
Spatial Databases

Esteban ZIMÁNYI
Department of Computer & Decision Engineering (CoDE)

Université Libre de Bruxelles
ezimanyi@ulb.ac.be

Info-H-415 Advanced Databases
Academic Year 2012-2013

1

Spatial Databases: Topics

y Introduction

_ Georeferences and Coordinate Systems

_ Conceptual Modeling for Spatial Databases

_ Logical Modeling for Spatial Databases

_ SQL/MM

_ Representative Systems

_ Summary

2

Foreword

_ In 1854 in Soho (London) doctor John
Snow was able to identify the water
point at the origin of the cholera epi-
demy by correlating the location of
the water points and the location of
the victims

3

Spatial Databases

_ A database that needs to store and query spatial objects, e.g.

• Point: a house, a monument

• Line: a road segment, a road network

• Polygon: a county, a voting area

_ Types of spatial data

GIS Data CAD Data CAM Data

4

Spatial Database Management Systems
_ A Database Management System that manages data existing in some space

_ 2D or 2.5D
• Integrated circuits: VLSI design
• Geographic space (surface of the Earth): GIS, urban planning

_ 2.5 D: Elevation

_ 3D
• Medicine: Brain models
• Biological research: Molecule structures
• Architecture: CAD
• Ground models: Geology

_ Supporting technology able to manage large collections of geometric objects

_ Major commercial and open-source DBMSs provide spatial support

5

Why Spatial Databases?

_ Queries to databases are posed in high level declarative manner (usually using SQL)

_ SQL is popular in the commercial database world

_ Standard SQL operates on relatively simple data types

_ Additional spatial data types and operations can be defined in spatial database

_ SQL was extended to support spatial data types and operations, e.g., OGC Simple Features for SQL

_ A DBMS is a way of storing information in a manner that

• Enforces consistency

• Facilitates access

• Allows users to relate data from multiple tables together

6

Application Areas

_ Street network-based

• Vehicle routing and scheduling (cars, planes, trains)

• Location analysis, ...

_ Natural resource-based

• Management of areas: agricultural lands, forests, recreation resources, wildlife habitat analysis,
migration routes planning...

• Environmental impact analysis

• Toxic facility siting

• Groundwater modeling, ...

_ Land parcel-based

• Zoning, subdivision plan review

• Environmental impact statements

• Water quality management

• Facility management: electricity, gaz, clean water, used water, network

7

Interaction with End Users

_ Display data (e.g., maps) on the screen

_ Access other data by clicking on it (hypermaps)

_ Address queries

_ Perform operations

8

Example of Queries

_ On a subway map of Brussels, what is the shortest way from here to the Grand Place?
⇒ shortest path algorithm

_ Overlay the land use map with the map of districts in Belgium

_ Display today’s weather forecast in the Brussels Region

_ Given the map of a neighborhood, find the best spot for opening a drugstore (based on a given set of
optimality criteria)⇒ allocation problem

9

Geographic Information Systems

_ A system designed to capture, store, manipulate, analyze, manage, and present geographically-referenced
data as well as non-spatial data

_ Connection between system elements is geography, e.g., location, proximity, spatial distribution

_ Common purpose: decision making for managing use of land, resources, ocean data, transportation,
geomarketing, urban planning, etc.

_ Many commercial and open source systems, but limited temporal support

10

GIS as a Set of Subsystems

_ Data processing

• Data acquisition (from maps, images): input, store

_ Data analysis

• Retrieval, analysis (answers to queries, complex statistical analyses)

_ Information use

• Users: Researchers, planners, managers

• Interaction needed between GIS group and users to plan analytical procedures and data structures

_ Management system

• Organizational role: separate unit in a resource management

• Agency offering spatial database and analysis services

• System manager, system operator, system analysts, digitizer operators

11

Contributing Disciplines and Technologies (1)

_ Convergence of technological fields and traditional disciplines

_ Geography: The study of the Earth

_ Cartography: Display of spatial information

• Computer cartography (digital, automated cartography): methods for digital representation, ma-
nipulation and visualization of cartographic features

_ Remote sensing: Techniques for image acquisition and processing (space images)

_ Photogrammetry: Aerial photos and techniques for accurate measurements

_ Geodesy: The study of the size and shape of the earth

_ Statistics: Statistical techniques for analysis + errors and uncertainty in GIS data

_ Operations Research: Optimizing techniques for decision making

_ Mathematics: (Computational) geometry and graph theory for analysis of spatial data

_ Civil Engineering: Transportation, urban engineering

12

Contributing Disciplines and Technologies (2)

_ Computer Science

• Computer Aided Design (CAD): Software, techniques for data input, display, representation, visu-
alization

• Computer graphics: Hardware, software for handling graphic objects

• Artificial Intelligence (AI): Emulate human intelligence and decision making (computer = “ex-
pert”).

• Database Management Systems (DBMS): Representing, handling large volumes of data (access,
updates)

13

GIS Architectures: Ad Hoc Systems

Application Programs

File Management System

Files

_ Not modular

_ Not reusable

_ Not extensible

_ Not friendly

_ Very efficient

14

GIS Architectures: Loosely Coupled Approach

Application Programs

Relational
DBMS

DB

Geometric
Processing

Files

Standard SQL

_ Structured information and geometry stored at different places

• Relational DBMS for alphanumerical (non spatial) data

• Specific module for spatial data management

_ Modularity (use of a DBMS) BUT:

• Heterogeneous models! Difficult to model, integrate and use

• Partial loss of basic DBMS functionalities e.g., concurrency, optimization, recovery, querying

15

GIS Architectures: Integrated Approach

Application Programs

Spatial
DBMS

DB

Standard SQL
+ ADT

_ “Extended relational” system

_ Modular

_ Extensible (add a new operation, a new type)

_ Reusable

_ Friendly (easy change, easy use)

16

Main Database Issues

_ Data modeling

_ (Spatial) query language

_ Query optimization

_ Spatial access methods define index structure to accelerate the retrieval of objects

_ Versioning

_ Data representation (raster/vector)

_ Graphical user interfaces (GUI)

_ Computational geometry for GIS

17

Spatial Databases: Topics

_ Introduction

y Georeferences and Coordinate Systems

_ Conceptual Modeling for Spatial Databases

_ Logical Modeling for Spatial Databases

_ SQL/MM

_ Representative Systems

_ Summary

18

Projected Coordinates Systems

_ Why focus on projections?

• Going from 3 to 2 dimensions for Earth representation always involves a projection

• Information on the projection is essential for applications analyzing spatial relationships

• Choice of the projection can influence the results

_ The Earth is a complex surface whose shape and dimensions can not be described with mathematical
formulas

_ Two main reference surfaces are used to approximate the shape of the Earth: the ellipsoid and the
Geoid

19

The Geoid

_ Reference model for the physical surface of the Earth

_ It is the equipotential surface of the Earth’s gravity field which best fits the global mean sea level and
extended through the continents

_ Used in geodesy, e.g., for measuring heights represented on maps

_ Not very practical to produce maps

_ Since the mathematical description of the geoid is unknown, it is impossible to identify mathematical
relationships for moving from the Earth to the map

20

Ellipsoid

_ A mathematically-defined surface that approximates the geoid

_ Flattening f = a−b
a : how much the symmetry axis is compressed relative to the equatorial radius

_ For the Earth, f is around 1/300: difference of the major and minor semi-axes of approx. 21 km

_ Ellipsoid used to measure locations, the latitude (φ) and longitude (λ), of points of interest

_ These locations on the ellipsoid are then projected onto a mapping plane

_ Different regions of the world use different reference ellipsoids that minimize the differences between
the geoid and the ellipsoid

_ For Belgium (since 2008) ellipsoid GRS80 (=WGS84) with a = 6,378,137 m. and f = 1/298.257222101

21

Difference between the EGM96 Geoide and the WGS84 Ellipsoid

_ The physical Earth has excursions of +8,000 m (Mount Everest) and -11,000 m (Mariana Trench)

_ The geoid’s total variation goes from -107m to +85 m compared to a perfect mathematical ellipsoid

22

Latitude and Longitude

_ Measures of the angles (in degrees) from the center of the Earth to a point on the Earth’s surface

_ Latitude measure angles in a North-South direction: the Equator is at an angle of 0

_ Longitude measures angles in an East-West direction: the Prime Meridian is at angle of 0

_ Prime Meridian: imaginary line running from the North to the South Pole through Greenwich, England

_ For example, the location of Brussels, Belgium is 50.8411◦ N, 4.3564◦ E

_ Longitude and latitude are not uniform units of measure

_ Only along the Equator the distance represented by one degree of longitude approximates the distance
represented by one degree of latitude

23

Map Projections

_ To produce a map, the curved reference surface of the Earth, approximated by an ellipsoid or a sphere,
is transformed into the flat plane of the map by means of a map projection

_ A point on the reference surface of the Earth with geographic coordinates (φ, λ) is transformed into
Cartesian (or map) coordinates (x, y) representing positions on the map plane

_ Each projection causes deformations

_ Map projections can be categorised in four ways: Class, Angle, Fit and Properties

24

Map Projections: Shape of Projection Surface

_ Shape of the projection surface, commonly either a flat plane, a cylinder or a cone

_ Cones and cylinders are not flat shapes, but they can be rolled flat without introducing additional
distortion

• Cylindrical: coordinates are projected onto a rolled cylinder

• Conical: coordinates are projected onto a rolled cone

• Azimuthal: coordinates are projected directly onto a flat planar surface

_ Azimuthal projections work best for circular areas (e.g., the poles)

_ Cylindrical projections work best for rectangular areas (e.g., world maps)

_ Conical projections work best for triangle shaped areas (e.g., continents)

25

Map Projections: Angle

_ This refers to the alignment of the projection surface, measured as the angle between the main axis of
the earth and the main symmetry axis of the projection surface.

• Normal: the two axes are parallel

• Transverse: the two axes are perpendicular

• Oblique: the two axes are at some other angle

_ Ideally the plane of projection is aligned as closely as possible with the main axis of the area to be
mapped. This helps to minimise distortion and scale error.

26

Map Projections: Fit

_ A measure of how closely the projection surface fits the surface of the Earth

• Tangent: the projection surface touches the surface of the Earth

• Secant: the projection surface slices through the Earth

_ Distortion occurs wherever the projection surface is not touching or intersecting the surface of the
Earth

_ Secant projections usually reduce scale error because the two surfaces intersect in more places and the
overall fit tends to be closer

_ A globe is the only way to represent the entire Earth without any significant scale error

27

Map Projections: Geometric Deformations

_ What is preserved

• Conformal: preserve shapes and angles

• Equal Area (or equivalent): preserve areas in correct relative size (shapes not preserved)

• Equidistant: preserve distance (this is only possible at certain locations or in certain directions)

• True-direction (or Azimuthal): preserves accurate directions (e.g., angles preserved, but length
of lines is not)

_ It is impossible to construct a map that is both equal-area and conformal

_ Conformal map projections are recommended for navigational charts and topographic maps

_ Equal area projections are generally best for thematic mapping

_ Equidistant map projections should be used when measuring distances from a point: air routes, radio
propagation strength, radiation dispersal

28

Conformal Cylindrical Projection: Mercator Projection

29

Cylindrical Equal-Area Projection: Peters Projection

30

Cylindrical Equal-Area Projection: Behrmann Projection

31

Elliptical Equal-Area projection: Hammer Projection

32

True-direction Azimuthal Projection

33

Belgium: Projection Lambert 2008

_ Projection plane: Conical

_ Direction of the projection axis: Normal

_ Nature of the contact: Secant

_ Nature of the deformation: Conformal

Parameters
Ellipsoid Identity GRS80

semi-major axis a 6,378,137 m
flattening f 1/298.257222101

Standard Parallels ϕ1 49◦ 50’ N
ϕ2 51◦ 10’ N

Origine Origin Latitude 50◦ 47’ 52” 134 N
Central meridian 4◦ 21’ 33” 177 E

Origin Coordinates x0 649,328 m
y0 665,262 m

34

Spatial Databases: Topics

_ Introduction

_ Georeferences and Coordinate Systems

y Conceptual Modeling for Spatial Databases

_ Logical Modeling for Spatial Databases

_ SQL/MM

_ Representative Systems

_ Summary

35

Data Modeling Requirements

_ Multiple views of space

• discrete (objects), continuous (fields)

• 2D, 2.5D, 3D

_ Multiple representations

• different scales, different viewpoints

_ Several spatial abstract data types

• point, line, area, set of points, set of lines, set of areas, . . .

_ Explicit spatial relationships

• crossing, adjacency, . . .

36

Interaction Requirements

_ Visual interactions

• map displays

• information visualization

• graphical queries on maps

_ Flexible, context-dependent interactions

_ Multiple user profiles

• highway: constructor, car driver, truck driver, hiker, ecologist

_ Multiple instantiations

• a building may be a school and a church

• a road segment may be also a segment of a hiking trail

37

Practical Requirements

_ Huge data sets

• Collecting new data is expensive

• Reusing highly heterogeneous existing data sets is a must ... but is very difficult!

• Integration requires understanding, hence a conceptual model

_ Integration of DB with different space/time granularity

_ Coexistence with non-spatial, non-temporal data

_ Reengineering of legacy applications

_ Interoperability

38

Why Conceptual Modeling?

_ Focuses on the application

_ Technology independent

• portability, durability

_ User oriented

_ Formal, unambiguous specification

_ Supports visual interfaces

• data definition and manipulation

_ Best vehicle for information exchange/integration

39

The Spatiotemporal Conceptual Manifesto

_ Good expressive power

_ Simple (understandable) data model

• few clean concepts, with standard, well-known semantics

_ No artificial constructs (e.g., space / time objects)

_ Orthogonality of space, time and data structures

_ Similarity of concepts for space and time

_ Clean, visual notations and intuitive icons / symbols

_ Formal definition

_ Associated query language

40

Orthogonality: What is Spatial

41

Same Space, Different Data Structures

River

river_name
reservoirs (1,n)

In
(1,n) (1,n)

Catchment

catchment_no

River

river_name
course
catchments (1,n)
reservoirs (1,n)

River

river_name

In
(1,n)

Catchment

catchment_no

(1,n)
On

(1,1) (1,n)
Reservoir

reservoir_no

42

MADS Spatial Data Types: Type Hierarchy

Simple
Geo

Complex
Geo

Surface

Geo

Line

Point

Oriented
Line

Surface
Bag

LineBag

PointBag

Oriented
LineBag

partition

partition

Simple
Surface

Simple
SurfaceBag

c

s

_ Spatial data types are topologically closed: all geometries include their boundary

_ Geo, SimpleGeo, and ComplexGeo are abstract classes

43

MADS Spatial Data Types (1)

Point

_ Boundary of a point: empty set

Line

simple and open closed and
simple

non-simple and
open

partially closed

_ Boundary of a line: the extreme points, if any

44

MADS Spatial Data Types (2)

Surface

_ Defined by 1 exterior boundary and 0 or more interior boundaries defining its holes

_ Examples of geometries that are not surfaces

several surfaces has a cut line has a spikeseveral surfaces

45

Complex Geometries and Their Boundaries

_ Boundary of a ComplexGeo value is defined (recursively) by the spatial union of

(1) the boundaries of its components that do not intersect with other components

(2) the intersecting boundaries that do not lie in the interior of their union

B(a ∪ b) = B(a) − b ∪ B(b) − a ∪ ((B(a) ∩ b) ∪ (B(b) ∩ a) − I(a ∪ b))

a È b B(a È b)
Point/
Point

Types

Point/
Line

Point/
Surface

Line/
Line

Surface/
Surface

Line/
Surface

46

Topological Predicates

_ Specify how two geometries relate to each other

_ Based on the definition of their boundary, interior, and exterior, denoted by I(x), B(x), and E(x)

_ Dim(x): maximum dimension (-1, 0, 1, or 2) of x, -1 corresponds to the dimension of the empty set

_ Dimensionally extended 9-intersection matrix (DE-9IM) for defining topological predicates

Interior Boundary Exterior
Interior Dim(I(a) ∩ I(b)) Dim(I(a) ∩ B(b)) Dim(I(a) ∩ E(b))

Boundary Dim(B(a) ∩ I(b)) Dim(B(a) ∩ B(b)) Dim(B(a) ∩ E(b))
Exterior Dim(E(a) ∩ I(b)) Dim(E(a) ∩ B(b)) Dim(E(a) ∩ E(b))

_ Dense notation use a string of 9 characters to represent the cells of the matrix

_ Possible characters: T (non-empty intersection), F (empty intersection), 0, 1, 2, * (irrelevant)

_ Example: a and b are disjoint if their intersection is empty

I(a) ∩ I(b) = ∅ ∧ I(a) ∩ B(b) = ∅ ∧ B(a) ∩ I(b) = ∅ ∧ B(a) ∩ B(b) = ∅

corresponds to ‘FF*FF****’

47

Topological Predicates (1)

Meets

_ a meets b⇔ I(a) ∩ I(b) = ∅ ∧ a ∩ b , ∅ ∧ Dim(a ∩ b) = 0

_ Examples of geometries that do not satisfies the meets predicate

48

Topological Predicates (2)

Adjacent

_ a adjacent b⇔ I(a) ∩ I(b) = ∅ ∧ a ∩ b , ∅ ∧ Dim(a ∩ b) = 1

_ The last example does not satisfies the predicate, their intersection is at the interior of both geometries

Touches

_ a touches b⇔ I(a) ∩ I(b) = ∅ ∧ a ∩ b , ∅⇔ a meets b ∨ a adjacent b

49

Topological Predicates (3)

Crosses

_ a crosses b⇔ Dim(I(a) ∩ I(b)) < max(Dim(I(a)),Dim(I(b))) ∧ a ∩ b , a ∧ a ∩ b , b ∧ a ∩ b , ∅

Overlaps

_ a overlaps b⇔ Dim(I(a)) = Dim(I(b)) = Dim(I(a) ∩ I(b)) ∧ a ∩ b , a ∧ a ∩ b , b

50

Topological Predicates (4)

Contains/Within

_ a contains b⇔ I(a) ∩ I(b) , ∅ ∧ a ∩ b = b⇔ b within a

Disjoint/Intersects

_ a disjoint b⇔ a ∩ b = ∅⇔ ¬a intersects b

Equals

_ a equals b⇔ a ∩ b = a ∧ a ∩ b = b⇔ (a − b) ∪ (b − a) = ∅

51

Topological Predicates (5)

Covers

_ a covers b⇔ a ∩ b = b⇔ b − a = ∅

Encloses/Surrounded

_ Definition is quite involved, depends of whether a is a (set of) line(s) or a (set of) surface(s)

52

Spatial Objects

Country

name
population

58

57.5

7.4

9.9

14.8

6.3

0.4

5.1

3.6
57.2

10.5 39

78.5

Portugal
10.5

France
58

Italy
57.5

Switzerland
6.3

Spain
39

Luxembourg
0.4

Austria
7.4

Belgium
9.9

Britain
57.2

Ireland
3.6

Denmark
5.1

Netherlands
14.8

Germany
78.5

Figure 1.3 Theme projection: a theme of countries and population of western
Europe (a) and projection on the attribute population (b).

53

Spatial Attributes

Road

name
responsible
stations (1,n)

Country

name
population
capital
rivers (1,n)

Client

name
address
location

_ Both non-spatial and spatial object types can have spatial attributes

_ Domain of spatial attribute: a spatial type (point, line, surface, . . .)

_ Spatial attributes can be multi-valued

_ A spatial attribute of a spatial object type may induce a topological constraint

• The capital of a country is located within the geometry of its country

_ This is not necessarily the case

• A given country will keep either the full geometry of the rivers flowing through it
or these geometries will be projected to the section flowing through the country

• This depends on application semantics

_ The conceptual schema must explicitly state these topological constraints

54

Spatial Complex Attributes

Country

name
population
capital

name
location

provinces (1,n)
name
location

_ Spatial attributes can be a component of a complex and/or multivalued attribute

_ It is usual to keep both thematic (alphanumeric) and location data for attributes, e.g., capital

_ This will allow to print both the name and the location of capitals/rivers/roads/... in a map

_ However, in real maps the toponyms (names of objects appearing in a map) have also a location

• There are precise cartographic rules for placing them, this is a semi-automatic process

55

Spatial Objects vs. Spatial Attributes

Land
Plot

number
owners (0,n)

Building

buildingNo

Contains
(0,n) (1,n)

Land
Plot

number
owners (0,n)
buildings (0,n)
 buildingNo
 location

_ Representing a concept as a spatial object or as a spatial attribute depends on the application

_ Determined by the relative importance of the concept

_ Has implications in the way of accessing the instances of the concept (e.g. the buildings)

• As spatial objects: the application can access a building one by one

• As spatial attributes: the access to a building must be made through the land plot containing it

56

Generalization: Inheriting Spatiality

G20 Country

G20_group
representative

Country

name
capital

Antenna

GSM Antenna

owner
type

frequency
impedance

_ Spatiality is inherited through generalization

• As any other feature: attributes, methods, relationships, integrity constraints, etc.

_ Based on the well-known susbtitutability principle in OOP

_ For simple inheritance it is not necessary to restate the geometry in the subtype (but see later)

_ As usual, spatiality can be added to a subtype

• Only instances of the subtype will have associated spatiality

57

Generalization: Refining/Redefining Spatiality

Land Plot

Constructible
Land Plot

Refinement

Town

Village City

Refinement

Road
1/10 000

Road
1/20 000

Redefinition

Road
1/10 000

Road
1/250 000

Overloading

_ Arise when a spatiality is restated in a subtype

_ Refinement: restricts the inherited property, value remains the same in the supertype and the subtype

_ In redefinition and overloading an instance of the subtype has both a locally defined spatiality and the
inherited one

_ Redefinition: Keeps substitutability wrt typing, allows dynamic binding

_ Overloading: Relaxes substitutability, inhibiting dynamic binding

58

Generalization: Multiple Inheritance

Public
Building

Public
Facility Building

_ Spatiality is inherited from several supertypes

• Similar situation may arise with any kind of attribute

_ There is ambiguity when referring to the spatiality of the subtype

_ Several policies have been proposed for solving this issue in the OO community

_ Most general policy

• All inherited properties are available in the subtype, user must disambiguate in queries

• PublicFacility.geometry vs Building.geometry for an instance of PublicBuilding

59

Spatial/Non-Spatial Relationships

Observed
(1,n)(1,n)

Avalanche

cause
damages

Surveyor

SSN
name

Depicts
(1,n)(1,n)

Monument

name
constructionDate

GeoLocalized
Photo

number
takenBy

_ Spatiality can also be defined for relationship types

_ Spatiality of relationship types is orthogonal to the fact that linked object types are spatial

_ If a spatial relationship type relates spatial type(s), spatial constraints may restrict the geometries

60

Topological Relationships

Traversed
(1,n)(1,n)

Country

name
capital

River

name
length

_ Specified on a relationship type that links at least two spatial types

_ Constrain the spatiality of the instances of the related types

_ Many topological constraints can be defined using the 9IM

• 5 between complex points

• 8 between simple regions

• 18 between simple regions with holes

• 33 between complex regions

• 43 between a complex line and a complex region

• . . .

_ Conceptual model depicts only the most general ones

Topological
Relationship

Icon

TopoDisjoint

TopoOverlap

TopoWithin

TopoGeneric

TopoTouch

TopoCross

TopoEqual

61

Spatial Aggregation

Composes
(1,1)(1,n)

isComposedOf isComponentOfCountry

name
capital

State

name
population

Composes
(1,1)(1,n)

isComposedOf isComponentOfMobilePhone
Network

name
capital

Antena

number
location

_ Traditional aggregation relationship can link spatial types

_ Usually, aggregation has exclusive semantics (stated by cardinalities in the component role)

_ Usually, the spatiality of the aggregation is partitioned into the spatiality of the components

_ It is not the case for the second example, where the spatiality of Antena corresponds to its coverage

• The same location can be covered by several antennas

• Spatiality of the aggregation is the spatial union of the spatiality of the antennas

62

Space- and Time-Varying Attributes

Country

name
capital
elevation

Country

name
capital
elevation (1,n)
 value
 location

f()

Country

name
elevation f()
population f()
temperature f(,)

_ Also referred to as continuous fields

_ Allow to represent phenonema that change in space and/or in time

• elevation: to each point in space is associated a real number

• population: to each point in time is associated an integer number

• temperature: to each point in space is associated a real number, this value evolves over time

_ At the conceptual level, can be represented as continuous function

• Operators for manipulating fields can be defined at this level

_ At the logical level can be implemented in several ways

• Raster: Discretize the space into regular cells, assign a value to each cell

• TIN: Keep values at particular locations, interpolation used for calculating value at any point

63

Conceptual Schema: Example

State

Composes

Country

(1,1)

(1,n)

County

state_code
state_name

county_code
county_name
population

country_code
country_name

Composes

(1,1)

(1,n)

isComposedOf

isComponentOf

isComposedOf

isComponentOf

Section

Composes

Highway

(1,n)

(1,n)

City

section_code
section_name
number_lanes

city_name
population

highway_code
highway_name
highway_type

Starts at

(1,1)

isComposedOf

isComponentOf

Ends at

(1,1)

(1,n)(1,n)

Land use

region_name
land_use_type

64

Spatial Databases: Topics

_ Introduction

_ Georeferences and Coordinate Systems

_ Conceptual Modeling for Spatial Databases

y Logical Modeling for Spatial Databases

_ SQL/MM

_ Representative Systems

_ Summary

65

Representation Models

_ Representation of infinite point sets of the Euclidean space in a computer

_ Two alternative representations

_ Object-based models (Vector)

• Describes the spatial extent of relevant objects with a set of points

• Uses points, lines, and surfaces for describing spatiality

• Choice of geometric types is arbitrary, varies across systems

_ Field-based models (Raster)

• Each point in space is associated with one/several attribute values, defined as continuous functions

• Examples: altitude, temperature, precipitation, polution, etc.

66

Belgium Map: Vector

67

Belgium Map: Raster

68

Belgium Map: Satellite

69

Organizing Spatial Data: Layers

70

Raster Model: Tesselation

_ Decomposition of the plane into polygonal units

_ May be regular or irregular, depending on whether the polygonal units are of equal size

2.2 Representation Modes 35

2.2 REPRESENTATION M ODES

So far, spatial objects have been represented at a rather abstract level,
using primitives such as points or edges. We now study the practical
implementation of geometric information. To state it briefly, the dif-
ficulty to overcome is the representation of infinite point sets of the
Euclidean space in a computer.

There exist different representation modes to solve the problem, ei-
ther by approximating the continuous space by a discrete one (tessella-
tion mode) or by constructing appropriate data structures (vector mode
and half-plane representation). For instance, in a tessellation mode a
city is represented as a set of cells that cover the city’s interior, whereas
in the vector mode it will be represented as a list of points describing the
boundary of a polygon.

2.2.1 Tessellation

A cellular decomposition of the plane (usually, a grid) serves as a ba-
sis for representing the geometry. The partitioning of the embedding
space into disjoint cells defines a discrete model, sometimes called spatial
resolution model , tiling, or meshes in the field of computer graphics.

The approach can be further divided into fixed (or regular) and vari-
able (or irregular) tessellation modes. A fixed representation model uses
a regular grid or raster, which is a collection of polygonal units of equal
size. A variable spatial resolution model handles units of decomposition
of various sizes. The size of the units may also change according to the
level of resolution. Figure 2.3 depicts two cases of regular tessellation,

(b)(a)

Figure 2.3 Regular tessellations: grid squares (a) and hexagonal cells (b).
Regular

36 C 2 Representation of Spatial Objects

(a) (b)

Figure 2.4 Irregular tessellations: cadastral zones (a) and Thiessen poly-
gons (b).

one with square cells and one with hexagonal cells. Figure 2.4 shows
two examples of irregular tessellations. The first (Figure 2.4a) consid-
ers a cadastral partitioning of the plane into various zones, whereas the
second (Figure 2.4b) shows a partitioning into Thiessen polygons.3

In a raster representation, the rectangular 2D space is partitioned
into a finite number of elementary cells. Usually the space is decom-
posed according to a regular 2D grid of N × M rectangular cells,
whose sides are parallel to the space coordinate axes. The cells are called
pixels. A pixel has an address in the plane, which usually is a pair (x , y)
where x ≤ N is the column of the cell in the grid, and y ≤ M is
the row.

-

In practice, a regular tessellation may be encountered in applications
that process image data coming from remote sensing (satellite images),
such as weather or pollution forecast. Then field-based data is still rep-
resented as a function from space to a range such as temperature or
elevation. However, the function domain is no longer the infinite set of
points but a finite set of pixels. In other words, space is no longer seen
as a continuous field, but as a discrete one, which permits an explicit
representation of data.

An irregular tessellation is used, for instance, in zoning (a typical GIS
function) in social, demographic, or economic data. Other applications
include surface modeling using triangles or administrative and political
units.

3. Given a set of points P , partitioning into Thiessen polygons associates with each
p ∈ P a polygon that is the set of points whose closest point in P is p. The resulting
partitioning is also called a Voronoi diagram.

Irregular

_ Regular tesselation used for remote sensing data (e.g., satellite images)

_ Irregular tesselation used for zoning in social, demographic or economic data

_ A spatial object is represented by the smallest subset of pixels that contains it
2.2 Representation Modes 37

5

12 13 14

17 18 19

26 27 28 29 30 31

35 36 37 38

20 21 22

Figure 2.5 Discrete representation of polygon P .

-

A spatial object in 2D space is represented by the smallest (finite) sub-
set of pixels that contains it. A point is described as a single pixel. Its
location is described as the pixel address; that is, a pair of integer coor-
dinates. A polyline, polygon, or region is represented by a finite number
of pixels. In Figure 2.5, the following list of pixels is a representation of
polygon P .

< 5, 12, 13, 14, 17, 18, 19, 20, 21, 22, 26, 27, 28,
29, 30, 31, 35, 36, 37, 38 >

For the sake of simplicity, instead of using the (x, y) coordinate nota-
tion we referenced cells by an integer identifier.

The tessellation mode makes it possible to approximate a spatial ob-
ject by a finite number of cells. The larger the grid resolution (i.e., the
smaller the pixel size), the better the approximation but the higher the
number of cells for representing an object.4 A faithful object represen-
tation has as a consequence that objects occupy much memory space.
In addition, operations on objects are then more time consuming. This
is a clear drawback to this approach. Nevertheless, information may
sometimes be compressed to lead to a more compact form.

To conclude this section, the tessellation mode is of prime impor-
tance because of the exponentially growing volume of data coming
from satellite (raster) sources and because of the increasing use of it in
specific applications, such as environmental fields (pollution, weather,

4. An A4 formatted image, with 12 pts/mm, occupies 9 million pixels.

2.2 Representation Modes 39

Second, there is no apparent distinction between a polyline structure
and a polygon structure. It is up to the software that manipulates ge-
ometric data to interpret properly the structure, and to check that the
representation is valid; that is, to verify that the polyline is closed for
the polygon.

This remark holds for other possible constraints on the polygon type,
such as convexity. Neither can we guarantee that a polygon is simple, in
that the foregoing data structure does not prevent two nonconsecutive
edges to intersect. The structure is unfortunately not powerful enough
to ensure the correctness of the representation (i.e., the satisfiability of
such constraints).

The same situation holds for regions. Again, the structure is rel-
atively permissive. A polygon can be contained in another, and two
polygons can be adjacent, overlapping, or disconnected.

Figure 2.6 shows the representation of polygon P in vector mode.
It is described by an ordered list of pairs of coordinates, such as the
following:

< [4, 4], [6, 1], [3, 0], [0, 2], [2, 2] >
Figure 2.7 shows examples of polylines using this vector represen-

tation. For the sake of simplicity, we use a slightly different notation,
referred to as “vertex notation” in the following. We index vertices with
integers instead of giving their coordinates, as previously. We can see
the following in Figure 2.7.

(0,2)

(4,4)

(6,1)

(2,2)

(3,0)

x

y

Figure 2.6 Vector representation of polygon P .

71

Digital Elevation Models (DEMs)

_ Provide a digital (finite) representation of an abstract modeling of space

_ DEMs are useful to represent natural phenomemon that is a continuous function of the 2D space

• temperature, presure, moisture, or slope

_ Based on a finite collection of sample values, values at other points are obtained by interpolation

_ Triangulated Irregular Networks (TINs) are based on a triangular partition of the 2D space
2.2 Representation Modes 43

x

y

z

x

y

z

x

y

z

(a)

(b)

(c)

Figure 2.9 Progression of a triangulated irregular network (TIN): point
sample (a), triangulation (b), and TIN (c).

2.2 Representation Modes 43

x

y

z

x

y

z

x

y

z

(a)

(b)

(c)

Figure 2.9 Progression of a triangulated irregular network (TIN): point
sample (a), triangulation (b), and TIN (c).

2.2 Representation Modes 43

x

y

z

x

y

z

x

y

z

(a)

(b)

(c)

Figure 2.9 Progression of a triangulated irregular network (TIN): point
sample (a), triangulation (b), and TIN (c).

_ No assumption is made on the distribution and location of the vertices of the triangles

_ Elevation value is recorded at each vertex

_ Value at any other point P inferred by linear interpolation of the 3 vertices of the triangle containing P

72

Representing the Geometry of a Collection of Objects

3.3 Spatial Abstract Data Types 77

o1 o2 o3 o1 o2 o3

Nodes

Topological Spaghetti

Geographic data model

Spatial data model

Figure 3.4 Type support with topological or spaghetti structures.

that the operation implementation depends on the representation and
that the first choice provides a better support to topological operations.
Asking, for instance, whether o2 is adjacent to o3 is easily answered,
whereas it requires a complex, costly, and less robust computation with
spaghetti structures.

Figure 3.5 depicts a (non-exhaustive) set of possible choices for geomet-
ric types. There is a trade-off between the modeling power captured by
a definition and the constraints imposed on the chosen representation.

(a) (b) (c)

(d) (e) (f)

Figure 3.5 Candidates for geometric types: points (a), polyline (b), complex
polyline (c), polygon (d), polygon set (e), and mixed (f).

Spaghetti

3.3 Spatial Abstract Data Types 77

o1 o2 o3 o1 o2 o3

Nodes

Topological Spaghetti

Geographic data model

Spatial data model

Figure 3.4 Type support with topological or spaghetti structures.

that the operation implementation depends on the representation and
that the first choice provides a better support to topological operations.
Asking, for instance, whether o2 is adjacent to o3 is easily answered,
whereas it requires a complex, costly, and less robust computation with
spaghetti structures.

Figure 3.5 depicts a (non-exhaustive) set of possible choices for geomet-
ric types. There is a trade-off between the modeling power captured by
a definition and the constraints imposed on the chosen representation.

(a) (b) (c)

(d) (e) (f)

Figure 3.5 Candidates for geometric types: points (a), polyline (b), complex
polyline (c), polygon (d), polygon set (e), and mixed (f).

Topological

a1

a2

a4

a3

Node

n1

NodeArc

Network

_ Three comonly used representations: Spaghetti, Network, Topological

_ Mainly differ in the expression of topological relationships among the component objects

73

Spaghetti Model

_ Geometry of any object described independently of other objects

_ No topology is stored in the model, all topological relationships must be computed on demand

_ Implies representation redundancy

• E.g., boundary of adjacent regions represented twice

_ Enables heterogeneous representations mixing points, polylines and regions without restrictions

• E.g., polylines may intersect without the intersection points stored explicitly in the database

_ Advantages

• Simplicity

• Provides the end user with easy input of new objects into the collection

_ Drawbacks

• Lack of explicity information about topological relationships among spatial objects

• No sharing of information⇒ redundancy, problem with large data sets, inconsistency

74

Network Model

_ Destined for network (graph)-based applications

• transportation services, utility management (electricity, telephone, . . .)

_ Topological relationships among points and polylines are stored

_ Nodes: Distinguished point that connects a list of arcs

_ Arcs: Polyline that starts at a node and ends at a node

_ Nodes allow efficent line connectivity tests and network computations (e.g., shortest paths)

_ Two types of points: regular points and nodes

_ Depending on the implementation, the network is planar or nonplanar

_ Planar network: each edge intersection is recorded as a node, even if does not correspond to a real-
world entity

_ Nonplanar network: edges may cross withoug producing an intersection

• Examples include ground transportation with tunnels and passes

75

Topological Model

_ Similar to the network model, except that the network is plannar

_ Induces a planar subdivision into adjacent polygons, some of which may not correspond to actual
geographic objects

_ Node: represented by a point and the (possibly empty) list of arcs starting/ending at it

• Isolated point: identifies location of point features such as towers, point of interest, . . .

_ Arc: features its ending points, list of vertices and two polygons having the arc as common boundary

_ Polygon: represented by a list of arcs, each arc being shared with a neighbor polygon

_ Region: represented by one or more adjacent polygons

_ No redundacy: each point/line is stored only once

_ Advantages: Efficient computation of topological queries, update consistency

_ Drawbacks: Some database objects have no semantics in real-world, complexity of the structure may
slow down some operations

76

Spatial Databases: Topics

_ Introduction

_ Georeferences and Coordinate Systems

_ Conceptual Modeling for Spatial Databases

_ Logical Modeling for Spatial Databases

y SQL/MM

_ Representative Systems

_ Summary

77

SQL/MM Spatial: Geometry Type Hierarchy

ST_Curve ST_Geom
Collection

ST_Compound
Curve

ST_Geometry

ST_LineString ST_Circular
String

ST_Multi
Curve

ST_Multi
Surface

ST_Multi
Point

ST_Multi
Polygon

ST_Multi
LineString

ST_SurfaceST_Point

ST_Curve
Polygon

ST_Polygon

ST_Triangle

ST_Polyhedral
Surface

ST_TIN

_ ST_Geometry, ST_Curve, and ST_Surface are not instantiable types

78

ST Geometry

_ Represent 0D, 1D, and 2D geometries that exist in 2D (R2), 3D (R3) or 4D coordinate space (R4)

_ Geometries in R2 have points with (x, y) coordinate values

_ Geometries in R3 have points with either (x, y, z) or (x, y,m) coordinate values

_ Geometries in R4 have points with (x, y, z,m) coordinate values

_ The z coordinate of a point typically represent altitude

_ The m coordinate of a point representing arbitrary measurement: key to supporting linear networking
applications such as street routing, transportation, pipeline, . . .

_ Geometry values are topologically closed (they include their boundary)

_ All locations in a geometry are in the same spatial reference system (SRS)

_ Geometric calculations are done in the SRS of the first geometry in the parameter list of a routine

_ If a routine returns a geometry or measurement (e.g., length or area), the value is in the SRS of the
first geometry in the parameter list

79

Methods on ST Geometrya: Metadata (1)

_ ST_Dimension: returns the dimension of a geometry

_ ST_CoordDim: returns the coordinate dimension of a geometry

_ ST_GeometryType: returns the type of the geometry as a CHARACTER VARYING value

_ ST_SRID: observes and mutates the spatial reference system identifier of a geometry

_ ST_Transform: returns the geometry in the specified spatial reference system

_ ST_IsEmpty: tests if a geometry corresponds to the empty set

a3D versions of some of these methods exists

80

Methods on ST Geometry: Metadata (2)

_ ST_IsSimple: tests if a geometry has no anomalous geometric points

simple not
simple simple not

simple
simple simple not

simple

MultilineStringLineString

_ ST_IsValid: tests if a geometry is well formed

invalidinvalidinvalidvalidvalid

Polygons

_ ST_Is3D: tests whether a geometry has z coordinates

_ ST_IsMeasured: tests whether a geometry has m coordinate values

81

Methods on ST Geometry: Spatial Analysis (1)

_ ST_Boundary: returns the boundary of a geometry

_ ST_Envelope: returns the bounding rectangle of a geometry

_ ST_ConvexHull: returns the convex hull of a geometry

p

q

p

q

_ ST_Buffer: returns the geometry that represents all points whose distance from any point of a geom-
etry is less than or equal to a specified distance

82

Methods on ST Geometry: Spatial Analysis (2)

_ ST_Union: returns the geometry that represents the point set union of two geometries

_ ST_Intersection: returns the geometry that represents the point set intersection of two geometries

_ ST_Difference: returns the geometry that represents the point set difference of two geometries

_ ST_SymDifference: returns the geometry that represents the point set symmetric difference of two
geometries

Union Intersection Difference Symmetric
Difference

Geometries

_ ST_Distance: returns the distance between two geometries

83

Methods and Functions on ST Geometry: Input/Output

_ ST_WKTToSQL: returns the geometry for the specified well-known text representation

_ ST_AsText: returns the well-known text representation for the specified geometry

_ ST_WKBToSQL: returns the geometry for the specified well-known binary representation

_ ST_AsBinary: returns the well-known binary representation for the specified geometry

_ ST_GMLToSQL: returns the geometry for the specified GML representation

_ ST_AsGML: returns the GML representation for the specified geometry

_ ST_GeomFromText: returns a geometry, which is transformed from a CHARACTER LARGE OBJECT
value that represents its well-known text representation

_ ST_GeomFromWKB: returns a geometry, which is transformed from a BINARY LARGE OBJECT value
that represents its well-known binary representation

_ ST_GeomFromGML: returns a geometry, which is transformed from a CHARACTER LARGE OBJECT
value that represents its GML representation

84

Boundary, Interior, Exterior

_ Boundary of a geometry: set of geometries of the next lower dimension

• ST_Point or ST_MultiPoint value: empty set

• ST_Curve: start and end ST_Point values if nonclosed, empty set if closed

• ST_MultiCurve: ST_Point values that are in the boundaries of an odd number of its element
ST_Curve values

• ST_Polygon value: its set of linear rings

• ST_MultiPolygon value: set of linear rings of its ST_Polygon values

• Arbitrary collection of geometries whose interiors are disjoint: geometries drawn from the bound-
aries of the element geometries by application of the mod 2 union rule

• The domain of geometries considered consists of those values that are topologically closed

_ Interior of a geometry: points that are left when the boundary points are removed

_ Exterior of a geometry: points not in the interior or boundary

85

Spatial Relationships

_ ST_Equals: tests if a geometry is spatially equal to another geometry

_ ST_Disjoint: tests if a geometry is spatially disjoint from another geometry

_ ST_Intersects: tests if a geometry spatially intersects another geometry

_ ST_Touches: tests if a geometry spatially touches another geometry

_ ST_Crosses: tests if a geometry spatially crosses another geometry

_ ST_Within: tests if a geometry is spatially within another geometry

_ ST_Contains: tests if a geometry spatially contains another geometry

_ ST_Overlaps: tests if a geometry spatially overlaps another geometry

_ ST_Relate: tests if a geometry is spatially related to another geometry by testing for intersections
between their interior, boundary and exterior as specified by the intersection matrix

• a.ST_Disjoint(b)⇔ (I(a) ∩ I(b) = ∅) ∧ (I(a) ∩ B(b) = ∅) ∧
(B(a) ∩ I(b) = ∅) ∧ (B(a) ∩ B(b) = ∅)⇔ a.ST_Relate(b,’FF*FF****’)

86

Conceptual Schema: Example

State

Composes

Country

(1,1)

(1,n)

County

state_code
state_name

county_code
county_name
population

country_code
country_name

Composes

(1,1)

(1,n)

isComposedOf

isComponentOf

isComposedOf

isComponentOf

Section

Composes

Highway

(1,n)

(1,n)

City

section_code
section_name
number_lanes

city_name
population

highway_code
highway_name
highway_type

Starts at

(1,1)

isComposedOf

isComponentOf

Ends at

(1,1)

(1,n)(1,n)

Land use

region_name
land_use_type

87

Reference Schemas (1)
Create Table Country
(country_code integer,
country_name varchar (30),
geometry ST_MultiPolygon,
Primary Key (country_code))

Create Table State
(state_code integer,
state_name varchar (30),
country_code integer,
geometry ST_MultiPolygon,
Primary Key (state_code),
Foreign Key (country_code) References Country)

Create Table County
(county_code integer
county_name varchar (30),
state_code integer,
population integer,
geometry ST_MultiPolygon,
Primary Key (county_code),
Foreign Key (state_code) References State)

88

Reference Schemas (2)

/* Table Highway is NOT spatial */
Create Table Highway
(highway_code integer,
highway_name varchar (4),
highway_type varchar (2),
Primary Key (highway_code))

Create Table HighwaySection
(section_code integer,
section_number integer,
highway_code integer,
Primary Key (section_code,highway_code),
Foreign Key (section_code) References Section,
Foreign Key (highway_code) References Highway)

89

Reference Schemas (3)
Create Table Section
(section_code integer,
section_name varchar (4),
number_lanes integer,
city_start varchar (30),
city_end varchar (30),
geometry ST_Line,
Primary Key (section_code),
Foreign Key (city_start) References City,
Foreign Key (city_end) References City)

Create Table City
(city_name varchar (30),
population integer,
geometry ST_MultiPolygon,
Primary Key (city_name))

Create Table LandUse
(region_name varchar (30),
land_use_type varchar (30),
geometry ST_Polygon,
Primary Key (region_name))

90

Reference Queries: Alphanumerical Criteria (1)

_ Number of inhabitants in the county of San Francisco

select population

from County

where county_name = ’San Francisco’

_ List of the counties of the State of California

select county_name

from County, State

from State.state_code = County.state_code

and state_name = ’California’

_ Number of inhabitants in the US

select sum (c2.population)

from Country c1, State s, County c2

where c1.country_name = ’USA’

and c1.country_code = s.country_code

and s.state_code = c2.state_code

91

Reference Queries: Alphanumerical Criteria (2)

_ Number of lanes in the first section of Interstate 99

select s.number_lanes

from Highway h1, HighwaySection h2, Section s

where h1.highway_code = h2.highway_code

and h2.section_code = s.section_code

and h1.highway_name = ’I99’

and h2.section_number = 1

_ Name of all sections that constitute Interstate 99

select s.section_name

from Highway h1, HighwaySection h2, Section s

where h1.highway_name = ’I99’

and h1.highway_code = h2.highway_code

and h2.section_code = s.section_code

92

Reference Queries: Spatial Criteria (1)

_ Counties adjacent to the county of San Francisco in the same state

select c1.county_name

from County c1, County c2

where c2.county_name = ’San Francisco’

and c1.state_code = c2.state_code

and ST_Touches(c1.geometry, c2.geometry)

_ Display of the State of California (supposing that the State table is no spatial)

select ST_Union(c.geometry)

from County c, State s

where s.state_code = c.state_code

and s.state_name = ’California’

93

Reference Queries: Spatial Criteria (2)

_ Counties larger than the largest county in California

select c1.county_name

from County c1

where ST_Area(c1.geometry) >

(select max (ST_Area(c.geometry))

from County c, State s

where s.state_code = c.state_code

and s.state_name = ’California’)

_ Length of Interstate 99

select sum (ST_Length(s.geometry))

from Highway h1, HighwaySection h2, Section s

where h1.highway_name = ’I99’

and h1.highway_code = h2.highway_code

and h2.section_code = s.section_code

94

Reference Queries: Spatial Criteria (3)
_ All highways going through the State of California

select distinct h1.highway_name

from State s1, Highway h1, HighwaySection h2, Section s2

where s1.state_name = ’California’

and h1.highway_code = h2.highway_code

and h2.section_code = s2.section_code

and ST_Overlaps(s2.geometry, s1.geometry)

_ Display of all residential areas in the county of San Jose
select ST_Intersection(l.geometry, c.geometry)

from County c, LandUse l

where c.county_name = ’San Jose’

and l.land_use_type = ’residential area’

and ST_Overlaps(l.geometry, c.geometry)

_ Overlay the map of administrative units and land use
select county_name, land_use_type, ST_Intersection(c.geometry, l.geometry)

from County c, LandUse l

where ST_Overlaps(c.geometry, l.geometry)

95

Reference Queries: Interactive Queries (1)

_ Description of the county pointed to on the screen

select county_name, population

from County

where ST_Contains(geometry, @point)

_ Counties that intersect a given rectangle on the screen

select county_name

from County

where ST_Overlaps(geometry, @rectangle)

_ Part of counties that are within a given rectangle on the screen (clipping)

select ST_Intersection(geometry, @rectangle)

from County

where ST_Overlaps(geometry, @rectangle)

96

Reference Queries: Interactive Queries (2)

_ Description of the highway section pointed to on the screen

select section_name, number_lanes

from Section

where ST_Contains(geometry, @point)

_ Description of the highway(s) of which a section is pointed to on the screen

select h1.highway_name, h1.highway_type

from Highway h1, HighwaySection h2, Section s

where h1.highway_code = h2.highway_code

and h2.section_code = s.section_code

and ST_Contains(s.geometry, @point)

97

SQL/MM: Conclusion

_ SQL/MM provides a standard way to declare and manipulate geometries

_ The last version includes 3D and 4D types

_ Several spatial data type organized in a hierarchy with associated methods

_ These methods can be combined in SQL queries and programs with standard ones

_ We only convered a small part of the standard

• For additional information refer to the document

_ However, systems deviate, sometimes considerably from the standard

98

Spatial Databases: Topics

_ Introduction

_ Georeferences and Coordinate Systems

_ Conceptual Modeling for Spatial Databases

_ Logical Modeling for Spatial Databases

_ SQL/MM

_ Representative Systems

y Oracle

_ Summary

99

Oracle Locator

_ Included in all editions of the database

_ All functions required for standard GIS tools

_ All geometric objects

• Points, lines, polygons

• 2D, 3D, 4D

_ Indexing: quadtrees and rtrees

_ Geometric queries

_ Proximity search

_ Distance calculation

_ Multiple projections

_ Conversion of projections

100

Oracle Spatial

_ Advanced functions: Option of Oracle Database Enterprise Edition

_ = Locator + ...

• Geometric transformations

• Spatial aggregations

• Dynamic segmentation

• Measures

• Network modeling

• Topology

• Raster

• Geocoder

• Spatial Data Mining

• 3D Types (LIDAR, TINS)

• Web Services (WFS, CSW, OpenLS)

101

Oracle Network Model

_ A data model for representing networks in the
database

_ Maintains connectivity

_ Attributes at the link and node levels

_ Used for network management

• Transportation, logistics, utilities, location-
based services, . . .

_ Navigation engine for route calculation

102

Oracle Topological Model

_ Persistent storage of the topology

• Nodes, arcs, faces

• Topological relations

• Allows advanced consistency checks

_ Data model

• Defining objects (features) through topologi-
cal primitives

• New type SDO_TOPO_GEOMETRY

• Use traditional operators (SDO_RELATE ...)

_ Co-existence with traditional spatial data

• Possibility of combining SDO_GEOMETRY and
SDO_TOPO_GEOMETRY

103

Oracle Geo Raster

_ New data type SDO_GEORASTER

• Satellite images, remote sensing data

• Multi-band, multi-layer

• Metadata in XML

• Geo-referencing information

_ Functionality

• Open, general purpose raster data model

• Storage and indexing of raster data

• Querying and analyzing raster data

• Delivering GeoRaster to external consumers:
Publish as JPEG, GIFF images

104

Oracle Geocoding

_ Generates latitude/longitude (points) from address

_ International addressing standardization

_ Formatted and unformatted addresses

_ Tolerance parameters support fuzzy matching

_ Record-level and batch processes

_ Data available from Navteq, TeleAtlas

105

Oracle MapViewer

_ Supplied with all versions of Oracle Application
Server

_ XML interfaces, Java and Javascript (Ajax)

_ Tool for map definition

_ Maps described in the database

• Symbology, visibility, etc.

_ Thematic maps

_ Formats: PNG, GIF, JPEG, SVG

_ OGC WMS compatibility

• Both server and client

106

Oracle: Geometry Type

_ Creation of spatial tables

CREATE TABLE Cells (

Cell_id NUMBER,

Cell_name VARCHAR2(32),

Cell_type NUMBER,

Location SDO_GEOMETRY,

Covered_area SDO_GEOMETRY);

_ Use the SDO_GEOMETRY type

_ No limit to the number of geometrical columns per table

_ The column can contain any type of geometry

107

Oracle: Geometrical Primitives

Point Line string Arc line string Compound line string Self-crossing
line string

Polygon Polygon
with hole

Compound polygon Optimized polygons Self-crossing
polygon

not valid

108

Geometrical Primitives: Points

_ Points (X1, Y1)

_ Represent des point objects: buildings, clients, agencies, ...

_ 2, 3, or 4 dimensions

109

Geometrical Primitives: Lines

_ Lines (X1, Y1, ... Xn, Yn)

_ Represent linear objects such as roads, cables, rivers, etc.

_ Formed of straight lines or arcs (or their combination)

_ A closed line does not delineate surface

_ Self-crossing lines allowed

110

Geometrical Primitives: Polygones

_ Polygons (X1, Y1, ... Xn, Yn)

_ Represent surface objects: fields, regions, postal codes, etc.

_ The contour must be closed (last point = first point)

_ The interior can contain one or more holes or voids

_ The boundary cannot intersect

_ Boundary formed by straight lines or arcs (or their combination)

_ Also specific forms: rectangle, circle

111

Oracle: Structuring of Spatial Data

112

Oracle: Element

_ Basic component of geometric objects

_ Element type:

• point

• line

• polygon

_ Formed of an ordered sequence of points

A single geometry composed of 6 elements

113

Oracle: Geometry

_ Represent a spatial object

_ Composed of an ordered list of elements

_ May be homogeneous ou heterogeneous

114

Oracle: Layer

_ Represent a geometrical column in a table

_ In general, contain objects of the same nature,
i.e., having the same attributes

• Client layer (points)

• Street layer (lines)

• State layer (polygons)

115

SDO GEOMETRY Type
_ Structure of the SDO_GEOMETRY object

SDO_GTYPE NUMBER

SDO_SRID NUMBER

SDO_POINT SDO_POINT_TYPE

SDO_ELEM_INFO SDO_ELEM_INFO_ARRAY

SDO_ORDINATES SDO_ORDINATE_ARRAY

_ Example of use
CREATE TABLE states (

state VARCHAR2(30),

totpop NUMBER(9),

geom SDO_GEOMETRY);

116

SDO GTYPE

_ Define the nature of the geometric shape contained in the object

117

SDO SRID

_ SRID = Spatial Reference system ID

_ Specifies the coordinate system of the object

_ List of possible values is found in the table MDSYS.CS_SRS

• More than 1,000 different systems

_ A common value: 8307

• “Longitude / Latitude WGS84”

• Used by the GPS system

• Navteq and TeleAtlas data is WGS84

_ All geometries of a layer must have the same SRID

_ Layers may have different SRIDs

_ Automatic conversion for spatial queries

118

SDO POINT

_ Object type SDO_POINT_TYPE

x NUMBER

y NUMBER

z NUMBER

_ Example of use

INSERT INTO TELEPHONE_POLES (col-1, ..., col-n, geom)

VALUES (attribute-1, ..., attribute-n,

SDO_GEOMETRY (

2001, 8307,

SDO_POINT_TYPE (-75.2,43.7,null),

null, null)

);

119

SDO ORDINATES

_ Object type SDO_ORDINATE_ARRAY

VARRAY (1048576) OF NUMBER

_ Store the coordinates of lines et polygons

_ For example, in 2D two entries per point

120

SDO ELEM INFO

_ Object type SDO_ELEM_INFO_ARRAY

VARRAY (1048576) OF NUMBER

_ Specifies the nature of the elements

_ Describes the various components of a complex object

_ Three entries per element

• Ordinate offset: Position of the first number for this element in the array SDO_ORDINATES

• Element type: Type of the element

• Interpretation: Straight line, arc, etc.

121

SDO ELEM INFO: Example

122

Line Examples

123

Polygon Examples (1)

124

Polygon Examples (2)

125

Multi-Point and Multi-Line Examples

126

Multi-Polygon and Polygon with Hole Examples

127

Constructing a Line

INSERT INTO LINES (col-1, ..., col-n, geom) VALUES (

attribute_1, ..., attribute_n,

SDO_GEOMETRY (

2002, 8307, null,

SDO_ELEM_INFO_ARRAY (1,2,1),

SDO_ORDINATE_ARRAY (

10,10, 20,25, 30,10, 40,10))

);

128

Metadata

_ Defines the boundaries of a layer

• Minimum and maximum coordinates for each dimension

_ Sets the tolerance of a layer

• Maximum distance between two points they are considered distinct

_ Defines the coordinate system for a layer

INSERT INTO USER_SDO_GEOM_METADATA

(TABLE_NAME, COLUMN_NAME, DIMINFO, SRID) VALUES (

’ROADS’,

’GEOMETRY’,

SDO_DIM_ARRAY (

SDO_DIM_ELEMENT(’Long’, -180, 180, 0.5),

SDO_DIM_ELEMENT(’Lat’, -90, 90, 0.5)),

8307);

129

Constructing Geometries
_ Standard constructor

INSERT INTO TELEPHONE_POLES (col-1, ..., col-n, geom)

VALUES (attribute-1, ..., attribute-n,

SDO_GEOMETRY (

2001, 8307,

SDO_POINT_TYPE (-75.2,43.7,null),

null, null)

);

_ Well-known Text (WKT) constructor
INSERT INTO TELEPHONE_POLES (col-1, ..., col-n, geom)

VALUES (attribute-1, ..., attribute-n,

SDO_GEOMETRY (’POINT (-75.2 43.7)’,8307)

);

_ Well-known Binary (WKB) constructor
INSERT INTO TELEPHONE_POLES (col-1, ..., col-n, geom)

VALUES (attribute-1, ..., attribute-n,

SDO_GEOMETRY (:my_blob,8307)

);

130

Geometry Extraction: WKT Format

SELECT c.geom.get_wkt()

FROM us_counties c

WHERE county = ’Denver’;

POLYGON (

(-105.052597 39.791199, -105.064606 39.789928, ...

... -105.024757 39.790947,-105.052597 39.791199),

(-104.933578 39.698139, -104.936104 39.698299, ...

... -104.9338 39.696701, -104.933578 39.698139))

_ Do not forget to use an alias!

_ Returns the geometry in a CLOB

131

Geometry Extraction: WKB Format

SELECT county, c.geom.get_wkb()

INTO :my_blob

FROM us_counties c

WHERE state_abrv = ’NH’;

CREATE TABLE us_counties_wkb AS

SELECT county, state_abrv, c.geom.get_wkb() wkb_geom

FROM us_counties c;

_ Do not forget to use an alias!

_ Returns the geometry in a BLOB

132

Geometry Extraction: GML Format

SELECT city, sdo_util.to_gmlgeometry(location)

FROM us_cities

WHERE state_abrv = ’CO’;

<gml:Point srsName="SDO:8307

xmlns:gml="http://www.opengis.net/gml">

<gml:coordinates decimal="." cs="," ts=" ">

-104.872655,39.768035

</gml:coordinates>

</gml:Point>

133

Generation of XML documents: XMLForest (1)

SELECT xmlelement(

"City",

xmlattributes(

’http://www.opengis.net/gml’ as "xmlns:gml"),

xmlforest(

city as "Name",

pop90 as "Population",

xmltype(sdo_util.to_gmlgeometry(location))

as "gml:geometryProperty")

) AS theXMLElements

FROM us_cities

WHERE state_abrv = (’CO’);

134

Generation of XML documents: XMLForest (2)

<City xmlns:gml="http://www.opengis.net/gml">

<Name>Denver</Name>

<Population>467610</Population>

<gml:geometryProperty><gml:Point srsName="SDO:8307"

xmlns:gml="http://www.opengis.net/gml">

<gml:coordinates decimal="." cs="," ts=" ">

-104.872655,39.768035 </gml:coordinates>

</gml:Point></gml:geometryProperty>

</City>

...

<City xmlns:gml="http://www.opengis.net/gml">

<Name>Lakewood</Name>

<Population>126481</Population>

<gml:geometryProperty><gml:Point srsName="SDO:8307"

xmlns:gml="http://www.opengis.net/gml">

<gml:coordinates decimal="." cs="," ts=" ">

-105.113556,39.6952 </gml:coordinates>

</gml:Point></gml:geometryProperty>

</City>

135

Manipulation of Geometries in Java

_ Java API provided in the kit SDOAPI.JAR

_ Can be distributed with your applications

• As the JDBC driver

_ Class JGeometry

_ load() and store() methods

_ Many utility functions

• Read and write GML

• Read and write shape files

136

Reading Geometries

// Construct SQL query

String sqlQuery = "SELECT GEOM FROM US_COUNTIES"

// Execute query

Statement stmt = dbConnection.createStatement();

OracleResultSet rs = (OracleResultSet)stmt.executeQuery(sqlQuery);

// Fetch results

while (rs.next())

{

// Extract JDBC object from record into structure

STRUCT dbObject = (STRUCT) rs.getObject(1);

// Import from structure into Geometry object

JGeometry geom = JGeometry.load(dbObject);

}

137

Extracting Information from Geometries (1)

int gType = geom.getType();

int gSRID = geom.getSRID();

int gDimensions = geom.getDimensions();

long gNumPoints = geom.getNumPoints();

long gSize = geom.getSize();

boolean isPoint = geom.isPoint();

boolean isCircle = geom.isCircle();

boolean hasCircularArcs = geom.hasCircularArcs();

boolean isGeodeticMBR = geom.isGeodeticMBR();

boolean isLRSGeometry = geom.isLRSGeometry();

boolean isMultiPoint = geom.isMultiPoint();

boolean isRectangle = geom.isRectangle();

// NON EXHAUSTIVE LIST !

138

Extracting Information from Geometries (2)

// Point

double gPoint[] = geom.getPoint();

// Element info array

int gElemInfo[] = geom.getElemInfo();

// Ordinates array

double gOrdinates[] = geom.getOrdinatesArray();

// First and last point

double[] gFirstPoint = geom.getFirstPoint();

double[] gLastPoint = geom.getLastPoint();

// MBR

double[] gMBR = geom.getMBR();

// Java Shape

Shape gShape = geom.createShape();

139

Constructing Geometries (1)

// Point

JGeometry geom = new JGeometry(10,5, 8307);

// Point (3D)

JGeometry geom = new JGeometry(10,5,3, 8307);

// Rectangle

JGeometry geom = new JGeometry(10,135, 20,140, 8307);

// Any geometry (compound linestring)

JGeometry geom = new JGeometry(

2002,8307,

new int[] {1,4,3, 1,2,1, 3,2,2, 7,2,1},

new double[] {10,45, 20,45, 23,48, 20,51, 10,51});

140

Constructing Geometries (2)

// Point

JGeometry geom = JGeometry.createPoint(

new double[] {10,5}, 2, 8307);

// Linestring

JGeometry geom = JGeometry.createLinearLineString(

new double[] {10,25, 20,30, 25,25, 30,30}, 2, 8307);

// Simple polygon

JGeometry geom = JGeometry.createLinearPolygon(

new double[] {10,105, 15,105, 20,110, 10,110, 10,105}, 2, 8307);

// Polygon with voids

JGeometry geom = JGeometry.createLinearPolygon(

new double[][] {{50,105, 55,105, 60,110, 50,110, 50,105},

{52,106, 54,106, 54,108, 52,108, 52,106}}, 2, 8307);

141

Constructing Geometries (3)

// Multi-point

JGeometry geom = JGeometry.createMultiPoint(

new double[][] {{50,5}, {55,7}, {60,5}}, 2, 8307);

// Multi-linestring

JGeometry geom = JGeometry.createLinearMultiLineString(

new double[][] {{50,15, 55,15}, {60,15, 65,15}}, 2, 8307);

// Circle (using 3 points on the circumference)

geom = JGeometry.createCircle(15,145, 10,150, 20,150, 8307);

// Circle (using a center point and radius)

geom = JGeometry.createCircle(10,150, 5, 8307);

142

Writing Geometries

// Construct the SQL statement

String SqlStatement = "INSERT INTO SHAPES (ID, GEOM) VALUES (?,?)";

// Prepare the SQL statement

PreparedStatement stmt = dbConnection.prepareStatement(SqlStatement);

// Convert object into java STRUCT

STRUCT s = JGeometry.store (geom, dbConnection);

// Insert row in the database table

stmt.setInt (1, i);

stmt.setObject (2,s);

stmt.execute();

143

Spatial Indexes

_ R-tree indexing

• Tree rectangles (MBR)

• Indexing in 2 or 3 dimensions

_ Quad-tree indexing

• Use of a regular grid

• No longer documented from 10g

• Do not use, unless exceptions ...

_ A spatial index must exist before we can ask spa-
tial queries on a table!

144

R-Tree Index

_ Based on the Minimum Bounding Rectange (MBR) of objects

145

Creation and Deletion of an R-tree Index

_ Index creation

create index CUSTOMERS_SIDX

on CUSTOMERS (LOCATION)

indextype is MDSYS.SPATIAL_INDEX;

_ CREATE INDEX statement may have additional parameters

• E.g., to specify the number of dimensions and where to store the index information

_ Identifying the SDO_INDEX_TABLE that stores the spatial index on the customers table

SELECT SDO_INDEX_TABLE FROM USER_SDO_INDEX_INFO

WHERE TABLE_NAME = ’CUSTOMERS’ AND COLUMN_NAME=’LOCATION’;

SDO_INDEX_TABLE

MDRT_D81F$

_ Index deletion

DROP INDEX <index_name>;

146

How to Find Information about Spatial Indexes

_ USER_INDEXES

• INDEX_TYPE = ’DOMAIN’ and ITYP_NAME = ’SPATIAL_INDEX’

_ USER_SDO_INDEX_INFO

• Column SDO_INDEX_TABLE identifies the physical table containing the index proprement: table
whose name is of the form MDRT_xxxx$

_ USER_SDO_INDEX_METADATA

• As above, but with more details: number of nodes, node size, height of the index tree, etc.

147

Query Execution Model

148

Optimized Query Execution Model

149

Writing Spatial Queries

_ Contain a spatial predicate (WHERE clause)

• Find the plots along a river

• Find clients within 5 km of a warehouse

• Find the nearest branch of a client

_ Expressed through specific SQL operators

• SDO_RELATE, SDO_INSIDE, SDO_TOUCH

• SDO_WITHIN_DISTANCE

• SDO_NN

_ The spatial index MUST exist, otherwise

ORA-13226: interface not supported without a spatial index

ORA-06512: at "MDSYS.MD", line 1723

ORA-06512: at "MDSYS.MDERR", line 8

ORA-06512: at "MDSYS.SDO_3GL", line 387

150

Topological Predicates

_ Select objects by their topological relationship with another object

• SDO_INSIDE

• SDO_CONTAINS

• SDO_COVERS

• SDO_COVEREDBY

• SDO_OVERLAPS

• SDO_TOUCH

• SDO_EQUAL

• SDO_ANYINTERACT

_ Example

WHERE SDO_INSIDE (<geometry-1>, <geometry-2>) = ’TRUE’

151

Generic Topological Operator

_ SDO_RELATE generic operator with a specific mask

WHERE SDO_RELATE (<geometry-1>, <geometry-2>, ’MASK=xxxx’) = ’TRUE’

_ Mask may be ’INSIDE’, ’CONTAINS’, ’TOUCH’, etc.

_ Or a combination: ’INSIDE+COVEREDBY’

152

Topological Operators

153

Example Queries

_ Which parks are entirely contained in the state of Wyoming?

SELECT p.name

FROM us_parks p, us_states s

WHERE s.state = ’Wyoming’

AND SDO_INSIDE (p.geom, s.geom) = ’TRUE’;

_ Equivalent to

AND SDO_RELATE(p.geom,s.geom,’MASK=INSIDE’) = ’TRUE’;

_ Which states contain all or part of Yellowstone Park?

SELECT s.state

FROM us_states s, us_parks p

WHERE SDO_ANYINTERACT (s.geom, p.geom) = ’TRUE’

AND p.name = ’Yellowstone NP’;

154

Example Queries

_ In which competing jurisdictions is my client?

SELECT s.id, s.name

FROM customers c, competitors_sales_regions s

WHERE c.id = 5514 AND SDO_CONTAINS (s.geom, c.location) = ’TRUE’;

_ Find all counties around Passaic County (NJ)

SELECT c1.county, c1.state_abrv

FROM us_counties c1, us_counties c2

WHERE c2.state = ’New Jersey’ AND c2.county = ’Passaic’

AND SDO_TOUCH (c1.geom, c2.geom) = ’TRUE’;

155

Queries with a Constant Window
_ Find all customers of type “Platinum” in a rectangular area

SELECT name, category

FROM customers

WHERE SDO_INSIDE (

location,

sdo_geometry (2003, 8307, null,

sdo_elem_info_array (1,1003,3),

sdo_ordinate_array (

-122.413, 37.785,-122.403, 37.792))

)=’TRUE’

AND customer_grade = ’PLATINUM’;

_ In which competitors sales territories is located a geographical point?
SELECT id, name

FROM competitors_sales_regions

WHERE SDO_CONTAINS (

geom,

SDO_GEOMETRY(2001, 8307,

SDO_POINT_TYPE(-122.41762, 37.7675089, NULL),

NULL, NULL)

) = ’TRUE’;

156

Queries Based on Distance

_ Select objects according to distance from another object

_ Operator SDO_WITHIN_DISTANCE

SDO_WITHIN_DISTANCE(

<geometry-1>, <geometry-2>,

’DISTANCE=distance UNIT=unit’) = ’TRUE

_ Distance can be expressed in any unit of measure

_ If no unit is specified, the distance is expressed in the unit of the coordinate system (if projected)

_ For longitude/latitude data, these are meters

157

Examples of Research on Distance (1)

_ Which agencies are less than 1km from this client?

SELECT b.id, b.phone_number

FROM customers c, branches b

WHERE c.id = 8314

AND SDO_WITHIN_DISTANCE(

b.location, c.location,

’distance=1 unit=km’)

= ’TRUE’;

158

Examples of Research on Distance (2)

_ How many customers in each category are located within 1/4 mile of my office number 77?

SELECT customer_grade, COUNT(*)

FROM branches b, customers c

WHERE b.id=77

AND SDO_WITHIN_DISTANCE (

c.location, b.location,

’DISTANCE=0.25 UNIT=MILE’)=’TRUE’

GROUP BY customer_grade;

159

Research Based on Proximity

_ Selects the N closest objects of another object

_ SDO_NN operator with the number of objects to be returned

WHERE SDO_NN (

<geometry-1>, <geometry-2>,

’SDO_NUM_RES=n’) = ’TRUE

_ ROWNUM can be used to limit results

WHERE SDO_NN (

<geometry-1>, <geometry-2>) = ’TRUE

AND ROWNUM <=n

_ To use when additional filtering

_ SDO_NN_DISTANCE() used to categorize answers by distance

160

Example of Proximity Search

_ What is the nearest office to this client?

SELECT b.id, b.phone_number

FROM customers c,

branches b

WHERE c.id = 8314

AND SDO_NN(

b.location, c.location,

’sdo_num_res=1’)

= ’TRUE’;

161

Example of Proximity Search

_ What are my five customers closest to this competitor?

SELECT c.id, c.name, c.customer_grade

FROM competitors co, customers c

WHERE co.id=1

AND SDO_NN (

c.location, co.location,

’SDO_NUM_RES=5’)=’TRUE’ ;

809 LINCOLN SUITES GOLD

1044 MUSEUM OF THE THIRD DIMENSION SILVER

1526 INTERNATIONAL FINANCE SILVER

1538 MCKENNA AND CUNEO SILVER

8792 DESTINATION HOTEL & RESORTS GOLD

_ This only works if no other selection criterion is present!

162

Classifying Results by Distance

_ What are my five customers closest to this competitor?

SELECT c.id, c.name, c.customer_grade,

SDO_NN_DISTANCE(1) distance

FROM competitors co, customers c

WHERE co.id=1

AND SDO_NN (

c.location, co.location,

’SDO_NUM_RES=5’, 1)=’TRUE’

ORDER BY distance;

1538 MCKENNA AND CUNEO SILVER 88

809 LINCOLN SUITES GOLD 95

1044 MUSEUM OF THE THIRD DIMENSION SILVER 139

8792 DESTINATION HOTEL & RESORTS GOLD 145

1526 INTERNATIONAL FINANCE SILVER 215

163

Additional Selection Criteria: First Attempt

_ What are my five ’GOLD’ clients closest to this competitor?

SELECT c.id, c.name, c.customer_grade

FROM competitors co, customers c

WHERE co.id=1

AND SDO_NN (

c.location, co.location,

’SDO_NUM_RES=5’)=’TRUE’

AND c.customer_grade = ’GOLD’;

809 LINCOLN SUITES GOLD

8792 DESTINATION HOTEL & RESORTS GOLD

_ Results may be incorrect!

_ The 5 closest customers are read, and then those of type ’GOLD’ are selected

164

Additional Selection Criteria: Correct Query

_ What are my five ’GOLD’ clients closest to this competitor?

SELECT c.id, c.name, c.customer_grade

FROM competitors co, customers c

WHERE co.id=1

AND SDO_NN (

c.location, co.location)=’TRUE’

AND c.customer_grade = ’GOLD’

AND ROWNUM <= 5;

809 LINCOLN SUITES GOLD

8792 DESTINATION HOTEL & RESORTS GOLD

810 HOTEL LOMBARDY GOLD

7821 RENAISSANCE MAYFLOWER HOTEL GOLD

6326 HOTEL LOMBARDY GOLD

165

Spatial Joins: SDO JOIN()

_ To find correlations between two tables

• Based on topology or distance

_ Compares all objects in a table with all those of another table

_ Requires an R-Tree index on each table

_ Technically implemented as a function that returns a table

166

SDO JOIN Function

SDO_JOIN(table_name-1, column_name-1,

table_name-2, column_name-2

[,’parameters’] [, preserve_join_order])

RETURN SDO_ROWIDSET;

SQL> DESC sdo_rowidset;

SDO_ROWIDSET TABLE OF MDSYS.SDO_ROWIDPAIR

Name Null? Type

-------------- -------- -----------

ROWID1 VARCHAR2(24)

ROWID2 VARCHAR2(24)

167

SDO JOIN Function Example: Topological Predicate

_ Associate to each GOLD customer the sales territory in which it is located

SELECT s.id, c.id, c.name

FROM customers c,

sales_regions s,

TABLE(SDO_JOIN(

’customers’, ’location’,

’sales_regions’, ’geom’,

’mask=inside’)) j

WHERE j.rowid1 = c.rowid

AND j.rowid2 = s.rowid

AND c.customer_grade = ’GOLD’

ORDER BY s.id, c.id;;

168

SDO JOIN Function Example: Distance Predicate

_ Find all gold customers who are less than 500 meters from one of our branches in San Francisco

SELECT DISTINCT c.id, c.name, b.id

FROM customers c,

branches b,

TABLE(SDO_JOIN(

’CUSTOMERS’, ’LOCATION’,

’BRANCHES’, ’LOCATION’,

’DISTANCE=500 UNIT=METER’)) j

WHERE j.rowid1 = c.rowid

AND j.rowid2 = b.rowid

AND c.customer_grade = ’GOLD’

AND b.city = ’SAN FRANCISCO’;

169

Spatial Functions

Unary Operations Binary Operations
Numerical Result SDO_AREA

SDO_LENGTH

SDO_DISTANCE

Results in new object SDO_CENTROID

SDO_CONVEXHULL

SDO_POINTONSURFACE

SDO_BUFFER

SDO_DIFFERENCE

SDO_INTERSECTION

SDO_UNION

SDO_XOR

_ Objects must be in the same coordinate system!

170

Calculations: Length, Area and Distance

_ SDO_AREA(g): Calculates the area of a polygon

_ SDO_LENGTH(g): Calculates the length of a line (or the perimeter of a polygon)

_ SDO_DISTANCE(g1,g2): Calculates the distance between two objects

_ The unit of measure of the result can be specified

171

Calculations: Examples

_ What is the total area of Yellowstone National Park?

SELECT sdo_geom.sdo_area(geom,0.005,’unit=sq_km’)

FROM us_parks

WHERE name = ’Yellowstone NP’;

_ What is the length of the Mississippi river?

SELECT sdo_geom.sdo_length(geom,0.005,’unit=km’)

FROM us_rivers

WHERE name = ’Mississippi’;

_ What is the distance between Los Angeles and San Francisco?

SELECT sdo_geom.sdo_distance(a.location, b.location, 0.005, ’unit=mile’)

FROM us_cities a, us_cities b

WHERE a.city = ’Los Angeles’

AND b.city = ’San Francisco’;

172

Generating Objects

_ SDO_BUFFER(g,size): Generates a buffer size chosen

• The dimension (size) can be negative for an internal buffer

_ SDO_CENTROID(g): Calculates the center of gravity of a polygon

• May be outside the polygon!

_ SDO_CONVEXHULL(g): Generates the convex hull of the object (line or polygon)

_ SDO_MBR(g): Generates the bulk of the rectangle object (line or polygon)

173

Combining Objects

Union Intersection Difference XOR

_ SDO_UNION(g1,g2): Produces an object that represents the geometric union of the two given objects

_ SDO_INTERSECTION(g1,g2): Produces an object that represents the geometric intersection of the
two given objects

_ SDO_DIFFERENCE(g1,g2): Produces an object that represents the geometric difference of the two
given objects

_ SDO_XOR(g1,g2): Produces an object that represents the symmetric difference of the two given ob-
jects

• Equivalent to the union minus the intersection

174

Combining Objects: Example

_ What is the area occupied by the Yellowstone Park in the state it occupies?

SELECT s.state, sdo_geom.sdo_area (

sdo_geom.sdo_intersection (s.geom, p.geom, 0.5),

0.5, ’unit=sq_km’) area

FROM us_states s, us_parks p

WHERE SDO_ANYINTERACT (s.geom, p.geom) = ’TRUE’

AND p.name = ’Yellowstone NP’;

STATE AREA

-------------------------- ----------

Wyoming 8100.75346

Montana 640.295989

Idaho 154.659879;

175

Spatial Aggregation

_ Aggregate functions (like SUM, COUNT, AVG ...)

_ Operate on the set of objects

_ SDO_AGGR_MBR: Returns the rectangle of space around a set of objects

_ SDO_AGGR_UNION: Computes the union of a set of geometric objects

_ SDO_AGGR_CENTROID: Calculates the centroid of a set of objects

_ SDO_AGGR_CONVEXHULL: Calculates the convex hull around a set of objects

176

Aggregation Examples

_ Find the focal point of all our customers in Daly City

SELECT SDO_AGGR_CENTROID(SDOAGGRTYPE(location,0.5)) center

FROM customers

WHERE city = ’DALY CITY’;

_ Calculate the number of customers in each zip code, and calculate the focal point for these clients

SELECT COUNT(*), postal_code,

SDO_AGGR_CENTROID(SDOAGGRTYPE(location,0.5)) center

FROM customers

GROUP BY postal_code;

177

Spatial Databases: Conclusions

_ Location information is essential for an increasingly number of applications

_ GIS were initially used for managing spatial data

_ Since 1990s, major DBMS have been extended with spatial capabilities

• Oracle Spatial was first introduced into version 8g

• Open source implementations exist for many years

• SQL Server introduced spatial support in version 2008

_ Since the 1990s the Open Geo Spatial Consortium (OGC) has been working on defining standards

• These standards are also international standards (ISO)

_ Systems vary considerably on the support of standards

178

