. For rewriting, we first introduce rules of the form

<pattern> => <result pattern>
<pattern> // <conditions> => <result pattern>

At this point, a result pattern is a subsequence of the variables occurring in the
pattern. For example:

X (_ a) Y (_ b) * (_ c) * => X Y

For any mlabel value matching this pattern, the rule returns an mlabel value con-
sisting just of the first two units. The result is in any case of type mlabel even if only a
single unit variable is mentioned in the result pattern as in

(_ a) (_ b) Z * (_ c) * => Z

It is obvious that resulting mlabel values have a correct structure because the resulting
sequence of units is just a subsequence of the original sequence of units. This is always
correct (i.e., no unit time intervals overlap and units are ordered by time).

Assignments and New Variables. The values bound to variables in result patterns can
also be changed. This is possible through assignments. Rewrite rules get the general
forms:

<pattern> => <result pattern> // <assignments>
<pattern> // <conditions> => <result pattern> // <assignments>

An assignment has the form

<var>.<attr> := <expr>

where the type of the attribute and the type of the expression must be the same. For
example, a complete rule with conditions and assignments may look as follows:

X (_ a) Y (_ b) Z * (_ c) *
// Z.card > 2, X.start > theinstant(2011, 1, 1)

=> X Y
// X.label := "u", Y.label := "v"

Assignments are allowed only to attributes of unit variables. This is because the at-
tributes of sequence variables describe in general aggregations over the entire matched
sequence of units (labels, time, card), so one cannot assign values to them. For the re-
maining four attributes (start, end, leftclosed, rightclosed) corresponding to fields of the
first and last matched unit, it would be possible but does not make much sense.

On the other hand, it would certainly be interesting to abstract from a given sub-
sequence and represent it by a single unit with some other label. This is possible by
introducing new variables not occurring in the pattern. They are by definition unit
variables and their attributes have to be set by assignments (except for leftclosed
and rightclosed for which defaults leftclosed = true, rightclosed = false apply). New
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variables may be inserted at arbitrary positions into a result pattern, but like the
other variables, each new variable may occur only once.

Example 3.14. Continuing the previous examples of a personal trip database, assume
we wish to classify trips into different “semantic” categories. Say, short trips starting
and ending at Queen Anne St. are to be classified as “short walk.” This can be done by
a rewrite rule:

D (_ "Queen Anne St") * A (_ "Queen Anne St")
// (A.end - D.start) < (20 * minute)

=> X
// X.label := "short walk", X.start := D.start, X.end := A.end

To achieve a simple semantics of assignments, the order in which they are written
should not matter. That is, they can be evaluated in any order with the same result. We
therefore require that no two assignments to the same attribute of the same variable
occur.

There is a slight complication because the attribute time overlaps with the four
attributes start, end, leftclosed, and rightclosed. Attribute time is of type periods, which
represents a set of intervals. In an assignment, one would use a periods value with a
single interval. The representation of this interval contains the four fields mentioned.
Therefore, an assignment to time and an assignment to start would be conflicting.
Hence, we further require that in a set of assignments there is no assignment to the
time attribute if there is an assignment to one of the other four.

Of course, the use of assignments may lead to incorrect descriptions of result se-
quences. In such a case, the result sequence is simply undefined. In practice, the user
will receive an error message.

The formalization of rewrite rules and their semantics is quite involved. To enhance
readability, it is omitted here and can be found in Appendix A.

3.6. Unit Patterns in More Detail

Now that the general structure and semantics of our language for pattern matching and
rewriting are clear, we go into more detail on the possible time and label specifications
within a unit pattern. So far, we have only shown the most simple form in Definition 3.1.
A unit pattern has the general form

(<time specification> <label specification>)

where each of the two components may be replaced by a wild card “_”.
For the first element, the time specification, one of the following time symbols can be

entered, each defining a time interval or a set of time intervals:

—a year, month, or day, written as 2010, 2010-07, or 2010-07-05, respectively
—an hour, minute, or second on a particular day, for example, 2010-07-05-14:30
—a range of dates, for example, 2010∼2011, 2010-07∼2011-03
—a range of times, for example, 2010-07-05-14:30∼2010-07-09-14
—a half-open range, for example, 2005-05∼ or ∼2010-12-06
—a day of the week, that is, one of {sunday, monday, tuesday, . . . , saturday}
—a month of the year, that is, one of {january, . . . , december}
—a time of day such as {morning, afternoon, evening, night}
—a time of the day given by a time interval such as 14:30∼16, 17∼
—the name of a database object of type periods
—a set of such specifications
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Note that semantic descriptions such as monday may be viewed as defining an infinite
set of time intervals.

A unit will match such a pattern if its time interval (viewed as an infinite set of
instants) is a subset of the set of time intervals specified by the time symbol. For a set
of specifications, the unit must fulfill all of them.

The second component of a unit pattern, the label specification, can be

—a single label,
—a set of labels denoted {label1, . . . , labeln}, or
—the name of a database object of type labels.

Hence, a label specification in general defines a set of labels. A unit will match such
a pattern if its label is contained in the set.

3.7. Querying with Patterns and Rules

3.7.1. Pattern Matching and Rewriting. To make pattern matching and rewriting available
for querying, we introduce a data type pattern and two operators matches and rewrite.
Type pattern is used to represent patterns or rules in an efficient data structure. An
auxiliary operator topattern converts a pattern or rule specified as text into this form:

topattern: text → pattern #

The operator is responsible for parsing the pattern or rule, checking for correctness,
and converting it to a corresponding data structure. It is applied in postfix notation,
that is, written after the text argument.

Example 3.15. We can store our example rewrite rule as a value of type pattern:

LET short_walk = ’D (_ "Queen Anne St") * A (_ "Queen Anne St")
// (A.end - D.start) < (20 * minute) => X
// X.label := "short walk", X.start := D.start, X.end := A.end’ topattern

The two main operators accept patterns or rules either as a text or as a pattern value.
An advantage of using the representation as a pattern is that in processing a large set of
symbolic trajectories in a query, the overhead of constructing an efficient representation
of the pattern (including a nondeterministic finite automaton, see Section 6) occurs only
once.

matches: mlabel × (pattern | text) → bool #
rewrite: mlabel × (pattern | text) → set(mlabel) #( , )

The matches operator returns true if the pattern matches the mlabel value (Defi-
nition 3.13). rewrite returns one rewritten version of the argument for each way the
pattern matches, in total the set apply(R,U ) for rule R and mlabel value U (Defini-
tion A.4 in Appendix A). If the pattern does not match, the result set is empty.

Example 3.16. Suppose we have a relation with personal trips of schema:

Trips(Id: int, Trip: mlabel)

(1) We can find all trips matching the pattern of the short walk by a query:

SELECT * FROM Trips
WHERE Trip matches ’D (_ "Queen Anne St") * A (_ "Queen Anne St")

// (A.end - D.start) < (20 * minute)’

(2) We can also rewrite such trajectories according to the “short walk” rule created
in Example 3.15:

SELECT Id, rewrite(Trip, short_walk) as Class FROM Trips
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Here we assume that the SQL environment allows one to define in a select-clause one
new attribute through a function returning a set of values and that for each such value,
one result tuple is created, copying the values of the other attributes mentioned in the
select-clause.

3.7.2. Classification. An interesting application of pattern matching is to classify a large
number of symbolic trajectories into certain categories, where each category is specified
by some pattern. For example, in a database of personal trips, some categories might
be as follows:

—home to work by car
—home to work by bicycle
—piano lesson
—short morning walk
—visit Peter
—downtown shopping
—. . .

We assume that categories are specified in a relation with schema

(Description: text, Pattern: text)

Given such a table and a set of symbolic trajectories, the problem is now to deter-
mine for each trajectory the matching patterns. In principle, one might check all pairs
(trajectory, pattern), but it is possible to improve this by checking one trajectory in a
single step against all patterns, by preprocessing the set of patterns into a single data
structure (a combined finite automaton, see Section 6). As a result of the classification,
each symbolic trajectory will be associated with the description entries of matching
patterns.

To support classification, we introduce a data type classifier and an operation clas-
sify. The data type is used to keep the efficient data structure for the set of patterns.
An operation toclassifier constructs it from a table with specifications:

toclassifier: set (tuple ([Desc: text, Pattern: text])) → classifier #

Operation classify takes a symbolic trajectory and a classifier and returns all matching
descriptions:

classify: classifier × mlabel → set(text) #( , )

Example 3.17. Let a table Categories be given with schema

Categories (Desc: text, Pattern: text)

which describes the various kinds of trips occurring in our personal trip database, and
let relation Trips be given as before. We first create a classifier from the table:

LET descriptions = (SELECT * FROM Categories) toclassifier

We can then classify the trips by the query

SELECT Id, classify(Trip, descriptions) as Class FROM Trips

4. EXAMPLE APPLICATIONS

In this section, we illustrate the use of the pattern language by formulating a somewhat
larger number of queries related to two applications. Both are based on real-world
annotated trajectory datasets. The first is GeoLife with people’s movements annotated
by transportation mode. The second uses roe deer movements annotated by the results
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Fig. 3. SECONDO GUI screenshot, showing some of the trajectories from Example 4.2.

of a data mining procedure discovering home ranges and so forth) as sketched in the
introduction. The example queries show that it is easy to formulate questions using
the pattern language (after a bit of learning) and that it is crucial to combine pattern
queries with other operations on moving objects from Güting et al. [2000] available on
the host DBMS.

4.1. Example Queries Using Human GPS Data with Transportation Modes

The queries shown in this subsection are based on human movement data from the
Microsoft GeoLife project [Microsoft Geolife 2015]. Its 182 participants collected their
GPS data over a period of over 3 years. Some of them (about one out of three) also
annotated their movement data with their applied mode of transportation (walk, bus,
train, etc.), so that we were able to derive more than 4,400 symbolic trajectories along
with the corresponding raw data (1.2GBytes as a whole). All examples except the first
one use the pattern matching approach as well as other SECONDO operators. The relation
has the following schema:

GeoLife (Pid: string, Tid: string, Trip: mpoint, Alt: mreal, Trans: mlabel)

Here Pid and Tid denote the person and trip identifier, respectively; Trip is the
geometric trajectory, Alt the altitude (as an mreal, a time-dependent real), and Trans
the transportation mode.

Example 4.1. How many trajectories include at least two bus trips on the same day?

SELECT count(*) FROM GeoLife WHERE Trans matches ’* X (_ bus) * Y (_ bus) *
// day_of(X.start) = day_of(Y.end), (Y.end - X.start) < duration(1 0)’

Here the day_of operation returns the day of the month; therefore, the second con-
dition is necessary. duration(1 0) denotes a duration of 1 day, 0 milliseconds.

Example 4.2. How many persons did at least one Sunday morning bike trip of more
than 1 hour? (A subset of the trajectories resulting from this query is displayed in
Figure 3.)

SELECT count(distinct(Pid)) FROM GeoLife WHERE Trans matches
’* X ({sunday, morning} bike) *
// get_duration(X.time) > duration(0 3600000)’
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Example 4.3. Retrieve the id and the maximum speed of all trajectories that include
at least five different transportation modes.

LET wgs1984 = create_geoid("WGS1984")

SELECT Tid, maximum(speed(Trip, wgs1984)) as MaxSpeed FROM GeoLife
WHERE Trans matches ’X * // no_components(X.labels) >= 5’

Here the geoid is needed to get the speed in reasonable units. Operator speed applied
to an mpoint returns the time-dependent speed as an mreal value; maximum returns
the maximal value as a number.

Example 4.4. How many persons did not travel by airplane at all?

SELECT count(distinct(Pid)) FROM GeoLife
WHERE not(Trans matches ’* (_ airplane) *’)

Example 4.5. How many trajectories begin and end with the same transportation
mode and end less than 1km away from where they start?

SELECT count(*) FROM GeoLife WHERE Trans matches ’X () * Y ()
// X.label = Y.label’
AND distance(gk(val(initial(Trip))), gk(val(final(Trip)))) < 1000.0

Here initial and final return the first and last (instant value) pair of an mpoint; from
that, val extracts the value. So we obtain the initial and final position. gk converts to
Gauss-Krüger coordinates so that the distance operator returns a result in meters.

Example 4.6. Retrieve all transitions from bus to subway, together with the corre-
sponding Pid.

SELECT Pid, rewrite(Trans, ’* X (_ bus) Y (_ subway) * => X Y’) as Transition
FROM GeoLife

Example 4.7. For each person, compute the total duration of his or her train journeys.

SELECT Pid, sum(get_duration(deftime(rewrite(Trans, ’* X (_ train) * => X’))))
as TrainJourneyDuration

FROM GeoLife
GROUP BY Pid

Here deftime returns the (set of) definition time interval(s) of the symbolic trajectory
returned by rewriting. get_duration returns the duration of these time intervals.

4.2. Example Queries Based on Roe Deer GPS Data

In the following, we present queries referring to a set of roe deer GPS data. These data
were recorded in the region of Trento, Italy, and have already been used in Damiani
et al. [2014a]. More precisely, they include the positions of 26 roe deers, as well as the
temperature, altitude, slope, and so forth at each instant of GPS recording (33MBytes
as a whole). As a major result of the mentioned paper, the authors derived a symbolic
trajectory (type mlabel) for each animal, representing either a home range (labels
H0, H1, and H2), an excursion (label E0), or a stopover (labels S0 and S1). While
the first two queries shown in this subsection only use pattern matching on symbolic
trajectories, the other ones combine this technique with further SECONDO operators on
the remaining data. The schema of the relation is as follows:

Animals (Name: text, Trip: mpoint, Alt: mreal, Temp: mreal,
Slope: mreal, Sym: mlabel)
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7:22 R. H. Güting et al.

4.2.1. Using Mlabel.

Example 4.8. How many animals started at their respective home range H0 in
November and stopped at another place?

SELECT count(*) FROM Animals
WHERE Sym matches ’(november "H0") * X () // X.label # "H0" ’

Example 4.9. How many animals passed all three home ranges H0, H1, and H2?

SELECT count(*) FROM Animals
WHERE Sym matches ’X * // X.labels contains tolabels("H0", "H1", "H2")’

Example 4.10. For all animals that passed a stopover S0, show their name and the
highest altitude and slope they met.

SELECT Name, maximum(Alt) as MaxAlt, maximum(Slope) as MaxSlope
FROM Animals WHERE Sym matches ’* (_ "S0") *’

Example 4.11. Show the initial instant of the observation for all animals that stopped
at H1 or H2 in the year 2007.

SELECT Name, inst(initial(Trip)) as Start FROM Animals
WHERE Sym matches ’* [(2007 "H1") | (2007 "H2")]’

Example 4.12. Show the minimum temperature for the trajectories of all animals
that spent more than 30 consecutive days at the excursion E0. (Note that the dataset
contains trajectories with repeated labels in subsequent units.)

SELECT Name, minimum(Temp) as MinTemp FROM Animals WHERE Sym matches
’* X [(_ "E0")]+ * // (X.end - X.start) > duration(30 0)’

Example 4.13. For each animal, retrieve the latest stopover time and altitude cor-
responding to that instant.

SELECT Name, max(inst(final(rewrite(Sym,’* X [(_ "S0") | (_ "S1")] * => X’))))
as LastStop, val(Altitude atinstant LastStop) as Altitude

FROM Animals GROUP BY Name

Example 4.14. Find temporally connected morning excursions (label E0), combine
them to one unit, and rename the label to “morning excursion.”

SELECT rewrite(Sym, ’* X [(morning "E0")]+ * => A // A.time := X.time,
A.label := "morning excursion" ’) as MorningExcursions

FROM Animals

4.2.2. Using Mplace. Next, we combine the animals’ movement data with the under-
lying geometries of the applied regions. Hence, a further attribute Sym2 having the
data type mplace is added to the relation. Each unit of such a trajectory contains a
label (which can be queried in a pattern as for an mlabel) and a reference to a region,
accessible via X.extent in a condition, where X is a variable occurring in the pattern. If
X is a sequence variable, X.extent denotes the union of all regions from the units bound
to X.

Example 4.15. For which animals does the home range H0 have an area of more
than 10 square kilometers?

SELECT Name FROM Animals
WHERE Sym2 matches ’* X (_ "H0") * // size(gk(X.extent)) > 10 * km2’
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Here the conversion to Gauss-Krüger coordinates by operator gk leads to a size in
square meters, and km2 is a database object with value 1,000,000.

Example 4.16. Find all animals where the union of the traversed regions has at
most five faces.

SELECT Name FROM Animals
WHERE Sym2 matches ’X * // no_components(X.extent) <= 5’

Example 4.17. Extract all trajectory parts where the associated region overlaps a
skiing area (database object “skiing” of type region), and set the label to “skiing area.”

SELECT rewrite(Sym2, ’* X () * // X.extent overlaps skiing => X
// X.label := "skiing area" ’ FROM Animals

Another application example is detailed in Valdés et al. [2013], where the authors
analyze the trajectories of a person over a long period. Furthermore, the report of
Güting et al. [2013] provides examples based on personal trips annotated by either
significant locations passed or names of roads traversed. It includes discussions on
how to construct such symbolic trajectories.

5. COMPARISON TO QUERYING BY REGULAR EXPRESSIONS

Our pattern language includes regular expressions. Actually, they are NOT the main
feature of the language. The main features are wildcards * and + to represent unin-
teresting parts of symbolic trajectories, unit patterns, variables for unit, and sequence
patterns and conditions. Regular expression constructs such as [p1 | p2], [p]+, [p]*,
or [p]? have been added much later than the main features in order to be sure to cover
the expressive power of regular expressions.

Unfortunately, the inclusion of regular expressions and perhaps the use of wildcard
symbols *, + may lead to the wrong impression that our pattern language is more or
less the same as regular expressions. We address this concern in this section. First, we
recall the definition of regular expressions (e.g., Aho et al. [2006]).

Let � be an alphabet (a finite set of symbols). A subset Lof �∗ is called a language. The
symbol ε denotes the empty sequence of symbols. On languages L, L1, L2, concatenation
L1L2 and star operation L∗ are defined.

Definition 5.1. A regular expression r and the language L(r) denoted by it are given
by the following rules:

(i) ε is a regular expression denoting the language {ε}.
(ii) For each a ∈ �, a is a regular expression denoting the language {a}.

(iii) Let r and s be regular expressions denoting the languages L(r) and L(s). Then,
(1) (r)|(s) is a regular expression denoting L(r) ∪ L(s),
(2) (r)(s) is a regular expression denoting L(r)L(s),
(3) (r)∗ is a regular expression denoting (L(r))∗.

Querying by a regular expression r means to retrieve all symbolic trajectories match-
ing r. Hence, we define what it means for a regular expression to match a symbolic
trajectory. A direct correspondence can only be established for the most simple type
mlabel.

Definition 5.2. Let r be a regular expression and S =< (i1, l1), . . . , (in, ln) > a symbolic
trajectory of type mlabel, where i j is a time interval and lj ∈ �.

r matches S :⇔< l1 . . . ln >∈ L(r).
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For querying with regular expressions to be feasible, we need a wildcard symbol to
match the parts we are not interested in. We assume that regular definitions for classes
of symbols are available and define any = a1|a2| . . . |am for � = {a1, . . . , am}.

THEOREM 5.3. Any query on a set of symbolic trajectories that can be expressed by a
regular expression can be expressed by a pattern (as defined in Section 3).

PROOF. For each form of a regular expression r we show its translation into an equiv-
alent pattern r′, denoting it as r → r′.

—For each a ∈ �, a → ( a)
—(r)|(s) → [r′|s′]
—(r)(s) → r′s′
—(r)∗ → [r′]∗

We have not yet addressed the symbol ε. It can be used to express either that the
entire sequence should be empty (if the entire regular expression is equal to ε) or that
a part of it is optional. In the first case, a corresponding pattern of our language is
X ∗ //X.card = 0. In the other case, (r)|ε → [r′]? and ε|(r) → [r′]?

On the other hand, there are numerous features of our pattern language that allow
one to formulate queries that cannot be expressed by regular expressions. Whereas
abundant examples can be found in the preceding section, we discuss the issue here
more systematically.

Time. Symbolic trajectories are not just sequences of symbols but include time inter-
vals. The pattern language can express conditions on time intervals. It has full access
to time intervals associated with units or subsequences. Any kind of computation on
time intervals or instants is possible due to the availability of operations of the host
DBMS and its extensibility (missing operations can be added). Semantic concepts of
time such as weekdays, month names, and times of day are available. All of this is not
available in regular expression queries.

Note that time intervals cannot be handled as symbols of an alphabet for two reasons.
First, for all practical purposes, the set of symbols is infinite. Second, matching via
equality of symbols, the only possibility in regular expressions, is not interesting at all
as we can never guess precise time intervals occurring in symbolic trajectories. Hence,
the idea of using regular expressions over an alphabet that is the product of a label
alphabet and a time interval alphabet does not work.

Labels. Assuming that the set of labels in a symbolic trajectory database is equiv-
alent to an alphabet in regular expressions is questionable. For some applications
such as street names, the set of labels is huge, whereas alphabets are usually lim-
ited. The straightforward translation to finite automata does not work for huge alpha-
bets. Moreover, our approach has more complex types of labels such as sets of labels,
places, and sets of places. Finally, regular expressions can only match by equality,
whereas in the pattern language any kind of matching is possible (e.g., subset or sub-
string relationships). For example, it is useful to match street names by just giving
substrings.

Variables. Our language allows one to associate variables with units or
(sub)sequences of a symbolic trajectory. The available information in matched units
or sequences is available in attributes of the variables that have well-defined data
types of the host system and so are available for operations. This is the basis for
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formulating conditions and for rewriting, discussed next. — Variables are not available
in regular expressions.

Conditions. Our language permits one to formulate conditions over units or se-
quences of a symbolic trajectory. For example, different positions in a trajectory can be
related, requiring that the same (unknown) label occurs here and there, or that the
duration of a subsequence is more than 10 times that of a preceding unit. Counting
queries are possible, for example, referring to the length of a sequence or the number
of times a label occurs. All of this is not possible in regular expression queries.

DBMS Operations and Extensibility. Conditions and assignments (used in rewriting
discussed in the next paragraph) are not formulated in a limited ad hoc language but
can use the full power of the host DBMS operations. For example, one can formulate
conditions about durations even though durations have not been defined in this article.
One can formulate conditions about the size of the convex hull of places occurring in a
subsequence matched by some variable. Moreover, the extensibility of the DBMS can
be used to add any operation that is later discovered to be important. Hence, we have
an open rather than a closed language. — None of this exists in regular expression
queries.

Rewriting. Our language allows one to extract matched parts of a symbolic trajectory
and transmit them to an output sequence. It is even possible to overwrite attributes
of the result sequence by assignments. This is useful for different purposes. One ex-
ample is to locate the parts of a symbolic trajectory matching a particular pattern, an
indispensable feature if the trajectories are large. Another example is to apply a trans-
formation to the input sequence such as classification. — With regular expressions, one
cannot extract (find) locations but only match the entire sequence.

THEOREM 5.4. The following queries can be expressed by the pattern language defined
in this article but not by regular expressions:

(1) Find trajectories present on a Monday afternoon in 2007.
* ({2007, monday, afternoon} _) *

(2) Find trajectories passing a street whose name contains “Luther.”
* X () * // X.label contains "Luther."

(3) Find trajectories passing through the same street in the morning and in the after-
noon.
* X (morning _) * Y (afternoon _) * // X.label = Y.label

(4) Find trajectories containing five different transportation modes.
X * // no_components(X.labels) = 5

(5) Find trajectories covering a large area (precisely: where the convex hull area of all
places visited is larger than 50km2).4
X * // size(convex_hull(gk(X.locations))) > (50 * km2)

(6) Find all trips that passed through Central Park and return all the times when they
were there.
* X (\_ "Central Park") * => X

PROOF. See the preceding discussion.

As a consequence of Theorems 5.3 and 5.4, our language is strictly more expressive
than querying by regular expressions.

4X.locations is an attribute of type points for sequence variables over symbolic trajectories of types mplace
or mplaces. The gk operator transforms geographic to Gauss-Krüger coordinates, which leads to results in
square meters. km2 is a database object with value 1,000,000.
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6. IMPLEMENTATION

We have implemented the model of symbolic trajectories and the pattern language
within the SECONDO DBMS prototype. In this section, we present the algorithms that
are used to realize the main operators matches, rewrite, and classify that have been
integrated into SECONDO. Since these operators share several common computation
steps, it is not appropriate to detail them separately. Instead, we first explain the
major algorithms of the matches operator in execution order. Based on these results,
the remaining operators, whose complexity is beyond matches, are described.

For a better understanding of the proposed concepts, we adopt the symbolic trajectory
from Example 3.8 and call it M0. Moreover, we define the patterns P0 and P1 (with
rewrite rule) as

X * Y [({thursday, morning} "Queen Anne St") | (_ "Welbeck St")]+ Z [()]?
// (Y.end - X.start) < 20 * minute

and

X * Y [({thursday, morning} "Queen Anne St") | (_ "Welbeck St")]+ Z [()]?
// (Y.end - X.start) < 20 * minute

=> A Y
// A.time := X.time, A.label := "start of trip"

respectively, both serving as continuous examples throughout this section. The pattern
P0 refers to all trips passing through Queen Anne St. on a Thursday morning or Welbeck
St. (at any time) at least once, either exactly before reaching the last unit or at the end
of the trajectory, where the duration of X and Y adds up to less than 20 minutes.5 The
pattern P1 contains the same pattern elements and condition as P0 and will extract
one result trajectory for each (multiple) occurrence of Queen Anne St. or Welbeck St.
in the original trajectory, with one unit prepended having the time interval of the trip
before passing Queen Anne St. or Welbeck St. (if existing) and the label “start of trip.”
As we will show later, there are three different result trajectories.

The unit items of the example trajectory M0 and the patterns P0 and P1 are addressed
by mi (the ith unit of M0, starting from 0) and pi (the ith atom of P0 and P1, starting
from 0), respectively. The sizes of M0 (number of units) and P0 (number of atoms) are
denoted by |M0| and |P0|, respectively.

In the remainder of this section, first a short overview of the parsing process is
given. Subsequently, the major algorithms that are invoked by the operators matches,
rewrite, and classify are presented in this order. We also show the algorithms’ be-
havior if applied to the continuous example and analyze their computation cost.

6.1. Parsing

The translation of the input string into its internal representation is done with the
help of the tools Flex and Bison and consists of two steps. Initially, the input is treated
as if there were no regular expression symbols like [..|..]+ and [..]? in the pattern,
and all atoms, conditions, and assignments are processed. After that, we create a new
string regEx containing only those regular expression parts and an integer for each
of the atoms, starting from 0. For P0, regEx reads 0(1|2)+3?, where + and ? refer to
the regular expressions directly preceding them, respectively. Besides, square brackets
are transformed into parentheses. This string is then transformed into an NFA by
an existing SECONDO operator, which implements the McNaughton-Yamada-Thompson
algorithm [Aho et al. 2006, p. 159] to convert a regular expression to an NFA, resulting
in the NFA depicted in Figure 4 in graphical (left) and tabular form (right).

5minute is defined as a SECONDO object of type duration, having a length of 60,000ms.
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Fig. 4. The NFA after parsing P0 in graphical form (left) and as a vector of mappings (right).

The computation cost of the parsing phase is linear in the number of atoms, and thus
it hardly affects the overall runtime.

Throughout this section, a transition t from an NFA state s0 to a state s1 is denoted
by s0

i−→ s1, where i is the position of the transition-triggering atom. In this context, s0,
i, and s1 are referred to as t.source, t.atom, and t.target, respectively. Finally, let δs be
the set of transitions going out from the state s. Regarding P0 or P1, the set δ0 equals

{0 0−→ 0, 0
1−→ 1, 0

2−→ 1}, while δ2 is empty.

6.2. Matching without (Complex) Conditions

In the following, we detail how the NFA transitions are applied for the matching
process, in case there are no complex conditions. If a condition can be evaluated imme-
diately, we call it easy. More precisely, this is the case if and only if it contains only one
variable and this variable refers to a nonwildcard atom. A noneasy condition is called
complex and must be evaluated in a separate process (cf. Section 6.3). Note that the
condition of P0 is complex.

ALGORITHM 1: matchesWithoutCondition
Input: P – a pattern with p atoms, including an NFA δ with n states and a set of final

states F;
M – a symbolic trajectory (type moving label) of size m.

Output: true, if and only if a final state of the NFA is active after processing the mlabel;
1 S ← {0};
2 for i = 0 to m− 1 do // loop over trajectory

3 T ← ∅;
4 foreach s ∈ S do T ← T ∪ δs; // collect possible transitions

5 if T = ∅ then return false;
6 S ← ∅;
7 foreach t ∈ T do // loop over possible transitions

8 if match(mi, pt.atom) then S ← S ∪ t.target;

9 return (S ∩ F �= ∅);

At the beginning of Algorithm 1, we define the set of currently active states S to
contain only 0, which is always the initial state for a single NFA. Inside the main loop
over the symbolic trajectory, first all transitions starting from any of the states in S are
collected in the set T . If T remains empty (either because there is no possible transition
or because no state is active), no transition is available, and the algorithm stops and
reports a mismatch. Otherwise, we collect the new states by applying those transitions
from T whose corresponding atom matches the current unit mi. More exactly, the
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function match on the one hand compares the user-specified information from the atom
to the unit (cf. Definition 3.2), and on the other hand checks whether the easy conditions
corresponding to the atom are fulfilled. After the main loop, true is returned if and only
if at least one of the final states is active.

To illustrate the algorithm’s behavior, we apply it to P0 and M0. Since |M0| equals 5,
the outer loop performs five iterations that are detailed subsequently.

Iteration 0. Starting from state 0, the transitions T = {0 0−→ 0, 0
1−→ 1, 0

2−→ 1} = δ0
are feasible. Since the unit m0 is matched by the atoms p0 and p1, the states 0
and 1 become active, that is, S = {0, 1}.

Iteration 1. In this step, we retrieve T = δ0 ∪ {1 1−→ 1, 1
2−→ 1, 1

3−→ 2} = δ0 ∪ δ1. The
match function returns true only for p0 and p3, so S = {0, 2}.

Iteration 2. Since there is no transition from state 2, T equals δ0. Only p0 matches,
and consequently we obtain S = {0}.

Iteration 3. Again, T = δ0. Now the states 0 and 1 become active, since p0 and p2
match m3.

Iteration 4. In the final step, T equals δ0 ∪ δ1 as in the first iteration. The last unit
is matched by p0, p1, and p3, so S = {0, 1, 2} at the end.

The result is true, since a final state is active after the loop over M0.
Obviously, the complexity of Algorithm 1 is linear in m, the number of units of the

moving label. Let p be the number of atoms of the considered pattern and n the number
of states of the generated NFA. For each unit, the additional cost is linear in the average
number of active states ∅|S| plus the average number of possible transitions ∅|T |,
which both may be as high as n and p, respectively—assuming that the function match
is executed in constant time, which is true disregarding the number of time and/or
label specifications inside an atom. Consequently, the worst-case runtime complexity
amounts to O(m(n+ p)). However, both n and p do not assume high values, and provided
a sensible pattern definition, ∅|S| and ∅|T | remain below their theoretic maxima.

6.3. Matching with (Complex) Conditions

If a pattern with conditions is processed, the complex ones have to be evaluated if and
only if the sequence of atoms matches the symbolic trajectory. Although Algorithm 1
reports whether this occurs, it is impossible to decide whether a condition is true or
false as long as the binding of the variables is unknown (see Definition 3.5). For the
conditions to be verified, we have to find one binding that fulfills each condition. The
approach for the computation of these bindings entails recording a matching history
during the execution of Algorithm 1, that is, which unit was matched by which pattern
element and which are the candidates for matching the next unit. This is done by
applying an adjusted version of the algorithm.

6.3.1. Recording the Matching History. Before the outer loop starts, a two-dimensional
array of integer sets A, which is later used to retrieve all possible variable bindings, is
initialized with the dimensions m× e, where e is the number of pattern elements (cf.
Definition 3.4). In addition, we denote the number of the pattern element containing the
atom t.atom as t.elem. Now consider line 8 of Algorithm 1. In addition to the command
after then, as long as i < m− 1 holds, we collect the set T ′ of all feasible transitions
from t.target, where t ∈ T , and insert t′.elem, where t′ ∈ T ′, into the set Ai,t.elem; that
is,

if (i < m− 1) then Ai,t.elem = Ai,t.elem ∪ {t′.elem|t′ ∈ T ′, t′.source = t.target, t ∈ T }.

ACM Transactions on Spatial Algorithms and Systems, Vol. 1, No. 2, Article 7, Publication date: July 2015.



Symbolic Trajectories 7:29

Fig. 5. The matching history for M = babbc and P = * [a|b] c as a graph (left) and as a table (right).

In other words, all possible successive pattern element numbers are collected for each
atom matching a unit, so the elements of such a set represent pointers to matching
candidates for the next unit. During the final iteration, that is, when i equals m− 1,
the value −1 is stored in Am−1,t.elem if and only if a final state is reached.

For a better understanding of this approach, we present a simple example for which
we assume that every unit is expressed by a lowercase letter and an atom is either
such a single letter or a + or a *, the latter two having the same meaning as before.
Now consider the symbolic trajectory babbc, consisting of five units, and the pattern
X * Y [a|b] Z c. In the following, we discuss the left-hand side of Figure 5 from top
to bottom. Since the first atom is a *, the first unit could match any of the elements *
and [a|b]. Hence, we have connections from the start to the columns of the first two
pattern elements in the first row. The first unit is a b, so it matches the * and the b from
the pattern, and possible successive matches are (again) the elements *, [a|b] (after
*), and c (for b), respectively; thus, we have three connections to the second row. This
procedure is applied similarly for the remaining rows, and also for the final unit c, there
are two possible matchings, one with * and one with c. However, only the latter leads
to a complete matching. The bold arrows show the only possible path representing a
complete matching, immediately leading us to a binding of the variables. More exactly,
since the first three units match *, the variable X is bound to the unit set {0, 1, 2}.
Similarly, the unit sets {3} and {4} are associated to Y and Z, respectively.

On the right-hand side of Figure 5, the matching history is displayed in tabular form.
The pattern elements and the units are represented by their positions, and the set of
numbers inside each cell signifies possibly matching pattern elements of the successive
unit. For the final unit, only −1 is stored in case of a match. This way of presentation
is close to the actual implementation as a two-dimensional array of integer sets.

Now we return to the continuous example M0 and P0, for which in Table III we present
the two-dimensional array A0 that is obtained after executing the adjusted version of
Algorithm 1. To ease interpretation of the table, we have added abbreviations for the
units (left) as well as for the pattern elements (above table). Entries in the table are
only the integer sets, but we have added the abbreviations for the matching units that
have led to these entries and will be elements of the bindings to be computed. Hence,
Table III now is a combination of the representations of the left and right parts of
Figure 5.

The computation cost of the extended version of Algorithm 1 includes the initializa-
tion cost for A and the additional transition search; more exactly, the complexity is
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Table III. The Matching History for M0 and P0 as a Two-Dimensional Array of Integer Sets

Start: {0, 1}
Pattern Elements

X * Y [({th, m} QA) | ( WelSt)]+ Z [()]?
Unit 0 1 2

QA 0 QA QA
{0, 1} {1, 2} ∅

Wim 1 Wim
{0, 1} ∅ ∅

WelW 2 WelW
{0, 1} ∅ ∅

WelSt 3 WelSt WelSt
{0, 1} {1, 2} ∅

QA 4 QA QA QA
∅ {−1} {−1}

O(mp + m(n + p2)) = O(m(p + n + p2)) for the worst case. Thus, the runtime is still
linear in the trajectory size.

6.3.2. Computation of Bindings. A binding is implemented as a mapping from a string
(i.e., a variable) to a pair of integers (representing the start and the end of a sequence
of units). In the following, we show how to deduce bindings from the recently com-
puted two-dimensional array A. As our objective is to find one binding fulfilling every
condition—not necessarily all bindings—the computation is aborted in case of success.
Consider Algorithm 2. For each pattern element j that enables a transition t starting
at state 0 (i.e., t ∈ δ0), Algorithm 3 is executed, receiving the parameters P, 0, j, and B
where the latter is still empty. As soon as a suitable binding is found and the condition
evaluation is completely processed, true is returned. Details concerning the evaluation
of conditions are discussed later.

ALGORITHM 2: bindingExistsFrame

Input: P – a pattern with e elements, including an NFA δ;
B – an empty binding, i.e., a mapping from a string to a pair of integers

Output: true, if and only if a binding is found that fulfills every condition;
1 foreach j ∈ {t.elem | t ∈ δ0} do
2 if bindingExists(P, 0, j, B) then return true; // abort if successful

3 return false;

Algorithm 3 starts at a certain position in the two-dimensional array A and recur-
sively tries to find a path through A that leads to a final state. If a condition-fulfilling
binding is found (line 9), the process is aborted. At the beginning, if the current pattern
element is assigned a variable v, either the latter is added to B if it does not yet occur in
B (in this case, v is bound only to the current unit; line 6) or the binding of v is extended
by one (line 4). The recursion is processed in lines 11 and 12, where the successive unit
number i + 1, the following pattern element number k (according to the transition),
and the adjusted binding B are passed. The aforementioned binding modifications are
undone if no success is reported (lines 13–15).

Subsequently, we apply this procedure to our continuous example. In Table IV, each
line corresponds to an invocation of Algorithm 3. The recursion depth is represented by
i, the number of the current unit. The current pattern element is referred to by j. Note
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Table IV. Execution of Algorithm 3 for P0 and M0

i j B at Call B Updated Final Proceed Undo B
0 1 ∅ {Y �→ [0, 0]} no yes no
1 2 {Y �→ [0, 0]} {Y �→ [0, 0], Z �→ [1, 1]} no no yes
1 1 {Y �→ [0, 0]} {Y �→ [0, 1]} no no yes
0 0 ∅ {X �→ [0, 0]} no yes no
1 1 {X �→ [0, 0]} {X �→ [0, 0], Y �→ [1, 1]} no no yes
1 0 {X �→ [0, 0]} {X �→ [0, 1]} no yes no
2 1 {X �→ [0, 1]} {X �→ [0, 1], Y �→ [2, 2]} no no yes
2 0 {X �→ [0, 1]} {X �→ [0, 2]} no yes no
3 1 {X �→ [0, 2]} {X �→ [0, 2], Y �→ [3, 3]} no yes no
4 2 {X �→ [0, 2], Y �→ [3, 3]} {X �→ [0, 2], Y �→ [3, 3], Z �→ [4, 4]} yes no no

ALGORITHM 3: bindingExists

Input: P – a pattern with e elements;
i – the current unit number;
j – the current pattern element number;
B – a binding, i.e., a mapping from a string to a pair of integers.

Output: true, if a complete binding fulfilling every condition is found starting from unit i
and atom j; false otherwise.

1 v ← pelem( j).getV ar();
2 inserted ← f alse;
3 if ¬(v is empty) then
4 if B contains v then B(v).right ← B(v).right + 1; // extend existing binding

5 else // add new variable to binding

6 B(v) ← (i, i);
7 inserted ← true;

8 if {−1} ∈ Ai, j then // complete match

9 if conditionsMatch(P, B) then return true; // abort if successful

10 else
11 foreach k ∈ Ai, j do
12 if bindingExists(P, i + 1, k, B) then return true; // abort if successful

13 if ¬(v is empty) then
14 if inserted then erase v from B;
15 else B(v).right ← B(v).right − 1;

16 return false;

that we iterate over each integer set Ai, j in decreasing order, since reaching a higher
pattern element increases the probability of arriving at a final state.

A complete binding can only be achieved for i = m−1 (which is 4 in this example), as
shown in the bottom row of Table IV. The next step consists of checking whether this
binding fulfills every condition.

As the results of the condition evaluation are unpredictable, we have to determine
the computation cost for Algorithm 2 under the assumption that every path through
the two-dimensional array A has to be pursued. Let a be the number of paths leading
through A; then we obtain a runtime complexity of O(a · T (C)), where T (C) is the
computation cost of the conditions’ evaluation, being detailed in Section 6.3.3. The
worst case arises given a maximal number of transitions from each state (e.g., this
holds for a pattern of the form * * · · · *) and if all conditions must always be evaluated
(i.e., if the last condition is always false and the others are always true). Consequently,
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each integer set Ai, j contains e elements, so a may increase to O(me−1). This can be
established as follows:

If e equals 1, there can be only one path through A. For e = 2, the number of possible
paths increases to m + 1, since there are m + 1 ways to bind the first variable (i.e.,
empty, first unit, first two units, . . . , whole trajectory). Consequently, every further
pattern element increments the exponent by one, resulting in a total number of paths
of O(me−1).

6.3.3. Evaluation of Conditions. In order to prepare the evaluation of conditions, we cre-
ate a SECONDO operator tree for every condition during the parsing process. Such an
operator tree includes one pointer for each expression of a variable and an attribute,
the latter determining the type of the pointed data. Valid data types in this context
are label, place, periods, instant, bool, int, labels, and places. Consequently, for the
condition Y.end - X.start < 20 * minute from P0, two pointers to instant values are
required. Each of the operator trees enables SECONDO to verify whether the condition is
syntactically and semantically correct and, particularly, whether its result is a Boolean
value. For example, the input A.start = B.label would be rejected due to incompati-
ble attributes, and A.card + 3 is invalid since the resulting data type is not bool.

In the following, we detail the function conditionsMatch, which is invoked in line 9
of Algorithm 3. It loops over the conditions, returning false in case of a negative result,
and true if all conditions are fulfilled. Before a condition can be evaluated, we need
to update the data referenced by the condition pointer(s). For each expression of the
form v.attr (cf. Definition 3.7), the binding B combined with the symbolic trajectory M
provides the appropriate values.

For our continuous example, we consider the end of the time interval of unit 3 (2013-
01-17-09:18:44) and the start of the time interval of unit 0 (same day, 09:02:30),
according to the binding {X �→ [0, 2], Y �→ [3, 3], Z �→ [4, 4]}. The instant pointers’
targets are set to these values, and SECONDO can execute the condition as a query,
returning a result of type bool. In our case, the result is true, since the difference of the
two instants is less than 20 minutes, and thus conditionsMatch also returns true.

Concerning the runtime complexity of the condition evaluation, we observe that it
is linear in c, the number of conditions, and in ∅ |VC |, the average number of v.attr
expressions per condition. Moreover, since for the attributes time and labels, not only
one or two but also possibly all units have to be accessed, the computation cost for
the assignment of values must be considered linear in m. Consequently, the worst-case
runtime for one invocation of conditionsMatch is in O(c · ∅ |VC | · m). For the average
case, however, none of the first two values can be expected to be large, and the factor
m is dropped out for most configurations.

6.4. Requirements for a Linear Runtime of Matches

As a whole, the operator matches has a runtime of O(m(p + n + p2) + cme−1 ·
∅ |VC | · m) = O(m(p+ n+ p2) + cme · ∅ |VC |). Now we analyze the requirements that are
necessary for the runtime of matches to be linear in m, the size of the symbolic trajec-
tory. Obviously, this is the case if e equals 1 or even 0. However, as we are interested in
nontrivial pattern specifications, consider the formula’s nonlinear part cme−1 ·∅|VC | · m,
where me−1 is the maximal number of different bindings and m represents the value
assignment cost.

The first option for a linear value is linearizing the number of bindings, which is
successful if w, the number of the wildcard and regular expression items * and +
occurring in the pattern, is at most two. This is due to the fact that for w = 0, a
matching can only occur if the number of pattern elements equals m, which is unlikely,
whereas w = 1 grants a realistic probability for a matching, which then is unique since
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the binding of the respective sequence variable depends on the remaining pattern. For
w = 2, however, we may obtain up to m+ 1 different bindings. In that case, the use of
a time or labels/places attribute in a condition may lead to an evaluation time linear in
m, so the total runtime would be quadratic. Hence, if w equals 2, the computation cost
is linear only for a restricted set of patterns.

For the second approach, the conditions are freely configurable, while w may only
equal 0 or 1, resulting in exactly one binding (or none at all).

As stated in Section 6.2, the computation cost of matches is always linear in m for
a pattern without conditions.

6.5. Rewriting a Symbolic Trajectory

If the operator rewrite is called and the result of Algorithm 1 is positive, our objective
is to find every possibility of rewriting the applied symbolic trajectory according to
the parsed assignments. Hence, discovering one binding that fulfills the conditions,
as done previously, does not suffice; instead, we need to find all bindings satisfying
the conditions. Consequently, we apply an adjusted version of that algorithm, which
returns the first condition-fulfilling binding, starting from a certain position inside A,
the two-dimensional integer set array. As rewrite returns a stream of trajectories,
the current positions—along with the partial bindings—are pushed on a stack, so the
computation can be continued from there.

With this binding, the symbolic trajectory M is rewritten as follows. First, we loop
over the assignment objects, each represented by one variable in the results section of
the pattern. Inside this loop, we assign new values to the results if necessary, similarly
to Section 6.3.3. That is, the assignment objects contain one operator tree for each :=
operation, having a pointer for each v.attr expression on the right side of the assignment
symbol. If any parts of the necessary information for a result variable are missing in the
assignments section, they are collected from the original symbolic trajectory according
to the binding. By this means, a new unit is created for each result variable (or a
sequence of units, for a sequence variable) and added to the result trajectory M′. After
the end of the outer loop, M′ is written to the output stream.

We now consider a rewrite operation for M0 and P1. The first binding that fulfills the
condition is found as in Table IV, while the position data i and j are stored on a stack.
For every backtracking action, that is, when i does not increase from one line to the
next, the current binding is reset according to Algorithm 3, lines 13 through 15. The
binding {X �→ [0, 2], Y �→ [3, 3], Z �→ [4, 4]} along with the given assignments results
in the following symbolic trajectory:

< ( (2013-01-17-09:02:30, 2013-01-17-09:13:48, T, F), "start of trip"),
( (2013-01-17-09:13:48, 2013-01-17-09:18:44, T, F), "Welbeck St") >

Starting from the bottom of Table IV, backtracking only one level, that is, i = 3 and
j = 2, and choosing the element 1 lead to the next binding {X �→ [0, 2], Y �→ [3, 4]}.
The corresponding result reads

< ( (2013-01-17-09:02:30, 2013-01-17-09:13:48, T, F), "start of trip"),
( (2013-01-17-09:13:48, 2013-01-17-09:18:44, T, F), "Welbeck St"),
( (2013-01-17-09:18:44, 2013-01-17:09:20:10, T, F), "Queen Anne St") >

where the last two units belong to (the sequence variable) Y . By backtracking until
i = 2, j = 0, we obtain the binding {X �→ [0, 3], Y �→ [4, 4]} and the symbolic trajectory

< ( (2013-01-17-09:02:30, 2013-01-17-09:13:48, T, F), "start of trip"),
( (2013-01-17-09:18:44, 2013-01-17-09:20:10, T, F), "Queen Anne St") >
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The computation cost for rewriting a trajectory, given a certain binding, is linear
in m, since the size of a resulting symbolic trajectory cannot exceed m, and each unit
of the result is created in constant time—either a unit mi from M is copied, or some
data from mi are processed, or mi is not considered at all. Note that the number of
expressions of the form v.attr on the right side of the assignment symbol is regarded as
constant. Thus, we obtain a total computation cost of O(m(p + n+ p2) + cme+1 · ∅ |VC |)
for rewriting a symbolic trajectory.

6.6. Classification of a Symbolic Trajectory

The purpose of the operator classify is to distribute a set of symbolic trajectories into
not necessarily disjoint subsets that represent categories. Along with the trajectory
collection, the user needs to specify a set of patterns (with or without conditions), where
each pattern must be annotated with a category description. For example, assume we
have three trajectories M0, M1, and M2 of a person, two of them from home to work (M0
on a Monday, M1 on a Tuesday) and one from work to a restaurant (M2 on a Monday).
Then we could associate the categories “Monday” to M0 and M2, “home to work” to M0
and M1, and “leisure trip” to M2.

First, the operator reads the patterns and stores them along with their categories.
Instead of computing a separate NFA function for each pattern, we build one multi-
automaton for all patterns. Let n0, n1, . . . , nl−1 be the number of states for each of the
l patterns. Hence, the multiautomaton has

∑l−1
i=0 ni states. During the multi-NFA con-

struction, a mapping from the final states to the respective pattern number is stored.
Subsequently, a modification of Algorithm 1 is applied to the first trajectory of the

collection. For a multiple pattern processing, the initial set of active states must contain
l values instead of one, namely, {0, n0, n0 + n1, . . . ,

∑l−2
i=0 ni}. After the main loop, the

set of active states determines the set of patterns matching the processed symbolic
trajectory. For each of the remaining patterns, Algorithm 2 is invoked to check the
conditions, and finally, the categories of the accepted patterns are attached to the
trajectory. This procedure is repeated for every symbolic trajectory from the collection.

6.7. Applying a Trajectory Index

So far in this section, each of the described algorithms requires every unit of a symbolic
trajectory to be considered. In a follow-up paper [Valdés and Güting 2014], we introduce
a pattern matching technique supported by two indexes, one for the time intervals of a
trajectory collection and one for the labels/places.

We implemented the operator createtrie, which processes a relation containing a
symbolic trajectory attribute, storing the tuple identifier and unit position of each
label/place into a trie. Subsequently, this trie is converted into a persistent structure
and can be used as a SECONDO database object. The construction cost for the index is
linear in the total number of labels. Similarly, the operator createunitrtree expects a
stream of tuples with a symbolic trajectory attribute and builds a one-dimensional R-
tree, where each time interval (converted into an interval of real numbers) is associated
with a precise position inside the collection.

If both indexes are available, the operator indexmatches can be applied for an
index-supported pattern matching, in order to avoid the linear trajectory scan. The
operator executes NFA transitions by looking up pattern contents in the indexes and
holds certain information for each trajectory that is still active, so a trajectory scan is
not necessary anymore. Hence, its runtime is linear in the number of trajectories and
depends on other factors like the pattern selectivity, but it is almost independent from
the size of the trajectories.
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An additional operator named indexclassify calculates the same result as classify
with the help of the twofold trajectory index. Similarly to the previous paragraph, it
avoids linear trajectory scans.

7. EXPERIMENTAL EVALUATION

This section is devoted to a series of SECONDO queries carried out with the operators
detailed in the previous section. All experiments were conducted on an AMD Phe-
nom II X6 3.3GHz processor running openSUSE 13.2, with 8GBytes of main memory.
From this environment, SECONDO was assigned one processor core and half of the avail-
able memory. In the first part, we present runtime graphs of the operators matches,
rewrite, classify, and indexclassify in order to analyze and visualize the impact of
certain parameters on the time consumption. For that purpose, a synthetical dataset
was created. The second part details several approaches of executing matching tasks on
a more realistic dataset generated with BerlinMOD [Düntgen et al. 2009], a benchmark
for spatiotemporal database management systems.

All runtimes were computed by running each query four times and taking the median
value of the durations.

7.1. Experiments with Synthetic Datasets

In order to obtain symbolic trajectories with comparable properties (i.e., having certain
sizes and labels from a static limited collection with similar repetition frequencies),
we decided to generate synthetic data. All symbolic trajectories applied in this section
represent random walks. More exactly, the labels correspond to the names of the 12
main districts of the city of Dortmund, Germany. For the first series of experiments, we
also created random walks through the 413 counties of Germany, in order to increase
the number of different labels in the trajectories. As the time intervals are irrelevant
for the runtime, each unit has a random duration between 1 and 24 hours, and each
trajectory starts at midnight, January 1, 2015. Such synthetic symbolic trajectories
with a user-defined size and even relations containing arbitrarily many of them can be
produced by the operators createml and createmlrel, respectively.

The patterns in this section are listed in Table V. Note that the patterns P0, P1, . . . ,
P9 are applied with the trajectories through Dortmund (12 different labels), while the
random walks through the German counties (413 different labels) are queried with
P0’, . . . , P5’.

7.1.1. Operator Matches. In Figure 6, we present the performance evaluation of the
operator matches with respect to symbolic trajectories of increasing length, several
patterns, and different numbers of possible labels per trajectory. The two upper di-
agrams refer to patterns without conditions, while the bottom graphs resulted from
patterns that contains at least one condition. The results on the left-hand side are
based on symbolic trajectories with 12 different labels, and the trajectories we ap-
plied for the right-hand side diagrams have 413 different labels. Note that we did not
add an experiment with more trajectories for this operator, since the effect is a linear
dependency as for rewrite, in Figure 7 (right).

First, we consider the two diagrams on top of Figure 6, both visualizing that the
runtime of the operator matches is linear in m if no conditions are specified, according
to our computations concerning Algorithm 1. Since the patterns P0 and P0’ cause an
early mismatch (at the third unit, at the latest), the computation cost is constant. For
P1 and P2 as well as for P1’ and P2’, we observe a difference in the slopes, which is
because P1 and P1’ have two wildcard atoms, so more transitions are executed after
every trajectory unit. The runtime for patterns without conditions is hardly affected
if the number of different labels is changed. We notice that the runtime for P1’ is
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Table V. These Patterns Were Applied for the Experimental Evaluation

P0 : (2015-01-01 "Innenstadt-Ost") (_ "Hörde")
P0’: (2015-01-01 "Mülheim an der Ruhr") (_ "Duisburg")
P1 : * [(february "Hombruch") | (january "Eving")] *
P1’: * [(february "Hamburg") | (january "Hannover")] *
P2 : * (2014 "Scharnhorst")
P2’: * (2014 "Freiburg")
P3 : X * Y (2015-01 "Innenstadt-West", "Innenstadt-Nord", "Innenstadt-Ost") Z *

// (day_of(Y.start) mod 3) = 0
P3’: X * Y (2015-01 "Kassel", "Schwalm-Eder-Kreis", "Hersfeld-Rotenburg") Z *

// (day_of(Y.start) mod 3) = 0
P4 : () A + B [(_ "Lütgendortmund") | (_ "Eving") (_ "Mengede")]+ C *

// A.card > C.card, get_duration(B.time) > duration(1 0)
P4’: () A + B [(_ "Berlin") | (_ "Stuttgart") (_ "Ludwigsburg")]+ C *

// A.card > C.card, get_duration(B.time) > duration(1 0)
P5 : X + Y (_ "Innenstadt-Ost") * (_ "Hörde") Z + // X.start > Z.end
P5’: X + Y (_ "Frankfurt am Main") * (_ "Frankfurt (Oder)") Z + // X.start > Z.end
P6 : X () Y * Z () => Z // Z.start := Y.start
P7 : A * B * => A X // X.time := B.time, X.label := "begin of trip"
P8 : G * H (_ "Eving") I * J (_ "Hörde") K * => H
P9 : A * B [(_ "Brackel") | (_ "Hombruch")] C * => B

Fig. 6. Runtime of the operator matches for 12 (left) and 413 (right) different labels, with (bottom) and
without (top) conditions.

slightly faster than for P1, which is because the second pattern element matches more
trajectory units if there are fewer different labels in the trajectory, so more transitions
have to be conducted.

The graph for pattern P5 in the bottom left diagram confirms the worst-case runtime
complexity of Algorithm 2. Since the condition of P5 is never fulfilled, every possible
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Fig. 7. Runtime of the operator rewrite for a single trajectory (left) and a trajectory relation (right, con-
ducted with pattern P9).

binding has to be computed and evaluated, and the runtime is quadratic in m since P5
contains three wildcards. Also for P5’ (bottom right diagram), the condition is always
evaluated to false, but due to the higher number of different labels, there are fewer
possible bindings, so the runtime is still quadratic but clearly lower than for P5. Con-
cerning the patterns P3, P3’, P4, and P4’, the runtime is linear in m. Among these four
patterns, the computation cost is lower for P3 and P3’, since their condition is an easy
one. The effect of the number of different labels is minor for these patterns but still
perceivable.

7.1.2. Operator Rewrite. The subsequent test series is conducted with the operator
rewrite and analyzes the runtime for processing single trajectories of different sizes
as well as trajectory relations with different numbers of tuples. The corresponding
results are depicted in the left and in the right diagram, respectively.

As expected, the graph resulting from the pattern P8 in the left-hand diagram of
Figure 7 has a quadratic shape due to the three wildcards. Although the pattern P7
contains only two wildcards, we obtain a quadratic runtime for P7 too, since there are
no filtering elements and one of the sequence variables (A) also occurs in the results
section. Due to a higher number of result trajectories (i.e., m + 1 for P7 compared to
less than m

20 for P8) induced by the filtering unit patterns inside P8, the graph of P7
shows a higher slope. Finally, as there is only one wildcard in P6 and no sequence
variable in the results section, the computation cost for the rewrite operation is linear
in m.

On the right-hand side, the runtime behavior of rewrite is depicted for relations
containing an mlabel attribute. We varied the number r of tuples of the relations—
along the abscissa—and the size of the trajectories, while the applied pattern set,
consisting of the pattern P9, remained invariant. Inside a relation, all trajectories
have the same number of units. Unsurprisingly, the computation cost is proportional to
r, apart from a fractional parsing overhead. Concerning the different trajectory sizes,
the rise is quadratic in m because of the two wildcards, similar to the graph of P7 on
the left.

7.1.3. Operators Classify and Indexclassify. The final test, whose results are depicted in
Figure 8, reviews the performance of the operator classify with regard to the quantity
and size of the examined symbolic trajectories. Again, the efficiency is optimized with
the help of an index. The classification task is conducted with the three patterns
(_ "Hörde") * (_ "Brackel"), (_ "Innenstadt-West") (_ "Lütgendortmund") *,
and * (_"Aplerbeck") * (_"Lütgendortmund") * (_"Eving") *.
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Fig. 8. Runtime of the operator classify.

From the left plot, we deduce that the runtime function of the classify operator
is nearly proportional to the number of trajectories as well as to their sizes, which
could be expected, since only Algorithm 1 is executed. Hence, the construction of the
multiautomaton, being independent from the set of moving labels, is efficient. In fact,
the operator consumes approximately 7 microseconds for processing one unit (for this
pattern combination) and an overhead of a few milliseconds for the automaton.

Applying the trajectory relation index, we are able to reduce the runtime to a high
extent, that is, by a factor of approximately 15. The runtime is linear in r and less than
proportional to m.

7.2. Experiments with BerlinMOD Data

In order to obtain a more realistic dataset, we applied the database benchmark system
BerlinMOD with a scale factor of 1.0. By this means, a relation with 293,000 tuples,
each containing an mpoint attribute, was created. These trips, consisting of 56 million
upoints (point units) in total, refer to the movement data of 2,000 objects collected
during a period of 28 days inside the city of Berlin. Since half of the moving points are
stationary (i.e., they contain only one point unit), we removed them and conducted the
experiments with the remaining 145,000 trips.

In the following, we present six different approaches of solving a certain task on these
trajectories. While the first one processes the raw mpoint data and the second one ap-
plies network-constrained data [Güting et al. 2006], the remaining four are based on
symbolic trajectories. More exactly, each of the subsequent methods is applied to iden-
tify the trajectories passing the street Bundesallee before passing at least one of the
three streets Leipziger Str., Hohenzollerndamm, and Steglitzer Damm. In addition, the
duration of the trip segment between Bundesallee and one of its three successors must
be longer than the time spent after the latter. This query has a selectivity of approxi-
mately 1%. We assume that for all six alternatives, the different types of trajectories,
that is, raw, network constrained, and symbolic, are present. The symbolic trajectories
are clearly shorter than the raw trips, since for the former, an additional unit is nec-
essary only if the street changes. On the other hand, a unit of the raw trajectories of
BerlinMOD has a duration of 2 seconds. To be precise, the memory consumption of the
symbolic trajectories amounts to 282MBytes, whereas the associated raw trajectories
require 10.8GBytes, as well as the network-constrained data.

The executed queries as well as corresponding explanations can be obtained from
Appendix B. A summary of the index construction times and the runtimes is presented
in Table VI. Note that spatiotemporal pattern queries [Sakr and Güting 2011] are
not suitable for this evaluation, since the specified condition cannot be expressed. We
provide an overview of the applied methods:
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Table VI. Result Overview for Processing 145,000 BerlinMOD Trajectories

Runtime (Seconds) for
Applied Approach Building Index(es) Query

Based on raw geometric data (10.8GBytes)
1 : Raw Trajectories and Geometric Indexes 2,249.72 1,276.41
Based on network-constrained moving objects (10.8GBytes)
2 : Network-Constrained Moving Points 3,870.03 180.13
Based on symbolic trajectories (282 MBytes)
3 : Linear Scan Without Pattern Language 10.06
4 : Pattern Matching 10.96
5 : Index Support Without Pattern Language 213.91 0.58
6 : Index-Supported Pattern Matching 213.91 0.59

(1) Raw Trajectories and Geometric Indexes: We created two B-trees over the streets
relation (for the routes and their bounding boxes) and an R-tree over the trajectory
units. The result was computed via index results and auxiliary functions.

(2) Network-Constrained Moving Points: We built a B-tree over the street network and
an R-tree over the network trajectory units. With the help of index results and
additional functions, we obtained the result.

(3) Linear Scan on Symbolic Trajectories Without Pattern Language: Again, auxiliary
functions are required. We performed a linear scan of all symbolic trajectories and
applied several filters.

(4) Pattern Matching on Symbolic Trajectories: The task was translated into a pattern
with condition, so we could use one filter and the matches operator. No further
functions or objects are necessary.

(5) Exploiting a Symbolic Trajectory Index Without Pattern Support: First, two indexes
for symbolic trajectories were created. Then we conducted a join of index results
for the specified streets and applied additional functions.

(6) Index-Supported Pattern Matching on Symbolic Trajectories: The operator index-
matches was executed with the same pattern as for Approach 4.

7.2.1. Summary of BerlinMOD Experiments. According to Table VI, using symbolic tra-
jectories instead of their raw or network-constrained counterparts offers substantial
advantages regarding the execution of queries as well as the disk space occupation and
the creation of indexes. For all these parameters, gains in efficiency of several orders
of magnitude can be observed, especially for the index-supported approaches.

Among the methods based on symbolic trajectories, the techniques without index (3,
4) and the index-based methods (5, 6) should be considered separately. In both cases, the
pattern-assisted version is slightly less efficient. However, for the approaches without
pattern support (3, 5), the formulation of queries is much more difficult and lengthy,
and SECONDO expert knowledge is required to understand them (see the queries in
Appendix B). At the same time, the pattern language enables the user to express
sophisticated tasks as short and elegant patterns, which can be discussed, exchanged,
and adjusted without profound database skills.

8. RELATED WORK

The notion of symbolic trajectory relates to diverse research areas. In what follows,
we tie in our work with the state of the art, focusing in particular on the following
two key features: the symbolic data model and the pattern matching and manipulation
language.

Semantic Trajectories. The first stream of related research regards the model-
ing of semantic trajectories. Broadly speaking, semantic trajectories are geometric

ACM Transactions on Spatial Algorithms and Systems, Vol. 1, No. 2, Article 7, Publication date: July 2015.



7:40 R. H. Güting et al.

trajectories annotated with supplementary information. Annotations can regard, for
example, places, transportation means, and activities. Indeed, semantic trajectories is
a broad and lively area of research that has progressively grown over the last years
thanks to the contribution and convergence of independent research works, especially
those carried out in the projects GeoPKDD [Giannotti and Pedreschi 2008] and Modap
[Renso et al. 2013] in Europe, in the project Geolife [Zheng et al. 2010b] in Asia, and
in the early work by Liu et al. [2006]. A prominent research direction on semantic
trajectories is geared toward the definition of general concepts and methods for the
extraction and representation of semantic information. Early work on the conceptual
modeling aspects defines a semantic trajectory as a sequence of alternating stops and
moves, where a stop is a suspension of the movement at the chosen level of abstrac-
tion [Spaccapietra et al. 2008]. Methods for the discovery of stops and moves from
geometric trajectories are presented in, for example, Palma et al. [2008], Rocha et al.
[2010] and Yan et al. [2011]. In Spaccapietra et al. [2013], a generalized conceptualiza-
tion subsuming the stop-and-move model is presented based on the notion of episode,
denoting a portion of trajectory that is semantically homogeneous, for example, the
movement in proximity of a point of interest. This notion is at the basis of the semantic
trajectory discovery process presented in Yan et al. [2013] and Yan and Chakraborty
[2014]. The notion of semantic trajectory is much richer than that of symbolic tra-
jectory; however, that definition is not directly usable or sufficiently detailed as a
database model because it is a mere conceptualization that does not specify how to
access and query semantic trajectories. A possible approach to the definition of a se-
mantic trajectory database model relying on the use of data types is outlined in Pelekis
and Theodoridis [2014]. We are not aware, however, of any further specification and
implementation.

A different research direction, orthogonal to the construction of a generic trajec-
tory database, investigates efficient access and query processing methods for narrower
classes of trajectories. For example, the work in Zhang et al. [2014] defines a seman-
tic trajectory as a sequence of timestamped places wherein a place is described by a
spatial location and a semantic label (e.g., office). Semantic trajectories can represent,
for example , the sequence of users’ checkins in Foursquare and Facebook Places. The
research problem is to extract from a database frequent sequential patterns where a
sequential pattern is a sequence of temporally bounded transitions from one or more
places to another group of places. Places are also the components of the activity tra-
jectories [Zheng et al. 2013] defined as sequence of spatial points with an associated
number of activities (e.g., shopping). The research problem is to efficiently extract the
n trajectories that best match a set of activities, based on a specific notion of matching.
A similar type of query relying on a slightly different notion of matching is discussed
in Cong et al. [2012]. The notion of place is also available in symbolic trajectories,
where we can specify not only the spatial object associated with the label but also the
period or duration of the stay. Moreover, matching criteria on the textual and spatial
components can be flexibly defined using conditions.

Pattern Matching and Manipulation Language. Pattern matching languages for
querying sequential data in relational databases have been proposed in, for exam-
ple, Sadri et al. [2004] and Agrawal et al. [2008]. The Simple Query Language for Time
Series (SQL-TS) [Sadri et al. 2004] adds to SQL constructs for specifying patterns as
sequences of variables, for example, (X, Y, Z), that are bound to tuples or series of tuples
satisfying conditions on the attributes, for example, X.att > Y.att. Tuples are ordered
based on the value of an attribute. Whenever the ordering is based on time, the notion
of sequence data is similar to that of time series, described next.
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Time series are sequences of data points (often real numbers) spaced at strictly in-
creasing times [Gao and Wang 2009] that can be seen as vectors of a high-dimensional
space. Time intervals between data points are usually, but not always, of equal size. The
main query type is similarity search (matching either the whole or a subsequence) based
on many different kinds of distance measures [Faloutsos et al. 1994; Ding et al. 2008].
Compression of huge time-series data warehouses is also a major concern [Korn et al.
1997]. Even for symbolic representations such as SAX (Symbolic Aggregate ApproX-
imation), their lower bounding properties for distance (i.e., similarity) computations
are found essential [Ding et al. 2008].

In contrast, in a symbolic trajectory, symbolic values are associated with time inter-
vals, not instants of time. Time intervals have widely varying size, depending on how
long the property holds. There may be gaps, which is not a problem as in time series
but is the normal case (consider the example of roe deer in Section 4.2). The symbolic
values are semantically meaningful; therefore, it makes sense to mention particular
values in queries (e.g., transitions from train to taxi in transportation modes, see
Section 4.1). This is not the case in time series. Moreover, the symbolic trajectories can
handle places, which is obviously not available in time series. All of this leads to very
different requirements in querying.

Mobility pattern matching in spatiotemporal databases is the research line more
closely related to our work. The basis for the present work originates from du Mouza
and Rigaux [2005]. In particular, du Mouza and Rigaux introduce the notion of mobility
pattern for moving objects relative to a hierarchical partitioning of the plane into
regions, where each region is identified by a symbol. An object’s trajectory is defined
by the sequence of symbols denoting the successive regions crossed by the object.
The trajectories obtained in this way can be interrogated using a pattern matching
language supporting variables. The expressiveness of the language is, however, limited.
In particular, variables can be only bound to symbols and not to time; moreover, the
language does not allow the specification of conditions. The sequence of region labels
does not include time information, so the symbolic model is not suitable for trajectory
annotation.

The assumption of a space partitioned into regions is also at the basis of the work by
Vieira et al. [2010, 2011]. The idea is again to support pattern matching over trajecto-
ries, but in this case trajectories are geometric and not symbolic; that is, a sample query
is to find the trajectories that go from region A to region B. The sequence of region labels
with timestamps occurs only as a data structure within the implementation. The pat-
tern language is rich and includes not only symbols and variables but also conditions,
such as spatial and temporal conditions. Technically, the use of variables is different
from our approach as here variables represent regions, whereas in our approach they
represent units or subsequences of a symbolic trajectory. While their use of variables
allows for an easy specification of the same region being visited twice or repeatedly
(just use the same variable), it is in general less expressive than our approach. For ex-
ample, it is not possible to access attributes of variables describing time intervals of a
subsequence or the number of intermediate symbols. Again, this approach is restricted
to partitioned space and does not offer a general solution for trajectory annotations.
A precursor to the work of Vieira et al. [2010, 2011] is Hadjieleftheriou et al. [2005].
Here, more general geometries are considered than just partitions of the plane into re-
gions. On the other hand, this approach focuses on range and nearest-neighbor queries,
does not introduce any symbolic representation, and does not have variables or regular
expressions and so is only remotely related.

Our pattern manipulation language does not impose any constraint on the possible
annotations. It allows the specification of mobility patterns in terms of regular expres-
sions with variables denoting symbols, time intervals, and subsequences. Moreover,
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the language is embedded into the SECONDO platform, which offers a rich and exten-
sible repertoire of data types that can be used for formulating a variety of conditions
on pattern variables. Further, we recall that the language not only supports pattern
matching but also provides two additional operators: classify to categorize trajectory
sets through multipattern matching and rewrite to let users extract and even change
trajectory labels in order to enrich the description with further information. To the best
of our knowledge, the expressiveness, flexibility, and variety of operations provided by
our query language are unrivaled.

9. CONCLUSIONS AND FUTURE WORK

In this article, we have proposed annotated trajectory databases as a new research
direction, to study representation and querying of semantic trajectories from a database
perspective. As a first step, we have defined a data model for symbolic annotations (or
symbolic trajectories manipulated independently) in the form of four abstract data
types to represent time-dependent (sets of) labels and places. They can represent in a
generic way any relevant annotation known from the literature.

The new data types are similar to data types for moving objects that have been
proposed before (e.g., mpoint = moving(point)) [Güting et al. 2000], so they exhibit
“little novelty.” This is not a bug but a feature of the approach. It would be easy
to develop new models from scratch, but this would be an entirely bad idea as they
would require their own system implementation and fit together with nothing else.
In contrast, we have carefully integrated the new types into the framework of Güting
et al. [2000] and into the SECONDO system implementation; they could be equally easily
integrated into the other moving objects DBMS and Hermes. As a result, the user
can query symbolic trajectories with the same mechanisms as raw trajectories or their
related data types.

Moreover, a pattern-based language has been proposed to retrieve symbolic or an-
notated trajectories. Whereas previous languages of this kind were restricted to the
one special case of regions traversed, it is now possible to use pattern-based queries
on generic annotations of any kind and so retrieve annotated trajectories based on
any kind of symbolic features. Furthermore, the pattern-based language treats the
temporal dimension in full generality. It provides rewriting, needed to retrieve match-
ing parts, and classification, not present in earlier work. The pattern-based query
language has been rigorously defined with respect to syntax and semantics, and an
efficient implementation in a DBMS context has been provided, as demonstrated in a
comprehensive set of experiments.

The complete implementation of model and language is publicly available with a new
release of SECONDO and so can be used for practical applications.

Annotated trajectory databases offer a lot of exciting research possibilities, for ex-
ample:

—Querying hybrid and multidimensional trajectories. By hybrid trajectories we mean
pairs consisting of one geometric and one symbolic trajectory, and by multidimen-
sional trajectories objects (tuples) having one geometric and several symbolic (or
numeric, e.g., altitude) trajectories. The pattern language so far is restricted to the
symbolic dimension. It would be interesting to develop pattern-based mechanisms
working across several dimensions.

—Query optimization in moving objects databases, using symbolic trajectories. Symbolic
trajectories could in fact be used in a way entirely transparent to the user, just as
a tool for query optimization. For example, suppose in a vehicle database there are
frequent queries to retrieve vehicles that went at some particular speed, for example,
faster than 130km/h. Similar to creating an index, the database administrator might
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derive symbolic trajectories with a speed classification (e.g., slow, moderate, fast, very
fast). The query optimizer may then translate the speed query to a filter and refine
the strategy, retrieving first symbolic trajectories with entries fast or very fast.

—Grouping/clustering by symbolic trajectories (equality). Clustering so far tries to put
together geometric trajectories that are in some way similar. A new possibility to
make trajectories similar is to let them have the same symbolic representation.

—Similarity of symbolic trajectories. Furthermore, similarity measures for symbolic
trajectories (including place annotations) may be studied.

—Join over symbolic trajectories. Efficient join techniques may be developed based on
equality or similarity.

—Benchmarks. Design scalable benchmark data generators and queries.
—Applications and datasets. Make real datasets available for research and study re-

lated applications.

In summary, we feel annotated trajectory databases and symbolic trajectories can
be a major step forward in the handling of semantics of trajectories and offer exciting
research prospects in the future.

APPENDIX

A. FORMALIZATION OF REWRITE RULES AND THEIR SEMANTICS

This appendix is provided in electronic form.

B. DETAILS OF THE EXPERIMENTAL EVALUATION

In this section, the queries for the experiments from Section 7.2 are listed. As seen in
Section 4, pattern matching queries on symbolic trajectories can easily be expressed in
SQL. However, the other approaches require sophisticated commands that can only be
conducted in SECONDO executable language. Therefore, we decided to use the latter for
all queries, in order to enable a fair comparison.

Approach 1: Raw Trajectories and Geometric Indexes

First, we create a relation strassen2 containing the names and the bounding boxes of
all streets from the original relation strassen.

let strassen2 = strassen feed sortby[Name]
groupby[Name; Bbox: bbox(group feed projecttransformstream[GeoData] collect_line[TRUE])]
consume

Over the most recently created relation, we build a B-tree for faster access to the
bounding box of a street.

let strassen2_btree = strassen2 feed addid createbtree[Name]

Since some of the streets in the strassen relation are separated in different lines,
we unite them with the operator collect_line and store them in a new relation.

let strassen_united = strassen feed sortby[Name]
groupby[Name; Line: group feed projecttransformstream[GeoData] collect_line[TRUE]]
consume

We create another B-tree to enable fast access to the precise course of any street.

let strassen_btree = strassen_united feed addid createbtree[Name]
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The subsequent function returns the bounding box of the course of the street that
corresponds to the specified street name. Due to the B-tree, this function is very effi-
cient.

let getbboxfromname = fun(SName: string)
strassen2_btree strassen2 exactmatch[SName] extract[Bbox]

We create an R-tree containing the bounding boxes of all units of the 145,000 raw
trajectories. The operator units transforms an mpoint into a stream of upoints. Apply-
ing the bbox operator to such a unit yields a three-dimensional cuboid (two spatial and
one temporal dimension), and with rectproject, we keep only the spatial information.

let units_rtree_2d = SymTrips feed addid projectextendstream[TID; Bbox: units(.MP)]
replaceAttr[Bbox: rectproject(bbox(.Bbox), 1, 2)] sortby[Bbox] bulkloadrtree[Bbox]

The following function checks whether an mpoint passes a certain street. First, the
trajectory is transformed into a stream of units. The start and end point of every unit
are derived by the operators initial and final (extracting an ipoint value, i.e., an instant
along with a point) and val (reducing an ipoint to its point). Finally, the function checks
whether there is a unit whose start and end point have a distance of less than 30cm to
the line that belongs to the specified street name. The corresponding line is returned
from the B-tree.

let filterendpoints = fun(Trip: mpoint, Name: string)

units(Trip) transformstream

projectextend[; Sp: val(initial(.Elem)), Ep: val(final(.Elem))]

filter[distance(.Sp, strassen_btree strassen_united exactmatch[Name] extract[Line]) < 0.03]

filter[distance(.Ep, strassen_btree strassen_united exactmatch[Name] extract[Line]) < 0.03]

head[1] count > 0

Similarly to the previous function, we define another function returning the position
of the first occurrence of a certain street name in an mpoint. If the street is not passed
by the mpoint, the result is undefined.

let firstposMP = fun(Trip: mpoint, Name: string)

units(Trip) transformstream addcounter[No, 1]

filter[tostring(val(initial(.Elem))) = Name]

filter[distance(.Sp, strassen_btree strassen_united exactmatch[Name] extract[Line]) < 0.03]

filter[distance(.Ep, strassen_btree strassen_united exactmatch[Name] extract[Line]) < 0.03]

extract[No]

The subsequent function yields the last occurrence of a specified street name in an
mpoint, if existing, and an undefined value otherwise.

let lastposMP = fun(Trip: mpoint, Name: string)

units(Trip) transformstream addcounter[No, 1]

extend[Sp: val(initial(.Elem)), Ep: val(final(.Elem))]

filter[distance(.Sp, strassen_btree strassen_united exactmatch[Name] extract[Line]) < 0.03]

filter[distance(.Ep, strassen_btree strassen_united exactmatch[Name] extract[Line]) < 0.03]

tail[1] extract[No]

This function verifies whether a certain unit of an mpoint (retrieved by the operator
getunit) occurs completely on a specified weekday. Precisely, we check the weekdays
of the first and the last instant of the unit, and in addition, the duration of the unit has
to be less than 1 day (the duration operator is invoked with a number of days and a
number of milliseconds).

let checkWeekdayMP = fun(Trip: mpoint, Pos: int, Day: string)

(weekday_of(inst(initial(getunit(Trip, Pos)))) = Day) and
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(weekday_of(inst(final(getunit(Trip, Pos)))) = Day) and

((inst(final(getunit(Trip, Pos))) - inst(initial(getunit(Trip, Pos))))< (duration (1 0)))

The last function of this paragraph returns a Boolean value indicating whether the
temporal duration spent between two units of a certain mpoint (given by their two
positions) is longer than the time interval that remains after the second given position.
The second duration is computed in lines 2 and 3: if the given position represents the
end of the trajectory, the duration is 0. Otherwise, it equals the difference between the
final instant of the trajectory and the first instant of the first unit behind the given
position. The lines 4 and 5 yield the duration of the first time interval. Either it is 0
(if both units are adjacent) or it equals the difference between the last instant of the
predecessor of the second unit and the initial instant of the successor of the first unit.
Finally, both durations are compared by the < operator.

let matchesTempCondMP = fun(Trip : mpoint, BY : int, BZ : int)
ifthenelse(no_components(Trip) = BZ, duration(0 0),
inst(final(getunit(Trip, no_components(Trip)))) - inst(initial(getunit(Trip, BZ + 1))))

< ifthenelse(BZ = (BY + 1), duration(0 0),
inst(final(getunit(Trip, BZ - 1))) - inst(initial(getunit(Trip, BY + 1))))

In the main query, we first retrieve all trajectories having a unit whose bounding box
intersects the bounding box of the street Bundesallee. In the second line, we apply the
more precise filter step by endpoints. Then we compute the final position of Bundesallee
and perform the weekday check. This stream of tuples is named ba for a later join
operation. Subsequently, we retrieve the first occurrences of the three other streets,
concat the resulting tuples, and name them nx. With a hashjoin, both streams are
connected. At the end, we check whether the position of Bundesallee precedes the
position of the other streets, and we verify the temporal condition.

query units_rtree_2d windowintersectsS[getbboxfromname("Bundesallee")]

sortby[Id] rdup Trips gettuples filter[filterendpoints(.MP, "Bundesallee")]

projectextend[Tripid, MP; BApos: lastposMP(.MP, "Bundesallee")]

filter[checkWeekdayMP(.MP, .BApos, "Wednesday")]{ba}

(units_rtree_2d windowintersectsS[getbboxfromname("Leipziger Str.")]

sortby[Id] rdup Trips gettuples filter[filterendpoints(.MP, "Leipziger Str.")]

projectextend[Tripid, MP; NXpos: firstposMP(.MP, "Leipziger Str.")]

units_rtree_2d windowintersectsS[getbboxfromname("Hohenzollerndamm")]

sortby[Id] rdup Trips gettuples filter[filterendpoints(.MP, "Hohenzollerndamm")]

projectextend[Tripid, MP; NXpos: firstposMP(.MP, "Hohenzollerndamm")] concat

units_rtree_2d windowintersectsS[getbboxfromname("Steglitzer Damm")]

sortby[Id] rdup Trips gettuples filter[filterendpoints(.MP, Steglitzer Damm")]

projectextend[Tripid, MP; NXpos: firstposMP(.MP, "Steglitzer Damm")] concat) {nx}

hashjoin[Tripid_ba, Tripid_nx]

projectextend[; MP: .MP_ba, BApos: .BApos_ba, NXpos: .NXpos_nx]

filter[.BApos < .NXpos]

filter[matchesTempCondMP(.MP, .BApos, .NXpos)] count

Runtime for final query: 21 minutes, 16 seconds.

Approach 2: Network-Constrained Moving Points

The operator tonetwork converts a raw trajectory (type mpoint) into a network-
constrained trajectory (type mgpoint).

let TripsJNet = Trips feed projectextend[Tripid; Pos: tonetwork(JBNet, .Str)] consume;

We build an R-tree over the (spatial) bounding boxes of the network-constrained
trajectories.
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derive TripsRtree = TripsJNet feed extend[TID: tupleid(.)]
projectextend[TID; Box: rectproject(bbox(.Pos), 1, 2)] sortby[Box asc] bulkloadrtree[Box]

The original streets from the street relation are converted into network-constrained
jlines.

let strassen_jline = strassen feed extend[JLine: tonetwork(JBNet, .GeoData)] consume

Over the names of the recently created network-constrained streets, we create a
B-tree.

let strassen_jline_btree = strassen_jline feed addid createbtree[Name]

This function retrieves the last position of a street name inside a network-constrained
trajectory behind a specified position. More exactly, if the trajectory passes the network-
constrained line retrieved from the B-tree, we transform it into units, append a counter
to them (operator addcounter), and exclude the units that occur before the position
Pos. Then we create an mjpoint from each remaining ujpoint and check whether it
passes the network-constrained line. Finally, the function returns the maximum re-
maining unit position or an undefined value if the trajectory does not pass the jline.

let lastposjnet = fun(Trip: mjpoint, Name: string)
ifthenelse(Trip passes strassen_jline_btree strassen_jline exactmatch[Name]

extract[JLine], units(Trip) transformstream addcounter[No, 1]
projectextend[No; SingleMJP: createmjpoint(.Elem)]
filter[.SingleMJP passes (strassen_jline_btree strassen_jline exactmatch[Name]
extract[JLine])] tail[1] extract[No], [const int value undef])

Similarly to the previous one, the subsequent function computes the first occurrence
of a street name in a network-constrained trajectory after a specified position.

let firstposafterjnet = fun(Trip: mjpoint, Name: string, Pos: int)
ifthenelse(Trip passes strassen_jline_btree strassen_jline exactmatch[Name]

extract[JLine], units(Trip) transformstream addcounter[No, 1]
filter[.No > Pos] projectextend[No; SingleMJP: createmjpoint(.Elem)]
filter[.SingleMJP passes (strassen_jline_btree strassen_jline exactmatch[Name]

extract[JLine])] extract[No], [const int value undef])

As in the previous approach, we define a function that checks whether a certain unit
of a network-constrained trajectory occurs on a specified weekday.

let checkWeekdayjnet = fun(Trip: mjpoint, Pos: int, Day: string)
(weekday_of(inst(initial(getunit(Trip, Pos)))) = Day) and
(weekday_of(inst(final(getunit(Trip, Pos)))) = Day) and
((inst(final(getunit(Trip, Pos)))-inst(initial(getunit(Trip, Pos)))) < (duration (10)))

This function is also very similar to the function matchesTempCondMP from Approach 1.

let matchesTempCondjnet = fun(Trip: mjpoint, BY: int, BZ: int)
ifthenelse(no_components(Trip) = BZ, duration(0 0),

inst(initial(createmjpoint(getunit(Trip, no_components(Trip)))))
- inst(initial(createmjpoint(getunit(Trip, BZ + 1)))))

< ifthenelse(BZ = (BY + 1), duration(0 0),
inst(initial(createmjpoint(getunit(Trip, BZ - 1))))

- inst(initial(createmjpoint(getunit(Trip, BY + 2)))))

The main query first retrieves all tuples where the mjpoint intersects the bounding
box of the street Bundesallee and adds the last unit position for it. If the position is
undefined, the tuple is removed (line 3). Another filter removes the tuples that do not
fulfill the weekday condition. Similarly, we add the first positions of the three other
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streets (behind the position of Bundesallee) and keep only the tuples with at least
one defined value (line 8). Then we aggregate the three values (from which only one
is defined) to one and name the attribute NXpos. Finally, the tuple stream is filtered
according to the temporal condition.

query TripsRtree windowintersectsS[getbboxfromname("Bundesallee")]
sortby[Id] rdup TripsJNet gettuples extend[BApos: lastposjnet(.Pos, "Bundesallee")]
filter[isdefined(.BApos)]
filter[checkWeekdayjnet(.Pos, .BApos, "Wednesday")]
extend[LSpos: firstposafterjnet(.Pos, "Leipziger Str.", .BApos),
HDpos: firstposafterjnet(.Pos, "Hohenzollerndamm", .BApos),
SDpos: firstposafterjnet(.Pos, "Steglitzer Damm", .BApos)]

filter[isdefined(.LSpos) or isdefined(.HDpos) or isdefined(.SDpos)]
projectextend[Tripid, Pos, BApos; NXpos: ifthenelse(isdefined(.LSpos), .LSpos,
ifthenelse(isdefined(.HDpos), .HDpos, .SDpos))]

filter[matchesTempCondjnet(.Pos, .BApos, .NXpos)] count

Runtime for final query: 180.1 seconds.

Approach 3: Linear Scan on Symbolic Trajectories without Pattern Language

This function retrieves the first occurrence of a street name in a symbolic trajectory
(type mlabel) after a specified position—if existing—or an undefined value.

let firstposafter = fun(ST: mlabel, Name: string, Pos: int)
units(ST) transformstream addcounter[No, 1]
filter[tostring(val(initial(.Elem))) = Name]
filter[.No > Pos] extract[No]

The next function verifies whether a certain unit of a symbolic trajectory occurs on a
specified weekday. Its semantics is analogous to the respective functions of the previous
approaches.

let checkWeekday = fun(ST: mlabel, Pos: int, Day: string)
(weekday_of(inst(initial(getunit(ST, Pos)))) = Day) and
(weekday_of(inst(final(getunit(ST, Pos)))) = Day) and
((inst(final(getunit(ST, Pos))) - inst(initial(getunit(ST, Pos)))) < (duration (1 0)))

We also need a function for checking the temporal condition for a symbolic trajectory.
For details, please refer to the corresponding functions defined before.

let matchesTempCond = fun(ST: mlabel, Pos1: int, Pos2: int)
ifthenelse(no_components(ST) = Pos2, duration(0 0),
inst(final(getunit(ST, no_components(ST)))) - inst(initial(getunit(ST, Pos2 + 1))))

< ifthenelse(Pos2 = (Pos1 + 1), duration(0 0),
inst(final(getunit(ST, Pos2 - 1))) - inst(initial(getunit(ST, Pos1 + 1))))

In the first filter step, we keep only the tuples where the symbolic trajectory passes
Bundesallee. Then we extend the tuples by the first position of Bundesallee and filter
them according to the weekday condition. The remainder of the query is similar to the
main query of Approach 2.

query Trips feed filter[.Str passes tolabel("Bundesallee")]
projectextend[Str; BApos: firstposafter(.Str, "Bundesallee", -1)]
filter[checkWeekday(.Str, .BApos, "Wednesday")]
projectextend[Str, BApos;
LSpos: firstposafter(.Str, "Leipziger Str.", .BApos),
HDpos: firstposafter(.Str, "Hohenzollerndamm", .BApos),
SDpos: firstposafter(.Str, "Steglitzer Damm", .BApos)]

filter[isdefined(.LSpos) or isdefined(.HDpos) or isdefined(.SDpos)]
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projectextend[Str, BApos; NXpos: ifthenelse(isdefined(.LSpos), .LSpos,
ifthenelse(isdefined(.HDpos), .HDpos, .SDpos))]

filter[matchesTempCond(.Str, .BApos, .NXpos)] count

Runtime for final query: 10.06 seconds.

Approach 4: Pattern Matching on Symbolic Trajectories

In the pattern language, the alternative (Leipziger Str., Hohenzollerndamm, or
Steglitzer Damm) can be expressed by square brackets and the symbol |. The tem-
poral constraint of passing Bundesallee on a Wednesday is handled inside one atomic
pattern element. The sequence of units between Bundesallee and one of the three other
streets is associated to the variable X, and the remainder of the symbolic trajectory af-
ter passing one of the three streets is named Y . Hence, we can formulate the condition
including these two variables, which is fulfilled if and only if the temporal duration of
the unit sequence belonging to X is greater than the temporal duration of the units
associated with Y .

query Trips feed filter[.Str matches ’* (wednesday "Bundesallee") X *
[(_ "Leipziger Str.") | (\_ "Hohenzollerndamm") | (\_ "Steglitzer Damm")] Y *
// get_duration(X.time) > get_duration(Y.time)’] count

Runtime: 10.96 seconds.

Approach 5: Exploiting a Symbolic Trajectory Index Without Pattern Support

In this approach, we use a trie TripsStrTrie containing all labels from the collection of
symbolic trajectories along with their exact position in the collection (i.e., tuple id and
unit position). Queried with the operator searchWord, the trie yields all occurrences
of the street Bundesallee. We append the corresponding tuples (operator gettuples2)
and check whether Bundesallee was passed on a Wednesday. Then we retrieve all index
results for the three other streets and combine them with the Bundesallee results via
a hashjoin, where the position of Bundesallee must be smaller than the other position
(line 7). Finally, we keep only the required attributes and exclude the tuples that do
not fulfill the temporal condition.

Note that the auxiliary functions checkWeekday and matchesTempCond, defined in
Approach 3, are reused here. Hence, this approach is more cumbersome than it appears.

query TripsStrTrie searchWord["Bundesallee"]
projectextend[Tid, WordPos; TID: .Tid] Trips gettuples2[TID]
filter[checkWeekday(.Str, .WordPos, "Wednesday")]{ba} (
TripsStrTrie searchWord["Leipziger Str."]
TripsStrTrie searchWord["Hohenzollerndamm"] concat
TripsStrTrie searchWord["Steglitzer Damm"] concat) {nx}
hashjoin[Tid_ba, Tid_nx] filter[.WordPos_ba < .WordPos_nx]
projectextend[; BApos: .WordPos_ba, NXpos: .WordPos_nx, Tid: .Tid_ba]
Trips gettuples2[Tid] filter[matchesTempCond(.Str, .BApos + 1, .NXpos + 1)]
count

Runtime: 0.58 seconds.

Approach 6: Index-Supported Pattern Matching on Symbolic Trajectories

The operator indexmatches realizes the index-supported pattern matching approach.
It is invoked with the name of the symbolic trajectory attribute (Str), the name of the
trie containing all labels and their exact positions (TripsStrTrie), and the R-tree for
the time intervals and their exact positions (TripsStrRtree). The applied pattern is
the same as for Approach 4.
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query Trips indexmatches[Str, TripsStrTrie, TripsStrRtree, ’* (wednesday "Bundesallee")
X * [(_ "Leipziger Str.") | (_ "Hohenzollerndamm") | (_ "Steglitzer Damm")] Y *
// get_duration(X.time) > get_duration(Y.time)’] count

Runtime: 0.59 seconds.
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M. A. Sakr and R. H. Güting. 2011. Spatiotemporal pattern queries. GeoInformatica 15, 3 (2011), 497–540.
S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo, F. Porto, and C. Vangenot. 2008. A conceptual

view on trajectories. Data Knowl. Eng. 65, 1 (April 2008), 126–146.
S. Spaccapietra, C. Parent, C. Renso, G. Andrienko, N. Andrienko, V. Bogorny, M. L. Damiani, A. Gkoulalas-

Divanis, J. Macedo, N. Pelekis, Y. Theodoridis, and Z. Yan. 2013. Semantic trajectories modeling and
analysis. Comput. Surveys 45(4) (2013), 42.

L. Speicys, C. S. Jensen, and A. Kligys. 2003. Computational data modeling for network-constrained moving
objects. In ACM SIGSPATIAL GIS. 118–125.

L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu. 2011. Transportation mode detection using mobile phones and
GIS information. In ACM SIGSPATIAL GIS. 54–63.

G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain. 2004. Managing uncertainty in moving objects
databases. ACM Trans. Database Syst. 29, 3 (2004), 463–507.

F. Urbano, F. Cagnacci, C. Calenge, H. Dettki, A. Cameron, and M. Neteler. 2010. Wildlife tracking data
management: A new vision. Philos. Trans. R. Soc. B 365, 1550 (2010), 2177–2185.
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