
INFO-H-415 Project Overview- Security

Database and SQL Server

Kirubel Yaekob Yasmine Daoud

December 2017

1 Introduction

A defense-in-depth strategy, with overlapping layers of security, is the best way
to counter security threats. SQL Server provides a security architecture that
is designed to allow database administrators and developers to create secure
database applications and counter threats. Each version of SQL Server has im-
proved on previous versions of SQL Server with the introduction of new features
and functionality. However, security does not ship in the box. Each application
is unique in its security requirements.

2 The principles of this project

• Server and Database users and roles in SQL Server

• Permission Hierarchy.

• Authorization and Permissions in SQL Server.

• Encryption hierarchy.

• Encryption Keys.

• Transact SQL Functions.

• Transparent Data Encryption in SQL Server (TDE).

• Requirements for TDE.

• Benefits and Disadvantage of TDE.

1



3 Server and Database users and roles in SQL
Server

A SQL Server instance contains a hierarchical collection of entities, starting with
the server. Each server contains multiple databases, and each database contains
a collection of securable objects. Every SQL Server securable has associated
permissions that can be granted to a principal, which is an individual, group
or process granted access to SQL Server. The SQL Server security framework
manages access to securable entities through authentication and authorization.

Some Terminologies

• Securable is a resource that someone might want to access (like the
Financial Folder).

• A Principal is anything that might want to gain access to the securable
(like Tom).

• A Permission is the level of access a principal has to a securable (like
Read).

• Authentication is the process of logging on to SQL Server by which a
principal requests access by submitting credentials that the server evalu-
ates. Authentication establishes the identity of the user or process being
authenticated.

• Authorization is the process of determining which securable resources a
principal can access, and which operations are allowed for those resources.

Security Authentication Modes
SQL Server supports two authentication modes, Windows authentication mode
and mixed mode.

• Windows authentication is the default, and is often referred to as in-
tegrated security because this SQL Server security model is tightly in-
tegrated with Windows. Specific Windows user and group accounts are
trusted to log in to SQL Server. Windows users who have already been
authenticated do not have to present additional credentials. Along with
limiting administration of a user to a single location (within a Windows
domain), Windows authentication provides the following benefits:

– Secure validation of credentials through Windows and encryption of
passwords passed over the network

– Windows password requirements

– Automatic locking out of accounts that repeatedly fail to connect

– Native auditing capabilities of Windows accounts

2



• Mixed mode supports authentication both by Windows and by SQL
Server. User name and password pairs are maintained within SQL Server.

– Mixed Authentication Mode is provided for backward compatibility
with older applications designed to utilize SQL Server-based logins

– Mixed Authentication Mode is also necessary for situations where
users connecting to an instance of SQL Server do not have a Windows
domain account

Logins
Authentication is implemented using logins in SQL Server. Logins are SQL
Server object that provides connection access to an instance of SQL Server
(authentication). Logins can be based on Windows users and groups de-
fined natively in SQL Server

Login Types
SQL Server supports three types of logins:

– A local Windows user account or trusted domain account. SQL
Server relies on Windows to authenticate the Windows user accounts.

– Windows group. Granting access to a Windows group grants access
to all Windows user logins that are members of the group.

– SQL Server login. SQL Server stores both the username and a hash of
the password in the master database, by using internal authentication
methods to verify login attempts.

Roles in SQL Server

All versions of SQL Server use role-based security, which allows you to
assign permissions to a role, or group of users, instead of to individual
users. Fixed server and fixed database roles have a fixed set of permissions
assigned to them.

3



– Fixed Server Roles have a fixed set of permissions and server-wide
scope. They are intended for use in administering SQL Server and
the permissions assigned to them cannot be changed. Logins can
be assigned to fixed server roles without having a user account in a
database.

– Fixed Database Roles have a pre-defined set of permissions that
are designed to allow you to easily manage groups of permissions.
There are several predefined roles in each database that provide sets
of permissions for the database users who belongs to them.

Fixed Server Role Description

Sysadmin
Allowed to perform any action in SQL
Server

Serveradmin
Allowed to configure instance-wide
settings and shut down the instance

Setupadmin
Allowed to manage linked servers
and startup procedures

Securityadmin
Allowed to manage logins and provide
CREATE DATABASE permissions to them,
read error logs, and change passwords

Processadmin
Allowed to manage running processes in
SQL Server

Dbcreator
Allowed to create, modify, and delete
databases

Diskadmin Allowed to manage disk files

Bulkadmin
Allowed to use the BULD INSERT
statement to perform mass imports of data

4



Fixed Database Role Description

db owner
Allowed to perform all of the operations permitted
to the other roles, as well as activities to maintain
and configure the database

db accessadmin
Allowed to manage database users mapped from)
Windows users, Windows Groups, and SQL )
Server Logins )

db datareader
Allowed to see (read access) all data in all of the
user-defined tables in a database

db datawriter
Allowed to insert, update, and delete data from
all user-defined tables

Fixed Database Role Description

db ddladmin
Allowed to create, modify, and remove all database objects,
like tables and views

db securityadmin
Allowed to manage roles and role membership, as well as
to apply permissions to database users and roles

db backupoperator Allowed to back up the database
db denydatereader Not allowed to view data in the database
db-denydatawriter Not allowed to modify data in the database

public

The default role of which every database user is a member.
If a user does not have permission to access an object like
a table, then the permissions of the public role are checked
as last resort

Database Users
Database users are individual accounts stored within each database that con-
trol access to database objects through permissions.Database users are mapped
to Windows users, Windows groups and SQL Server logins to grant access to
the database.

5



DBO and the Guest Database User
Every database in an instance of SQL Server of recent versions can have two
special users:

• Database owner: Special user that has permissions to perform all database
activities

• Guest user: Special account that allows database access to a login with-
out a mapped database user

Example Creating a Login with Password

USE [master]

GO

CREATE LOGIN [BUSH] WITH PASSWORD=N’password1’, DEFAULT_DATABASE=[AdventureWorksDW2012],

CHECK_EXPIRATION=OFF, CHECK_POLICY=OFF

GO

Example Creating a user named ”BUSH” mapped to login ”BUSH” created
above to access database ’AdventureWorksDW2012’

USE [AdventureWorksDW2012]

GO

CREATE USER [BUSH] FOR LOGIN [BUSH]

GO

Example Creating a user named ”OBAMA” to access database ’Adventure-
WorksDW2012’. This Can only be used in a contained database.

USE [AdventureWorksDW2012]

GO

CREATE USER [OBAMA] WITH PASSWORD=N’password1’

GO

6



4 Encryption Hierarchy

SQL Server encrypts data with a hierarchical encryption and key management
infrastructure. Each layer encrypts the layer below it by using a combination
of certificates, asymmetric keys, and symmetric keys. Asymmetric keys and
symmetric keys can be stored outside of SQL Server in an Extensible Key Man-
agement (EKM) module.

The following illustration shows that each layer of the encryption hierarchy
encrypts the layer beneath it, and displays the most common encryption con-
figurations. The access to the start of the hierarchy is usually protected by a
password.

7



5 Encryption Keys

• Asymmetric Keys
An asymmetric key is made up of a private key and the corresponding pub-
lic key. Each key can decrypt data encrypted by the other. Asymmetric
encryption and decryption are relatively resource-intensive, but they pro-
vide a higher level of security than symmetric encryption. An asymmetric
key can be used to encrypt a symmetric key for storage in a database. It
can be DES and AES keys.

• Symmetric Keys

A symmetric key is one key that is used for both encryption and decryp-
tion. Encryption and decryption by using a symmetric key is fast, and
suitable for routine use with sensitive data in the database. it can be RSA.

6 Transact SQL-Functions

Individual items can be encrypted as they are inserted or updated using Transact-
SQL functions. Encrypt data with a passphrase using the TRIPLE DES algo-
rithm with a 128 key bit length.

Here is an example on the database AdventureWork2012. We applied the
function to encrypt the Credit Card Numbers. It could be found in the file
CryptDecryptSQLAventure.sql

8



7 Transparent Data Encryption in SQL Server
(TDE).

Transparent Data Encryption (often abbreviated to TDE) is a technology em-
ployed by Microsoft, IBM and Oracle to encrypt database files. TDE offers
encryption at file level. TDE solves the problem of protecting data at rest, en-
crypting databases both on the hard drive and consequently on backup media.
It does not protect data in transit nor data in use. Enterprises typically employ
TDE to solve compliance issues such as PCI DSS which require the protection
of data at rest.

The TDE requires the following:

• SQL Server 2008/2012/2014 Entreprise Edition.

• Master Database - Master Key.

• Master Database - Certificate.

• User Database - Database Encryption Key.

• Implemented with a simple ALTER DATABASE COMMAND:
ALTER DATABASE [Database Name] SET ENCRYPTION ON GO

8 Benefits and disadvantage of TDE

The benefits of TDE are:

• Fairly simple to implement.

• No changes to the application tier required.

• Is invisible to the user.

9



• Works with high availability features, such as mirroring, AlwaysOn and
log shipping.

• Works with older versions of SQL Server, back to 2008.

The Disadvantages of TDE are :

– Only encrypts data at rest, so data in motion or held within an
application is not encrypted.

– All data in the database is encrypted – not just the sensitive data.

– Requires the more expensive Enterprise Edition (or Developer or Dat-
aCenter Edition) of SQL Server.

– The amount of compression achieved with compressed backups will
be significantly reduced.

– There is a small performance impact.

– FileStream data is not encrypted.

– Some DBA tasks require extra complexity, for instance restoring a
backup onto another server.

– As TempDB is encrypted, there is potentially an impact on non-
encrypted databases on the same server.

– The master database, which contains various metadata, user data
and server level information is not encrypted.

9 Conclusion

For completeness TDE is not the only database encryption technique available
within SQL Server, some of the others are:

-The business logic within individual stored procedures can be encrypted
using the ‘ENCRYPTION’ keyword.

-Individual data items (i.e. column or cell-level encryption) can be encrypted
and decrypted using the ‘ENCRYPTBYPASSPHRASE’ and ‘DECRYPTBY-
PASSPHRASE’ statement along with a pass phrase. ENCRYPTBYKEY/DE-
CRYPTBYKEY and ENCRYPTBYCERT/DECRYPTBYCERT are similar but
use a key or certificate to encrypt the data.

-Data items can also be encrypted and decrypted using .net CLR functions.

Some third party software such as Redgate SQL Backup include backup file
encryption.

10


