
Stream Processing
with

StreamSQL, Apache Kafka

Kshitij Kumar 000456998

Quang Duy Tran

INFO-H-415 Advanced Databases

Project Report

December 2017

Contents

1 Introduction 3
1.1 Streaming data . 3
1.2 Stream processing and Batch processing 4
1.3 Lambda Architecture . 5
1.4 Landscape . 6
1.5 Stream Data Model Considerations 7

2 SQLStream 8
2.1 Components . 8
2.2 Pipeline . 8
2.3 Streaming Data considerations within SQLStream 9
2.4 SQLStream objects . 9
2.5 Querying operations . 10
2.6 Building Applications . 10
2.7 SQLStream, Relational Databases 14
2.8 Application Properties . 14

3 Apache Kafka, KSQL 15

4 Application 16
4.1 Clickstream Analysis . 16
4.2 Taxi Trips . 20

5 Some performance comparisons 22

6 Conclusion 24

List of Figures

1 Schematic diagram of a Stream Processing System 3
2 Batch processing . 4
3 Stream processing . 4
4 Simple layout of Lambda Architecture 5
5 A stream processing based architecture 6
6 Medusa architecture . 6
7 SQLStream overview . 8
8 A typical SQLStream pipeline 9
9 Schematic of a SQLStream application 11
10 Adding a data source in StreamLab 11
11 Stream Analysis functions . 12
12 Map and table based visualization in s-Dashboard 13
13 Map based visualization in s-Dashboard, featuring filtered records 13
14 A streaming analysis scenario with KSQL 15
15 Latency measurements . 23

1 Introduction

1.1 Streaming data

Data being generated continuously over time, from a large number of different
data sources at high speed is considered as streaming data. The term is usually
used in the context of big data. The important characteristics associated with
streams, which also motivate the development of a different type of processing
system, are:

• Unboundedness – the most important factor which characterises stream-
ing data; it is continuously generated.

• High velocity – typically, it tends to be generated at a high rate ren-
dering it infeasible to store and work with main memory

• Low latency - usually due to the unboundedness and high velocity,
there spawns a need for fast processing: real time or near real time

The Figure 1 illustrates a basic schematic for a Stream Data Management
System.

Figure 1: Schematic diagram of a Stream Processing System

Streaming data and real time applications based on it are plentiful. Some
stream data sources are:

• Internet of Things, Sensors: Smart Cities, Driverless cars

• Internet, web traffic – clickstream

• Images – Satellite, CCTV

• Finance – Stocks, Transactions

3

• Factory manufacturing processes

• Logs - generated by automated systems

Some of the typical use cases include:

• Fraud detection based on financial transactions

• Investment decision based on stock prices

• Personalisation of an application, website etc based on user preference
in real time

• Real time dashboards and monitoring, eg road traffic monitoring and
identification of traffic rule violations

• Monitoring of a manufacturing process in a factory

1.2 Stream processing and Batch processing

Traditional, bounded data is served well by batch processing systems. Since,
the data is known and finite, the whole data is fetched before performing
any processing (Figure 2) It may take hours or even days to finish the query
and deliver the results. In order to handle streams, with low latency being
an important criterion, there is a need for optimisation of existing processing
systems to handle this scenario.

Figure 2: Batch processing

In contrast, stream processing reads data as it is generated over time and
then processes continuously. The faster and earlier, the data is processed, the
more valuable is the data. Typically, it is analyzed in the memory before writ-
ten to disk, or even not written at all because the data is unpredictable and
infinite.
(Figure 2)

Figure 3: Stream processing

4

The need for stream processing systems have increased in the recent past
mainly because of the availability of multiple sources of streaming data and
the perceived opportunity to utilise this and arrive at faster decision making
by lowering the latency.

1.3 Lambda Architecture

Historically, stream processing has been associated with incorrect results. This
can be attributed to the fact that approximation algorithms were used to
perform the high velocity operations typically demanded by these applications.

In most present day big data architectures, a stream processing system is
used alongwith a batch processing system. The idea is to combine the best
offered by both worlds. Systems can utilise the low latency, albeit at a slight
loss to inaccuracy. The batch system comes in after some time, providing the
correct results. This kind of system is usually realised with the help of Lambda
Architecture. The Figure 4 gives a simple layout for this.

Figure 4: Simple layout of Lambda Architecture

Typically, the system consists of a data source, in this example it is a
kafka cluster serving the messages. A stream processing engine and a batch
processing engine then simultaneously ingest this data and basically perform
the same calculation. In the framework of an Apache system, this typically is
Apache Storm and Apache Hadoop respectively. The results of these are writ-
ten to the application database when available and merged subsequently. The
application can then query this database. This kind of systems are prevalent
with many advantages. But, as is evident, the maintenance is often tricky and
requires the building and provisioning of two independent pipelines and a final
merge.

Lately, the stream processing offerings have been getting better in terms
of providing higher accuracy. It is definitely possible to use, and there are
reportedly many systems, which are composed entirely of stream processing
pipelines. Some proponents even make the case of completely letting go of
batch systems for most use cases. Their argument being that the stream
processing systems are already beginning to match the performance on other
parameters, in addition to lower latency. [2][3]

5

Figure 5: A stream processing based architecture

1.4 Landscape

Around the beginning of this millennium, as the requirements of handling
stream data was being realised, many systems were being developed within
academica. Some examples include Stanford University’s STREAM (Stanford
Stream Data Manager) [4], Aurora[5], Borealis[6], Medusa[7] among others.
There is not much active development on these systems anymore. The Figure
6 shows a schematic of the Medusa system, from their homepage[7].

Figure 6: Medusa architecture

Subsequently, there have been various other independent systems also de-
veloped in the industry which typically build on the ANSI SQL standard to
provide streaming functionality. PipelineDB[8] and StreamSQL[9] are some
products available. StreamSQL is discussed in greater detail in the later sec-
tions of the report.

6

Recently, with the emergence of large amounts of data, many new tools are
being developed in the industrial space. Moreover, many of these have been
open sourced or in some cases, their designs have been made available on the
web. The Apache ecosystem has its fair share of offerings: Apache Storm,
Apache Spark Streaming, Apache Flink, Apache Samza and others. All the
above are distributed real-time processing engines and typically use Apache
Kafka within the pipeline for message communication.

All the above are meant for the same purpose of real time computations,
but the inherent distinctions in design choices make for an interesting variety
in terms of selection for an application. Apache Storm is oriented specifically
for streams and the most popular system in use. Apache Spark is inherently a
batch processing engine and its Streaming extension models streams by using
mini batches. Interestingly, Apache Flink is based with design considerations
for stream processing, but it also provides batch processing capabilities which
are modeled on top of the stream ones. Additionally, around August 2017,
Apache Kafka also launched a developer’s preview of KSQL which is based on
its own StreamsAPI. This also provides the possibility to construct real time
analytical queries directly on Kafka topics.

Cloud based services are also available which remove the need for manag-
ing the immense amount of hardware required for maximizing the performance
obtained from these distributed processing systems. The most prominent ones
are Google Data Cloud, Amazon Kinesis and Microsoft Azure Streaming Ser-
vices.

1.5 Stream Data Model Considerations

The basic considerations in a stream data model are:

1. Windowing: The unboundedness and the velocity of data arriving at
the processing engine makes it infeasible to store everything in active
storage. Hence, a sliding window of the most recently arrived data is
used for computations and sometimes, the summaries are also kept for
some kind of ad-hoc queries.

2. Time: It is a real time system and latency is arguably the most impor-
tant factor. Hence, there is a notion of event time and processing time.
Event time, as the name suggests, corresponds to the actual time of the
occurence of the event under consideration. Whereas, the processing
time is the time of arrival of the event at the processing engine.

7

2 SQLStream

SQLStream is an enterprise software which serves as a real-time platform and
provides SQL-compliant stream analytics for both developers and analysts.

2.1 Components

It has the following components:

• SQLstream s-Server : a fully compliant, distributed, scalable and
optimized SQL query engine for unstructured data streams.

• SQLLineClient : a command line interface for s-Server

• StreamLab : a visual platform for interactively exploring data streams
and building applications in a web based graphical user interface

• s-Dashboard : an HTML5 platform for building push-based, real-time
visualizations on s-Server

• s-Studio: an integrated development environment for stream explo-
ration, application development, and administration for the s-Server plat-
form. It enables dynamic updates to live applications, adding new queries
as needed or changing existing queries or views.

Figure 7: SQLStream overview

2.2 Pipeline

The data pipelines within a SQLstream application is quite straightforward.
There is an input data source, which provides the stream data flowing in at one
end, which is subsequently analyzed based on application specific logic, with
the final computation results as an output at the other end. The analysis is
typically carried out with custom views which act as continuous queries. There
is a SQLStream specific construct, a pump, which essentially encapsulates

8

the selection and insertion of data in the application context. The Figure 8
provides a rough schematic of a typical pipeline.

Figure 8: A typical SQLStream pipeline

2.3 Streaming Data considerations within SQLStream

The pipeline is processed as a continuous flow. A streaming query is a contin-
uous, standing query that executes over streaming data and is implemented as
views. It is similar to traditional relational database views, with the important
distinction of being continuously updated as and when the stream comes in.

Moreover, some queries utilise operations which require finite data available
to them to be able to calculate the result, for example, aggregates and joins.
These are typically handled by the concept of windowing. These can be in two
forms. One based on a fixed number of rows and another based on time, eg
rolling or periodic time. The rolling time considers continuous, joint subsets
of time, eg the last second, the last five seconds and so on. Periodic time
considers disjointed regular intervals of time, eg an hourly report.

Streaming data is time-sensitive data and is represented as sequences of
time-stamped messages, which is called ROWTIME in the context of SQL-
Stream.

2.4 SQLStream objects

The main objects are described below:

• Stream: A stream is the primary building block in the whole system.
It implements a publish-subscribe protocol and can be written and read
by multiple agents.

• Foreign Stream: A stream defined in the context of a schema and
associated with an external system.

• Foreign Table: An object that records the metadata necessary for SQL-
stream sServer to be able to access a table or a similar data structure in
a remote database

• View: A relation that provides a reusable definition of a query and acts
as continuous queries.

9

• Pump: A SQLstream schema object providing a continuous query in
the form of a sequenced INSERT INTO followed by a SELECT FROM
query functionality. It basically selects data from one source, a stream
or table, and inserts it into a sink, another stream or table.

• Objects for communicating with external applications: Foreign
Data Wrappers, Server Objects and User-Defined Routines

2.5 Querying operations

The querying operations are implemented on the existing framework provided
by the ANSI SQL standard. Most of the definitions and semantics still hold
with some additional constructs.

In a streaming context, due to the unboundedness of streams, querying
statements like SELECT essentially run forever. It is a blocking call which
runs until the next row of the stream becomes available or the statement is
explicitly closed.

It is also possible to connect to tables from external databases and perform
combined operations like joins, aggregates etc with multiple streams and tables.

Additionally, operations like aggregates and joins require a finite set of
records and must have all the data to produce the correct results. This is
handled by windowing, as mentioned in a previous section. A specific keyword,
WINDOW, is used to define the window parameters: type and size.

All the basic building blocks, including SQLstream Data Types and Stream-
ing SQL Operators are similar to SQL. The standard SQL operators like CRE-
ATE statements, DROP statements, SELECT statements, INSERT, MERGE,
DELETE, ALTER statements, arithmetic and logical operators are all avail-
able. The operators for transforming and filtering incoming data is updated
and consists of WHERE, JOIN, GROUP BY and WINDOW.

Connecting to external applications is possible through JDBC, which makes
SQLstream s-Server look like a database. External applications can then send
queries to streams and obtain results received from a stream.

2.6 Building Applications

A typical application flow is detailed in Figure 9. In the figure, the primary
development environment is StreamLab, the web based graphical user inter-
face.

10

Figure 9: Schematic of a SQLStream application

The pipeline begins with the creation of a source. The different options
can be selected from the menu, by dragging and dropping it into the sources
frame. The parameters for the data source can be modified here. Figure 10
shows this screen.

Figure 10: Adding a data source in StreamLab

Once the source is selected, the next analysis steps are constructed as
guides, in SQLStream terminology, which are basically views that transform
the data. There are many different pre-built functions, called as commands,
available here. A screenshot of a StreamLab window showing some of the
components and operations that can be performed is shown in Figure 11.

11

Figure 11: Stream Analysis functions

The possible commands are listed below:

• Basic: Rename, split, merge etc. These are also shown in the Figure 11
top row.

• Aggregate a particular column, including COUNT, SUM, and AVER-
AGE.

• Calculate arithmetical calculations on a numerical column

• Categorize a continuous value by applying conditions to the column.

• Running Average creates a new column that is a running average of
another column over a given window of time.

• Time Sort uses a sliding time-based window of incoming rows to sort
by the selected column or by ROWTIME

• Window To perform a windowed aggregation on a selected column.

• GroupRank To group rows by the values in one column (group by) and
then rank the rows within that group according to another column (rank
by) across a window

• Partition Window To partition rows into groups using the columns in
a particular column.

• Table Lookup To enrich available data with external data from databases

Once, the calculations are performed, it is possible to store these to an
external database or other files. SQLStream has an inbuilt component, dash-
board, for visualization of the data. There are many prebuilt visualizations

12

available based on time series graphs. There is also the possibility to plot
geospatial data on maps. An example of this is shown in Figures 12 and 13.

Figure 12: Map and table based visualization in s-Dashboard

Figure 13: Map based visualization in s-Dashboard, featuring filtered records

13

2.7 SQLStream, Relational Databases

The inherent data model of SQLStream is shared with and is fundamentally
a common data model centered on processing relation oriented constructs,
eg rows, queries, and views. The querying constructs are also shared: data
manipulation and definition languages standardized as SQL.

The differences which exist are primarily to account for the unboundedness
of streams. s-Server uses predetermined queries over streaming data, with con-
tinuous processing and continuous querying. On the other hand, a Relational
Database is used for ad-hoc queries over batch data, with querying performed
on this fixed set of data. The queries in streaming scenario are usually scoped
over explicit time windows based on the application requirements.

Moreover, the two can work well together and can be seamlessly integrated.
As an example, s-Server can use static predetermined queries to process data
for a Relational Database and also respond to incoming messages by triggering
dynamic queries on the stored data.

2.8 Application Properties

SQLStream’s philosophy is to implement an end-to-end system within a stream
management system, which communicates to an application for computation
intensive and complex calculations. So, basically, SQL has control and the
programming language is embedded within the application.

14

3 Apache Kafka, KSQL

Apache Kafka is a stream processing platform based on a publisher-subscriber
message queue architecture model. It is designed for distributed deployment
and has a Java based library, Kafka streams, for stream processing. There is
also the option to connect to external systems. Kafka organises messages in
topics, with multiple producers and consumers.

Recently, during the end of August, 2017, KSQL was launched as a devel-
oper preview. KSQL is a streaming SQL engine which internally uses Kafka
streams. But, with KSQL, it is now possible to directly query the data without
writing external applications. There are various stream based operators avail-
able, a subset of which includes aggregations, joins, windowing, sessionization.

Most of the semantics is similar to the ones discussed above for the SQL-
Stream system. From the roadmap, it seems that more and important capa-
bilities are being added to the next version of KSQL.

Figure 14: A streaming analysis scenario with KSQL

15

4 Application

Some application scenarios were considered to get a first experience in using
and understanding the stream processing systems.

4.1 Clickstream Analysis

The proliferation of websites and the need to generate revenue from the online
presence has led to the emergence of clickstream analytics. A clickstream is
fundamentally a stream based record of clicks on a website. This kind of
website activity is logged and gaining insights from this data is lucrative. It is
also possible to collect this data from user browsers.

A clickstream typically contains information about a page request based on
the protocol, eg HTTP GET, HTTP 404 error etc, ip information of the user,
web-agent of the user, time of the event and possibly additional information.
In our analysis, we use the following schema:

clickstream (

_time bigint,

time varchar,

ip varchar,

request varchar,

status int,

userid int,

bytes bigint,

agent varchar)

A brief explanation of the attributes of the stream:

• time and time correspond to the time of the click. One is a numeric
attribute, storing the milliseconds since January 1, 1970 and the other is
storing time in a varchar format which corresponds to datetime

• ip is the user ip address

• request, status are the protocol request and status packet information

• userid is the user id assigned to the users stored in the system. These
are typically available for registered users on the website

• bytes is the size of the packet used for the information communication,
eg if it is a simple HTTP GET Request, then it will just contain the
size of the text containing the packet information as required by the
communication protocol. If a file is being transmitted, the size of the file
is also part of the message.

• agent is the web agent, typically a browser which is being used to access
the website.

16

This data is generated within kafka. A kafka and ksql installation has some
data generator topics already created and that was used to generate the data
for the analysis.

Two other tables, users and status codes are also created, within separate
kafka topics. Their descriptions are as follows:

users (

user_id int,

registered_At long,

username varchar,

first_name varchar,

last_name varchar,

city varchar,

level varchar)

status_codes (

code int,

definition varchar)

The aforementioned three data sources, one streaming and the other two
tables, in the form of kafka topics were added as data sources for the SQL-
Stream s-server. For KSQL, the possible data sources are only kafka topics,
which are provided during the creation of the corresponding stream or table.

The initial setup for s-server looks as follows:

--To access the external kafka topic, a Server object needs to be created

which encodes the connection parameters

CREATE OR REPLACE SERVER "KafkaServer" TYPE ’KAFKA’

FOREIGN DATA WRAPPER ECDA;

--This is the namespace of the application

CREATE OR REPLACE SCHEMA "clickstream";

SET SCHEMA ’"clickstream"’;

--The following creates the stream

CREATE OR REPLACE FOREIGN STREAM "clickstream_source"

("_time" bigint NOT NULL,

"time" varchar NOT NULL,

"ip" varchar NOT NULL,

"request" varchar NOT NULL,

"status" int NOT NULL,

"userid" int NOT NULL,

"bytes" bigint NOT NULL,

"agent" varchar NOT NULL)

SERVER "KafkaServer"

OPTIONS

(topic ’clickstream’,

seed_brokers ’localhost’,

starting_time ’latest’,

17

parser ’JSON’,

character_encoding ’UTF-8’,

skip_header ’false’);

--Similarly, for the other two topics

users (

"user_id" int NOT NULL,

"registered_At" long NOT NULL,

"username" varchar NOT NULL,

"first_name" varchar NOT NULL,

"last_name" varchar NOT NULL,

"city" varchar NOT NULL,

"level" varchar NOT NULL)

SERVER "KafkaServer"

OPTIONS

(topic ’users’,

seed_brokers ’localhost’,

starting_time ’latest’,

parser ’JSON’,

character_encoding ’UTF-8’,

skip_header ’false’);

status_codes (

"code" int not null,

"definition" varchar not null)

SERVER "KafkaServer"

OPTIONS

(topic ’status_codes’,

seed_brokers ’localhost’,

starting_time ’latest’,

parser ’JSON’,

character_encoding ’UTF-8’,

skip_header ’false’);

The initial setup for ksql is below:

CREATE STREAM clickstream (

_time bigint,

time varchar,

ip varchar,

request varchar,

status int,

userid int,

bytes bigint,

agent varchar)

with (

kafka_topic = ’clickstream’,

18

value_format = ’json’);

CREATE TABLE users(

user_id int,

registered_At long,

username varchar,

first_name varchar,

last_name varchar,

city varchar,

level varchar)

with (

key=’user_id’,

kafka_topic = ’users’,

value_format = ’json’);

CREATE TABLE status_codes (

code int,

definition varchar)

with (

key=’code’,

kafka_topic = ’status_codes’,

value_format = ’json’);

Some of the queries which are tried:

• Monitoring user activity: This basically requires the creation of a con-
tinuous query which joins the two data sources, clickstream and users,
subsequently performing a selection for a particular user over the time
span of last few minutes.

--SQLStream s-server

--Note: A WINDOW can be time based(RANGE keyword) or row based(ROWS keyword)

CREATE OR REPLACE STREAM user_clickstream AS

SELECT STREAM userid, u.username, ip, u.city, request, status, bytes

FROM clickstream OVER (RANGE INTERVAL ’3’ SECOND PRECEDING) AS c

LEFT JOIN users u ON c.userid = u.user_id;

CREATE VIEW user_activity

AS SELECT STREAM username, ip, city, COUNT(*) AS count

FROM user_clickstream

GROUP BY username, ip, city HAVING COUNT(*) > 1;

--ksql

CREATE STREAM user_clickstream AS

SELECT userid, u.username, ip, u.city, request, status, bytes

FROM clickstream c LEFT JOIN users u ON c.userid = u.user_id;

CREATE TABLE user_activity

AS SELECT username, ip, city, COUNT(*) AS count

19

FROM user_clickstream

WINDOW TUMBLING (size 180 second)

GROUP BY username, ip, city HAVING COUNT(*) > 1;

• Some aggregation based queries to get a summary of the maximum,
minimum and average number of requests and error over the last time
window, eg 3 minutes.

• Reconstruction of user sessions was implemented. A session is assumed
to be over when there is 5 minutes of inactivity for a particular user.

4.2 Taxi Trips

The dataset was used in Distributed Event-Based Systems (DEBS) 2015 grand
challenge and is based on an open data source consisting of taxi trip informa-
tion in New York City, USA. [11] For our analysis, we used the smaller dataset
corresponding to the first 20 days of the data, with 2 million events and about
375MB extracted data size of the csv file. The full dataset consists of records
for the whole of 2013 and 173 million events.

The schema and description of the attributes of the data set are as follows:

taxi_trip(

--an md5sum of the identifier of the taxi vehicle bound

medallion varchar,

--an md5sum of the identifier for the taxi license

hack_license varchar,

--time when the passenger(s) were picked up

pickup_datetime

--time when the passenger(s) were dropped off

dropoff_datetime

--duration of the trip

trip_time_in_secs

--trip distance in miles

trip_distance

--longitude coordinate of the pickup location

pickup_longitude

--latitude coordinate of the pickup location

pickup_latitude

--longitude coordinate of the drop-off location

dropoff_longitude

--latitude coordinate of the drop-off location

dropoff_latitude

--the payment method: credit card or cash

payment_type

--fare amount in dollars

fare_amount

--surcharge in dollars

surcharge

--tax in dollars

20

mta_tax

--tip in dollars

tip_amount

--bridge and tunnel tolls in dollars

tolls_amount

--total paid amount in dollars

total_amount)

Since, this data is a regular dataset, it was required to be converted to a
form of streaming dataset for analysis. This was done by simulating a log file.
An initially empty log file was created and the sorted csv file was read from
the beginning. A fixed number of lines was copied from the csv file to the log
file. This number basically categorises the event rate of the stream and we
varied this from 50, 100, 250, 500 and 1000.

The main aim of this analysis was to get an experience with the web based
graphical interface StreamLab and the dashboard provided by StreamLab.
Hence, everything was modeled as a graphical data flow.

The source was selected as a log file with a csv parser. Some simple calcula-
tion based queries were performed to obtain an idea of the events in a previous
time frame, eg 30 minutes, 1 hour etc. Specifically, the longest and shortest
trips based on the trip time in secs and trip distance, and also the cheapest
and the most expensive trips were observed.

21

5 Some performance comparisons

SQLStream is an enterprise product and offers a trial license for a period of
two months. The free version of the product has a limited usage and only 1GB
data can be used per day. The pricing is $40k for base annual subscription,
plus $10k per server and $1k per core. There is also a possibility to use it via
Amazon Web Services on pay-as-you-use pricing model.

SQLStream, according to its website, is apparently the only SQL 2008
compliant stream processing engine. It has reported processing data at over
1M events/second per CPU core on benchmarks and at over 1M events/second
per server on real-world applications.

Additionally, Amazon Kinesis Analytics is based in part on certain tech-
nology components licensed from SQLstream s-Server[10]

It provides an end-to-end system for stream data analysis. The presence of
GUI based tools allow fast prototyping and also lends itself to be used by people
not well versed with SQL. Inbuilt dashboards provides nice visualizations for
exploration and data understanding. Also, the setup is quite simple, it has a
couple of packaged installers which take care of all the installation procedures.
Overall, the experience is quite good. One important thing to consider is that
it’s an enterprise software and quite expensive.

On the other hand, most big data systems modeled using Apache ecosystem
components use Apache Kafka already. Hence, the availability of a sql based
real time querying functionality directly on the kafka topics, provides interest-
ing uses. The system is open-source which is an important consideration in
terms of development of the project and easiness of adopting it. The syntax of
ksql is concise and slightly easier to understand and write vis-a-vis for SQL-
Stream s-server. Currently, it is still in developer preview and development is
continuing to achieve more maturity be ready for deployment in production.

Latency is arguably the single most important factor for quantitatively
comparing stream processing systems. Based on benchmarking done on some
distributed system with streaming data, the latency ranges obtained for com-
mon systems are shown in Figure 15[12].

22

Figure 15: Latency measurements

Based on our analysis, the performance of both ksql and streamsql were
comparable. Though extensive benchmarking was not pursued, on a single
compute node with 16GB RAM and intel i7 7th generation processor, the
latency of the aggregation queries based on the taxi trips data was well under
1s, for all event rates ranging from 50-1000 events per second.

23

6 Conclusion

Stream Processing is a broad topic with an immense scope. Within the scope
of this project, however, the aim was to get a first overall view on stream pro-
cessing in general and to test this through an application modeled in a suitable
technology. SQLStream is a complete independent end-to-end package, with
a stream processing engine, a command line interface for engine, a graphical
user interface(both desktop and web-based) and visualization tools, making
it amenable to get a first look without the potential problems of setting up
and learning the different and ever changing landscape of technologies. To
test it with more recent and open source developments, it was combined with
Apache Kafka as the stream producer data source. Also, KSQL came out as
a developer preview during the course of the project, hence, it was also tried
with a simple application scenario. There are some things which unluckily
could not be pursued in the present context. Specially important is the area of
distributed processing, which is one of the cornerstones for the wide adoption
of present day stream processing systems.

24

References

[1] Jure Leskovec, Anand Rajaraman, Jeff Ullman Mining of Massive
Datasets. Cambridge University Press, United Kingdom, 2014.

[2] Tyler Akidau, https://www.oreilly.com/ideas/the-world-beyond-batch-
streaming-101 [Online]

[3] Jay Kreps, https://www.oreilly.com/ideas/questioning-the-lambda-
architecture [Online]

[4] Stanford University STREAM system,
http://infolab.stanford.edu/stream/ [Online]

[5] Aurora system, http://cs.brown.edu/research/aurora/. [Online]

[6] Borealis system, http://cs.brown.edu/research/borealis/public/ [Online]

[7] Medusa system, http://nms.csail.mit.edu/projects/medusa/. [Online]

[8] PipelineDB, https://www.pipelinedb.com, [Online]

[9] SQLStream, http://sqlstream.com/, [Online]

[10] SQLStream and Amazon Kinesis Analytics,
http://sqlstream.com/datasheet/cloud-sqlstreamamazon-kinesis-
analytics/ [Online]

[11] DEBS 2015 Grand Challenge: Dataset and information,
http://debs.org/debs-2015-grand-challenge-taxi-trips/ [Online]

[12] Benchmarking of some Stream Processing Systems https://data-
artisans.com/blog/extending-the-yahoo-streaming-benchmark [Online]

[13] A github repository providing links to various stream processing systems
https://github.com/manuzhang/awesome-streaming [Online]

25

