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Introduction 

  

The need to store time series data is not new. However, in recent years 

the availability of this type of data has become omnipresent thanks to 

the irruption of IoT, sensors and web transactions. For that reason, 

new methods have emerged for building time series databases that able 

to handle massive amounts of data. 

  

This report examines available alternatives for storing and processing 

time series. It does not focus on methods for analyzing time series. Nor 

is it an extensive review of the topic of time series data storage. Instead, 

it explores some of the key issues associated with new types of time 

series databases and describes general scenarios of application of this 

type of data. 

  

This document is structured in two sections. The first part deals with 

the theoretical aspects related to time series databases. The second 

part of the report describes the hands-on experience of OpenTSDB, an 

open source time series database which can store and serve massive 

amounts of single value time series data. The idea was to evaluate this 

product comparing its performance against a traditional relational 

database using temporal data from Twitter. 
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Part 1: Theoretical Background 

  

1. Time Series Data: Why Collect It? 

  

“A time series is a collection of observations made sequentially through 

time” (Chatfield, 2016). In terms of data is translated into repeated 

measures of some parameter, commonly a number, accompanied by the 

timestamps at which the measurements were made. Measurements are 

usually performed at regular intervals, although this is not a 

requirement. 

  

According to Dunning et al. (2014), time series datasets are typically 

used in circumstances in which measurements, once made, are not 

revised or updated. Measurements accumulate as new data is added 

for each parameter at each new time point. It is important to mention 

these characteristics because they have a direct impact on the design 

of the technology for storing and processing time series. 

  

The need to systematically accumulate data of this nature can be 

explained by the variety of questions that can be addressed by time 

series data. Here’s a list of representative cases (Dunning et al., 2014): 

  

1. What are the short- and long-term trends for some measurements? 

2. How do several measurements correlate over a period of time? 

3. What can be expected about the future behavior of a measurement 

from its previous patterns? 

4. What measurements might indicate the cause of some event? 

 

 

 

 

 

 

http://www.oreillynet.com/pub/au/5873
http://www.oreillynet.com/pub/au/5873
http://www.oreillynet.com/pub/au/5873
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2. Field of application 

 

Kulkarni (2017) describes some of the use cases in which the effective 

manipulation of time series data is becoming a strategic asset: 

 

a) Monitoring physical systems: connected devices, machinery, and 

equipment. 

b) Financial trading systems: Classic securities and cryptocurrencies. 

c) Monitoring software systems: applications, services, virtual 

machines, and containers. 

d) Asset tracking applications: Vehicles, trucks and physical 

containers. 

e) Eventing applications: user / customer interaction data. 

f) Business intelligence tools: Tracking key performance indicators. 

 

3. Storing and Processing Time Series 

  

The idea of this section is to briefly review three alternatives for storing 

time series, starting from the simplest concept of flat file to databases 

optimized for time-stamped data. 

  

a. Flat Files 

  

Flat files are the simplest storage option for time series data. This 

mechanism can work effectively to the extent that the number of time 

series is relatively small. Such is the case of Parquet, a columnar file 

format that helps to compress the data and has an encoding scheme to 

handle complex data (Dunning et al., 2014). 

  

As the system grows, problems begin to appear, especially in those 

cases where it is necessary to increase the number of time series stored 

in the same file. In the previous scenario, the proportion of usable data 

for any query declines, because most of the data read belongs to other 

http://www.oreillynet.com/pub/au/5873
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time series. One way to solve this problem is to restrict the number of 

series per file, which produces many small files. A system composed of 

many files may cause stability problems and can be inefficient due to 

the increased seek time needed. It is concluded that flat files are not 

capable of handling large-scale time series data (Dunning et al., 2014). 

  

b. RDBMS: Why Relational Databases aren’t enough? 

  

To avoid the problems associated with flat files, a natural step is to 

move to some form of a real database. The star schema is an alternative 

for storing time series in a relational database. In this model, the core 

data is stored in a fact table with references to other tables known as 

dimensions. A fundamental design assumption is that the dimension 

tables are relatively small and invariable. In a typical time series fact 

table, the only dimension referenced is the one that provides the details 

about the time series themselves, including the stored value (Dunning 

et al., 2014). 

  

For instance, if our time series is coming from the air quality 

monitoring stations of the European Union (European Environment 

Agency, 2017), it might be expected that several values of air 

pollutants would be measured on each monitoring station such as 

mg/m3 of carbon monoxide, ng/m3 of arsenic, ng/m3 of nickel, and so 

on. Each of these measurements for each station would constitute a 

separate time series, and each time series would have information such 

as the station name, country, type of area, longitude, latitude, and 

altitude stored in a dimension table. In such a database design, the 

core data is stored in a fact table that looks like what is shown in 

Figure 1. 

http://www.oreillynet.com/pub/au/5873
http://www.oreillynet.com/pub/au/5873
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Figure 1. A fact table for a time series in an RDB. The time, a time 

series ID and a value are stored. Detailed information about the series 

is stored in the dimension tables. 

  

When compared to the flat file, a star schema solves the issue of having 

lots of different time series and can work effectively well up to levels 

of hundreds of millions of data points. However, this capacity is well 

below the mass time series generated today. For instance, British oil 

and gas company BP monitors thousands of oil wells with sensors. 

Each well has 20 to 30 sensors to measure pressure and temperature. 

This translates into a transmission rate of 500,000 data points every 

15 seconds, which is equivalent to 1,051,200 million of data points per 

year (Winig, 2016). 

 

As data scales continue to grow, a larger proportion of time series 

applications just don’t fit very well into RDBMS. Moreover, storing 

the data is only part of the problem; retrieving it and processing it 

represent other challenges. Contemporary systems such as machine 

learning applications or status display systems may need to retrieve 

and process millions of data points in real time (Dunning et al., 2014). 

  

Bader, Kopp, and Falkenthal (2017) compared the performance of two 

relational database systems (MySQL and PostgreSQL) against ten 

database systems specifically designed to manage time series. 

According to the authors' review, relational databases can compute all 

https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-7#tab-figures-produced
https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-7#tab-figures-produced
http://www.oreillynet.com/pub/au/5873
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the basic functions associated with time series, but they are ineffective 

in managing distribution/clusterability conditions. That means, they 

do not offer scalability, as do the time series databases. 

 

c. Time Series Databases: What's the difference? 

 

In the last years, a vast amount of Time Series Databases (TSDB) 

technologies have surged. They are design for storing and querying 

time series data. The differences between traditional databases and 

time series databases can be seen in two levels: scale and usability. 

 

Time-series databases (based on relational databases or NoSQL) 

handle scale by introducing performance improvements: higher 

insertion rates and better data compression (Freedman, 2017), which is 

a vital feature when taking into account that time series data 

accumulates quickly. 

 

The second factor is usability. This includes functions and operations 

that are common to time-series data analysis, including arithmetic 

expressions, string operations, aggregate functions, resampling into 

different time resolutions, ordering, ranking and limiting (Bader, Kopp, 

& Falkenthal, 2017). Expressions and operators may refer to different 

series, e.g. sum up all time series whose tags match a specific pattern. 

 

TSDBs can be categorized into four groups. The first group is 

composed of TSDBs dependent on an existing DBMS (HBase, 

Cassandra) to store the time series data. The second group covers 

TSDBs using DBMS for storing meta data. The third group comprises 

RDBMS. The last group contains all TSDBs that are not 

open source (Bader, Kopp, & Falkenthal, 2017).  

 

 

 

 

https://blog.timescale.com/@mike.freedman?source=post_header_lockup
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4. Alternative designs for time series databases 

 

Time series databases generally have a design based on wide tables, 

blobs or hybrid designs that combine the two previous alternatives. 

 

One of the disadvantages of the relational model is that it uses one row 

for each data point. A strategy to increase the speed at which data can 

be retrieved from a time series database is to store multiple values in 

each row, this design is known as a wide table. The speed of data 

recovery improves because the overhead associated with reading row 

by row is minimized. Some NoSQL databases (e.g. HBase) support an 

indefinite number of columns for a specific row (Dunning et al., 2014). 

The design of a wide table can be improved by compressing all of the 

data for a row into a data structure known as a blob. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.oreillynet.com/pub/au/5873
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Part 2:  Hands-on OpenTSDB 

 

OpenTSDB is a distributed and scalable time series database built on 

top of Hadoop and HBase. The data schema is highly optimized for 

fast aggregations of similar time series to minimize storage space. 

 

1. Real-life application example: General Election United 

Kingdom 2017 on Twitter 

 

OpenTSDB was used to model time series that correspond to the count 

of mentions on Twitter to terms of interest related to the elections in 

the United Kingdom that were held in 2017. The specific objective of 

the exercise was to monitor the mentions associated with the two main 

parties that contended in that election (Conservative & Labor) and 

the mentions to issues of national relevance during the process. The 

dataset used (Mak, 2017) contains 8.5 million tweets published 

between June 1 and June 8 -Election Day- 2017.  

  

2. Installation and Configuration 

 

To run OpenTSDB, it´s necessary to meet the following requirements: 

 

✓ A Linux system (or Windows with manual building) 

✓ Java Runtime Environment 1.6 or later 

✓ HBase 0.92 or later 

✓ GnuPlot 4.2 or later 

 

The first step of the installation is to setup HBase and Zookeeper. Once 

HBase is running, it is possible to choose an installation from a package 

(available in Github), from source using GIT or a source tarball. The 

last step of the installation is to create the necessary HBase tables. 

OpenTSDB can be configured via a file on the local system, via 

command line arguments or a combination of both (OpenTSDB User 

Guide, 2017). 
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OpenTSDB uses a design similar to a wide table, where rows 

containing data from a single time series are stored close to the disk. 

This structure implies that the need for large sequential disk operations 

is minimized when it is required to access data from a particular time 

series, contrary to what would happen if the rows were widely 

scattered. Naturally, the ability to capitalize on this benefit depends 

on whether the number of observations in each time series is large 

enough to cause a significant reduction in the number of rows retrieved 

(Dunning et al., 2014). 

 

3. Naming schema 

 

In OpenTSDB each time series has a generic "metric" name, that can 

be shared by many unique time series. In the case study, the geuk2017 

metric identifies the number of times a term of interest is mentioned 

within the text of the tweets that were published in a second particular. 

What distinguishes a specific time series from another is the use of 

"tags", every time series must have at least one tag. In our example, a 

first tag called topic was created to identify the major thematic 

categories of interest (Labor, Conservative and Issues). Subsequently, 

a second tag called keyword was defined to identify the terms of 

interest according to the topic. Within the topics of the parties, it was 

decided to track three keywords: one for the name of the party, another 

for the name of the candidate and another for the campaign slogan. In 

the topic called Issues, it was decided to monitor three keywords 

(BREXIT, NHS and Terrorism). The above gives a total of 9 unit time 

series. Table 1 shows the hierarchical structure that relates the metric 

and tags (geuk2017, topic and keyword). 

  

Table 1. Hierarchical structure between metric and tags 

Metric_uid Topic Keyword 

geuk2017 Conservative 

Conservative 

Theresa-May 

Strong-and-stable-leadership 

http://www.oreillynet.com/pub/au/5873
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Labour 

Labour 

Jeremy-Corbyn 

For-the-many-not-the-few 

Issues 

BREXIT 

NHS 

Terrorism 

 

The uniqueness of a specific time series comes from a combination of 

tag key / value pairs that allows for flexible queries with very fast 

aggregations. Following with the example where the metric was 

geuk2017. If it is necessary to know the data that corresponds to a 

specific keyword, the following query is enough: sum: geuk2017 (topic 

= Labor, keyword = Jeremy_Corbyn). If on the other hand, it is 

necessary to know the aggregate result of all the keywords, the query 

would be as simple as sum: geuk2017. 

  

The underlying data schema will store all the geuk2017 time series next 

to each other so that aggregating the individual values is very fast and 

efficient. OpenTSDB was designed to make these aggregate queries as 

fast as possible since most users start at a high level, then drill down 

for detailed information.  

 

4. Writing Data 

 

There are three methods to write data into OpenTSDB: Telnet API, 

HTTP API and batch import from a file. A load line includes the name 

of the metric, the timestamp and the sequence of tags defined to 

identify the specific time series to which it belongs. An example is 

shown below: 

 

Metric,_uid, timestamp, value, tag1, tag2, ... tagk 

 geuk2017 1496275200 2 topic=Labour Keyword=Jeremy_Corbyn 
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5. Query Components 

OpenTSDB provides a number of tools for query specifications: 

filtering, aggregation and downsampling. The components of a 

characteristic query can be seen in the following table. 

Table 2. Query components 

Parameter Type Required Description Example 

Start Time String or 

Integer 

Required Starting time for the 

query: absolute or 

relative time. 

1496275200 

End Time String or 

Integer 

Optional An end time for the 

query. If not supplied, 

the current time on the 

TSD will be used. 

1496357922 

Metric String Required The full name of a 

metric in the system 

(case sensitive). 

geuk2017 

Aggregation 

Function 

String Required A mathematical 

function to use in 

combining multiple time 

series.  

sum 

Filter String Optional Filters on tag values to 

reduce the number of 

time series picked up in 

a query or group and 

aggregate on various 

tags. 

Topic=*, 

kewyword=BREXIT 

Downsampler String Optional An optional interval and 

function to reduce the 

number of data points 

returned across time. 

1h 
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Functions String Optional Data manipulation 

functions. 

highestMax(...) 

Expressions String Optional Data manipulation 

functions across time 

series such as dividing 

one series by another. 

(r1 / (r1 + r2)) * 100 

Source: OpenTSDB User Guide, 2017 

 

Relative (24h-ago) or absolute (1496275200) date and time formats are 

supported when querying for data. Relative time is specified in units 

(milliseconds, seconds, minutes, hours, days, weeks, months, years). 

Absolute time is represented with a Unix style timestamp. Queries 

using timestamps support millisecond precision appending three digits.  

 

6. Representative queries 

 

Query 1 - All Time Series for a Metric 

 

This is the simplest query. OpenTSDB will scan all data points for the 

metric geuk2017 between the initial timestamp and final timestamp. 

The result will be a single dataset with all time series added together 

into one series.  

 

m=sum:geuk2017 

 

Query 2 - Filter on a Tag 

 

This query filters time series that contain a tag combination (tags are 

put in curly brackets. 

 

m=sum:geuk2017(topic=Labour) 

 

This query will return an aggregate of time series with all the keywords 

related to the topic called Labour. 
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Query 3 - Specific Time Series 

 

To retrieve the data of a specific time series, it is necessary to include 

all the tags that identify it. 

 

m=sum:geuk2017(topic=Labour, kewyword=Jeremy_Corbyn) 

  

To identify the number of times the term Jeremy Corbyn is mentioned, 

the query must contain the correct and complete combination of topic 

and keyword. 

 

Query 4 - Grouping 

 

The asterisk (*) is a grouping operator that will return a dataset for 

every time series that includes the given metric and the given tag 

name. 

 

m=sum:geuk2017(Topic=*) 

  

This query will return to an aggregate of all time series that correspond 

to any of the topics. 

 

Query 5 - Group and Filter 

 

The dataset generated by the grouping operator is filtered by specifying 

a subsequent tag. 

 

m=sum:geuk2017(Topic=*,kewyword=Jeremy_Corbyn) 

 

In this query, the time series of the topical labels are filtered by a 

second label called Jeremy Corbyn. 
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Query 6 - Grouping With OR 

 

The pipe operator | allows to choose a few tag values. 

 

m=geuk2017(topic=Labour|Conservative) 

 

his query returns the sum of the time series where the topic is Labour 

or Conservative. 

 

7. OpenTSDB vs. relational databases (MS SQL Server) 

 

This section measures the performance of OpenTSDB with respect to 

a traditional relational database management system (MS SQL). The 

comparison parameter selected was the execution time of the queries. 

It is important to emphasize that in OpenTSDB the naming schema is 

determined by the simple definition of tags. In contrast, MS SQL has 

a star schema where the fact table contains a measure, called counts, 

that has references to dimensions corresponding to the tags. The 

performance measurements were executed in a system with the 

following characteristics: 

 

-Linux system 16.04 LTS 

-4 GB RAM 

-4 processors 2.4 GHZ (Core i7-3630QM) 

-64 bits 

 

Subsequently, an SQL version of the 6 types of queries supported by 

OpenTSDB was generated to compare the execution times (the list of 

equivalent queries in SQL can be found in Appendix 1). In order to 

evaluate scalability, each query was executed in datasets of increasing 

size 10,000, 100,000 and 1,000,000 records respectively. The built-in 

SET STATISTICS TIME ON statement was used to measure the 

elapsed time for queries in MS SQL Server. It displays the number of 

milliseconds required to parse, compile, and execute each query. In the 
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case of OpenTSDB, the difference in milliseconds between the start 

and end time of the execution was computed with the 

queryStartTimestamp and queryCompletedTimestamp metrics 

(Figure 2). 

 

Figure 2. Query execution details OpenTSDB 

 

To counteract the effect of the variation, every test was repeated 6 

times, the result of the first run was discarded and the average of the 

five remaining runs was calculated. Tables 3-5 illustrate the results 

obtained. The first column represents the execution time for queries in 

OpenTSDB, the second column contains the execution time with SQL 

Server and the last column shows the ratio between both values. 
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Table 3. Elapsed time in ms, 10,000 records 

 

Table 4. Elapsed time in ms, 100,000 records 

 

Table 5. Elapsed time in ms, 1,000,000 records 
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When comparing the execution times of the queries it can be concluded 

that OpenTSDB is faster in the three specified scenarios and for each 

one of the queries. The grouping operation was the one that made the 

biggest difference (35 times faster). The equivalent of this query in 

SQL must specify searches of all tags of the same type, which could 

explain its longer duration. 

 

Figure 3 displays the ratios that result from dividing the execution 

time in OpenTSDB between the execution time in SQL Server. By 

moving from the load from 10,000 records to 100,000 records, 

performance improves. The same does not happen when moving from 

100,000 records to 1,000,000 records, where performance remains 

relatively stable. 
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Figure 3. Ratio of execution OpenTSDB/SQL Server 

 

To provide a comparison of compression capabilities, the space used 

by the relational model of the fact table versus OpenTSDB with 

1,000,000 records was measured. OpenTSDB required just under a 

sixth of the space consumed by its counterpart in SQL Server. The 

detail can be seen in Figure 4. 

 

Figure 4. Data space 1,000,000 records (MB) 

 

8. OpenTSDB vs. other time series databases 

 

Bader, Kopp, and Falkenthal (2017) conducted a comparison of Open 

Source Time Series Databases. In this exercise, ten different 

alternatives divided into two groups were compared. The first group 

contains TSDBs with a requirement on other DBMS and the second 

TSDBs with no requirement on any DBMS. OpenTSDB belongs to the 
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first category because it uses HBase for storing its time series data. 

HBase, in turn, uses Zookeeper for coordination between nodes. 

  

OpenTSDB, like most of its counterparts, offers high availability 

(compensation against unexpected node failures), scalability (increased 

storage or performance by adding more nodes) and load balancing 

(equally distribute queries across nodes). All basic query types are 

supported, except update and delete. As mentioned previously, 

OpenTSDB allows downsampling and offers tags to track the origin of 

a specific time series and matrix time series (more than one dimension). 

As in all compared systems, one millisecond is the smallest storage 

granularity implemented. 

 

From that comparison, the authors concluded that there is are no 

features supported by all TSDBs. Druid is the best alternative if all 

criteria besides having a stable version and commercial support are 

required. In other cases, InfluxDB or MonetDB, can be a good choice 

when commercial support is needed. The detail of the comparisons can 

be reviewed in Appendix 2. 

 

Acreman (2017) published a post on the blog of the technology 

company Outlyer to compare time series databases regarding writing 

performance in a single node. At the top of the list are technologies 

such as DalmatinerDB (3 million metrics / s) and Akumuli (2 million 

metrics / s). In the middle part, there are names like Prometheus (800k 

metrics / s), InfluxDB (470k metrics / s) and Graphite (220k metrics 

/ s). And finally, there are OpenTSDB (32k metrics / s), ElasticSearch 

(30k metrics / s) and Druid (25k metrics / s). 

 

Finally, the benchmark made by Persen (2016) to compare InfluxDB 

and OpenTSDB is included. The criteria used were on-disk 

compression and query performance. In the first criterion, InfluxDB 

outperformed OpenTSDB by delivering 16.5x better compression. 
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While in the second factor, InfluxDB outperformed OpenTSDB by 

delivering a minimum of 4.0x better query throughput. 

 

Conclusion 

 

This report analyzed OpenTSDB, a database for distributed and 

scalable time series that allows collecting, storing and serving millions 

of data points with no loss of precision. 

 

Based on the conceptual definitions of the differences between 

relational databases and time series databases, an application case was 

developed with data from Twitter to evaluate the performance of both 

technologies. The execution times for similar queries were tested using 

OpenTSDB and a fact table in MS SQL Server, which retrieves the 

same information as the queries in our application. As a result, 

OpenTSDB exceeds MS SQL in all tested queries with increasing 

performance as the size of the processed data set grows. It was also 

possible to verify that OpenTSDB consumes a fraction of the space 

used by SQL Server to model the same scenario. 

 

The literature review and industry benchmarks suggest that 

OpenTSDB is below other time series databases. Therefore, it is 

interesting to observe how a representative of the family of TSDBs, 

which potentially does not have a maximum performance, clearly 

shows its benefits against a conventional relational model when dealing 

with time series data. 

 

The benefits of a time series database are not limited to performance 

and data compaction, but also to the availability of functions specially 

designed for the manipulation of time series. A characteristic case is 

downsampling, a function used to change the temporal resolution of 

the series, which is difficult to replicate in other platforms. We must 

also take into account the wide availability of visualization tools 
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complementary to the time series databases, as is the case of Grafana, 

which can be exploited for the design of dashboards and alert systems. 
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Appendix 1 

Queries of time series written in SQL 
 
Query 1 - All Time Series for a Metric 
 
SELECT t.METRIC, f.TIMESTMP, SUM(f.VALUE) as 'COUNT' 
FROM Fact_TS_1M f, TS t 
WHERE f.TS_ID = t.TS_ID 
    AND t.METRIC = 'geuk2017' 
GROUP BY t.METRIC,f.TIMESTMP 
ORDER BY TIMESTMP; 
 
Query 2 - Filter on a Tag 
 
SELECT t.METRIC, t.TOPIC, f.TIMESTMP, SUM(f.VALUE) as 'COUNT' 
FROM Fact_TS_1M f, TS t 
WHERE f.TS_ID = t.TS_ID 
    AND t.METRIC = 'geuk2017' 
    AND t.TOPIC = 'Labour' 
GROUP BY t.METRIC,t.TOPIC, f.TIMESTMP 
ORDER BY TIMESTMP; 
 
Query 3 - Specific Time Series 
 
SELECT t.METRIC, t.KEYWORD, t.TOPIC, f.TIMESTMP, SUM(f.VALUE) 
as 'COUNT' 
FROM Fact_TS_1M f, TS t 
WHERE f.TS_ID = t.TS_ID 
    AND t.METRIC = 'geuk2017' 
    AND t.TOPIC = 'Labour' 
    AND t.KEYWORD = 'Labour' 
GROUP BY t.METRIC,t.KEYWORD,t.TOPIC, f.TIMESTMP 
ORDER BY TIMESTMP; 
 

Query 4 – Grouping 

SELECT t.METRIC, t.TOPIC, f.TIMESTMP, SUM(f.VALUE) as 'COUNT' 
FROM Fact_TS_1M f, TS t 
WHERE f.TS_ID = t.TS_ID 
    AND t.METRIC = 'geuk2017' 
    OR t.TOPIC = 'Labour' 
    OR t.TOPIC = 'Coservative' 
    OR t.TOPIC = 'Issues' 
GROUP BY t.METRIC,t.TOPIC, f.TIMESTMP 
ORDER BY f.TIMESTMP; 
 
Query 5 - Group and Filter 
 
SELECT t.METRIC, t.TOPIC, t.KEYWORD, f.TIMESTMP, SUM(f.VALUE) 
as 'COUNT' 
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FROM Fact_TS_1M f, TS t 
WHERE f.TS_ID = t.TS_ID 
    AND t.METRIC = 'geuk2017' 
    AND t.KEYWORD = 'Jeremy_Corbyn' 
    AND(  
    t.TOPIC = 'Labour' 
    OR t.TOPIC = 'Coservative' 
    OR t.TOPIC = 'Issues' 
) 
GROUP BY t.METRIC,t.TOPIC, t.KEYWORD,f.TIMESTMP 
ORDER BY f.TIMESTMP; 
 
 
Query 6 - Grouping With OR 
 
select C.TIMESTMP, c.count+L.count as 'total' 
from ( 
select f.TIMESTMP, t.TOPIC, SUM(f.VALUE) as 'count' 
        from Fact_TS_1M f, TS t 
        where f.TS_ID = t.TS_ID 
            and t.TOPIC = 'Conservative' 
        GROUP BY f.TIMESTMP,t.TOPIC 
)C, 
        ( 
    select f1.TIMESTMP, t1.TOPIC, SUM(f1.VALUE) as 'count' 
        from Fact_TS_1M f1, TS t1 
        where f1.TS_ID = t1.TS_ID 
            and t1.TOPIC = 'Labour' 
        GROUP BY f1.TIMESTMP,t1.TOPIC 
)L 
    WHERE C.TIMESTMP = L.TIMESTMP 
UNION 
    SELECT f.TIMESTMP, SUM(f.VALUE) as 'total' 
    FROM Fact_TS_1M f, TS t 
    where f.TIMESTMP not in( 
select DISTINCT(C.TIMESTMP) 
        from ( 
    select f.TIMESTMP, t.TOPIC, SUM(f.VALUE) as 'count' 
            from Fact_TS_1M f, TS t 
            where f.TS_ID = t.TS_ID 
                and t.TOPIC = 'Conservative' 
            GROUP BY f.TIMESTMP,t.TOPIC 
)C, 
            ( 
    select f1.TIMESTMP, t1.TOPIC, SUM(f1.VALUE) as 'count' 
            from Fact_TS_1M f1, TS t1 
            where f1.TS_ID = t1.TS_ID 
                and t1.TOPIC = 'Labour' 
            GROUP BY f1.TIMESTMP,t1.TOPIC 
)L 
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        WHERE C.TIMESTMP = L.TIMESTMP) 
        AND f.TS_ID = t.TS_ID 
        AND (t.TOPIC = 'Labour' or t.TOPIC = 'Conservative') 
    GROUP BY f.TIMESTMP 
 

 

Appendix 2 

Comparative tables of databases for time series by Bader, Kopp and 

Falkenthal (2017) 

 

Table A. Comparison of Criteria Group 1: Distribution/Clusterability  

TSDB 
High 

availability Scalability Load Balancing 

Group 1: TSDBs with a Requirement on NoSQL DBMS 

Bluefood ✓ ✓ ✓ 

KairosDB ✓ ✓ ✓ 

NewTS ✓ ✓ ✓ 

OpenTSDB ✓ ✓ ✓ 

Rhombus ✓ ✓ ✓ 

Group 2: TSDBs with no Requirement on any DBMS 

Druid ✓ ✓ ✓ 

Elasticsearch ✓ ✓ ✓ 

InfluxDB ✓ ✗ ✓ 

MonetDB ✓ ✓ ✓ 

Prometheus ✗ ✓ ✓ 
 

Table B. Comparison of Criteria Group 2: Functions  

TSDB NS   READ SCAN AVG  SUM  CNT  MAX  MIN  UPD  DE   

Group 1: TSDBs with a Requirement on NoSQL DBMS 

Bluefood ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ 

KairosDB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ 

NewTS ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ 

OpenTSDB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ 

Rhombus ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ 

Group 2: TSDBs with no Requirement on any DBMS 

Druid ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ 

Elasticsearch ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

InfluxDB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
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MonetDB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Prometheus ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ 
 

C: Comparison of criteria group 3: Tags, Continuous Calculation, 

Long-term Storage, and Matrix Time Series  

TSDB 
Continuous 
Calculation Tags 

Long-Term 
Storage 

Matrix 
Time Series 

Group 1: TSDBs with a Requirement on NoSQL DBMS 

Bluefood ✗ ✗ ✓ ✗ 

KairosDB ✗ ✓ ✗ ✗ 

NewTS ✓ ✓ ✗ ✗ 

OpenTSDB ✗ ✓ ✗ ✗ 

Rhombus ✗ ✓ ✗ ✗ 

Group 2: TSDBs with no Requirement on any DBMS 

Druid ✓ ✓ ✓ ✗ 

Elasticsearch ✓ ✓ ✗ ✓ 

InfluxDB ✓ ✓ ✓ ✗ 

MonetDB ✓ ✓ ✗ ✓ 

Prometheus ✓ ✓ ✗ ✗ 
 

 


