IT4ﬂ

Master in Information Technology for

Business Intelligence
Subject: Advanced Databases

Project Name:

(NEOA4J)-[:IS A]->(GRAPH DATABASE)

Students:

e Andres Vivanco Villamar

e William Espinoza

12/23/2015

UNIVERSITE L
UN

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

Table de Contents

1) T o 1) = Yot OO UEN 2

D) I - - Tl <=4 o 101 Vo [P PR 3
B O g 1410 e B G T o LSS 3
D A iV o F Y A T W G -1] PSR PPOt 4

) I CT =T o] s D E=1 =] o T- Y PSP 4
3.1) The Property Graph IMOEl.........ooe it e e et e e e e saar e e e s nsaeeeesnnaeeaean 4
I A R Cl = o1 oI D | -] o T 1Y IS 5
3.3) Graph COMPULE ENGINE.....eiiiiieeiiiecee ettt ettt s e et e e st e e e ta e e sate e ebaeesateeesaeessseesnsaeennnes 7
3.4) Graph Database Vs Relational Databasecccvieiiieeciieeiiie ettt tee e st e re e s 8

A) NEOBA. ettt h ettt a e At eh e et e bt eh e e be bt e te bt et e ateehe e teebeeateabeeateteeaeeatas 10
O) I T=To Y 3 I T | (] PP 10
4.2) The Cypher Query Languages (CQAL)oceicuieee e ceiiee et eetee e e evte e e ettae e e e satee e e eeabeeesennseeesenrenas 11
4.3) Performance iN NEOAottt ettt e e e tte e e e e ba e e e eeabaee e eeabeeeeeeabeeeaeanseeeeennsenas 19
4.4) Indexing and constraints for faster SEArCHccuvivciiiicie e e 20
Y I N L=To VI ot [4o T o Ly RS RI 20
4.6) Installation of Neo4j and tWO Ways t0 USE it. ...cceeeiiiiiieeiieiiee ettt ettt e e e e e e e 21

5) Building a Graph Database APPlICAtioNcccuiiiieciiii et e et e e e et e e e e ebeeeeeeanes 25
5.1) Selection of the topic: Electoral Roll and Friend’s Relationshipcccceeeciieeieciiee e, 25
I N OleYaTol=T o1 AU F=1 1Y oo =1 FO PRSP 26
5.3) REltiONAl IMOAEL.......uveiiieiriiicetieee e ettt eer e et e e e ebb e e e sebbeeeeeabeeesesreeesennreeas 27
I €T =T o] o101/ Yo 11 PR URRRRNS 28
5.4) Populating of the Databases........cccccuiiiiiiiiie ettt et e e e ttee e e e abe e e e e abee e s enbaeeeennseeas 29
5.5) Comparative Queries (Neo4j vs SQL SErver 2016)ccccccuveeeeeiieeeeciieeeeciieeeeecteeeeeereeeeenreeeeenaneeas 31
5.6) Analysis of Results (Neo4j vs SQL SErVEr 2016)c..ceccueeeiieeiieeeiieeeeieeeereeesveeeereeesreesreeessseessveeenns 39

B) CONCIUSION . .eiieitiiec ettt ettt eete e e e et e e eebaeeeeeebaeeeeetaaeeseabaaeeeenbbaeeessseeeesataeeeesssseeesnsreeeesnnes 41

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

1) Abstract

With the needs to manage large and sparse datasets, with many kinds of relationships
between them, new kinds of Database have been developed to supply it with a performance and
capability better than the traditional databases technologies and queries languages.

Many of these new Kinds of Databases using graph structures like the main engine to
allow to user to insert, update, query, delete and apply analysis techniques based in graphs in
the networks of graphs.

In this report we will look at from the origin of graphs, features of a graph database,
passing for a technical comparison between Traditional Database and Graph Databases, a review
of a graph database management system, and in the end the results of creating a Graph Database
application to analysis advantages, disadvantages and a personal conclusion of this kind of
technology using the most leading Graph Database named NEO4).

Our topic selected to implement in a graph database is about “Electoral Roll” with a
“Friend relationship information of the citizens”. This project is focusing in to test out by
ourselves the best features of a graph database vs a classical relational database like SQL Server.

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

2) Backgroun

d

2.1) Origin of Graphs

In the 18" Century, the mathematician Leonhard Euler (1707-1783) could solve
one of the most interesting problems in that time named “The Koénigsberg Bridge

Problem”.

Konigsberg is a town on the Preger
River, (before it was part of German,
but now it is part of Russia).

The city has two river islands (C,D) with
seven bridges connected to two bank
areas (A,B) (left Picture?).

The problem was over the river Preger
can all be traversed in a single trip
without doubling back, also it needs
ends in the same place it start.

island C

river bank A
|5'tandé ;; |sland
-._.____
river bank)
Picture 1. Kénigsberg City
river bank
A
island D
river bank
| =]

Picture 2. Kénigsberg in Graph

The problem is similar to asking if

the multigraph on four nodes and
seven edges (left Picture?) has an
Eulerian cycle. This problem was solved
in the negative by Leonhard Euler
(1736), and represented the beginning
of graph theory.
Although, Leonard Euler resolved the
problem, the most important was the
mathematical basis that he created to
solve it.

1 The Kdnigsberg Bridge Problem, Kénigsberg City, NRICH math. Retrieved from https://nrich.maths.org/2484
2 The Kdnigsberg Bridge Problem, Kénigsberg in graph, NRICH math. Retrieved from https://nrich.maths.org/2484

https://nrich.maths.org/2484
https://nrich.maths.org/2484

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

2.2) What is a Graph?

In a mathematical world a graph is a
collection of vertices and edges, from the Computer
Science and Database perspective a graph is a set of
nodes and relationships that connect them. Entities
are represented by nodes and the way how these
nodes relate to the worlds are relationships. This
concept allows to model many kind of scenarios,
such as Social Network (friends of friends),
Connections between places, etc.

3) Graph Database

3.1) The Property Graph Model

The property Graph Model looks similar to
the Object Model or an Entity Relationship

. P ——

records records connected between them, it could have some

diagram. The property graph? has entities (nodes)

attributes (key-value-pairs). For expressing roles
is useful labels tagged to the Nodes. In the same
context, for attaching metadata, or indexing, or
establishing constraint information could be using
Labels too.

The Relationships (edges) represent the
name and direction between two nodes (entities).
A relationship need to have a direction, type of

‘ relationship, and start and end nodes. Also

Relationships could have some properties. In a
graph database the storing of relationships is stored efficiently, hence many relationships
between nodes not will affect the performance.

3 The Property Graph Model, NEO4. Retrieved from http://neo4dj.com/developer/graph-database/

http://neo4j.com/developer/graph-database/

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

3.2) Graph Database

A Graph Database describes a model of Graph which has the methods: create,
read, update and delete (CRUD) as part of the operation support. A Graph Database is an
online platform and real time in nature, generally using it in transactional systems (OLTP).

A Graph Database model shows data in a fashion way comparing with others
NoSQL models or type of Databases. The Graph Network is represented in the form of
tree-structures or graphs that have entities (nodes) what are connected between them
with and relationships (edges). This way of representation of the information allow to do
operations easier to perform like for example data mining, cascade queries, short path
between nodes, etc.

There are two important properties in a graph database:

e The Underlying storage
e The Processing engine

The Underlying storage

Exist Graph Database technologies that using native graph storage, which is
optimized for managing and storing graphs. However, there are graph databases that
storing graph data in a relational database, or in an object-oriented database or another
kind of databases.

The processing engine

Generally, a graph database should use index-free adjacency, it is means that each
node is connected physically to each other in the database. Some databases from User’s
perspective seems graph databases, because it exposes a graph data model through
CRUD operations. However, from a technical view the importance of index-free-adjacency
is a native graph processing is synonym of performance advantage.

(NEOJ)-{:1S AJ->(GRAPH DATABASE)

There are two tradeoffs in the IT market about Graph Database, one is focused in native
graph storage, the second is focused in native graph processing. Both of them have
advantages and disadvantages. For instance, (see tables below)

Property of Graph DB Benefit

Native graph storage Performance and Scalability
Nonnative graph storage Possibility to use with a Well Known
mature non graph backend (Ex, SQL
server , MySQL)
Table 3.1.1 Benefit Native graph storage

Property of Graph DB Benefit

Native graph processing Traversal performance
Nonnative graph processing Easy to make queries with intensive
use of memory

Table 3.1.2 Benefit Native graph processing

The next picture 3.2% represents an overview of some graph databases on the market

based in the storage and processing models

g A Mcrosoht = QiOHTDB ¥ fn\.‘f,g,ijd.n.mm
2 "' x PEARRY dex
0o Than
£ 2Graph
8 The Graph
O
£ Database Space
.& . .
& w W
All Graph
FlockDB — ' '"p
éic* Graph Storage Native

Picture 3.2 An overview of Graph Databases

4 lan Robinson, Jim Webber & Emil Eifrem (2015) — 2" Edition. Graph Databases. p. 6. O’ Reilly Media Inc., C.A. USA

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

3.3) Graph Compute Engine

A graph compute engine is a technology for running graph computational algorithms in a
big dataset. Graph Compute engines are designed mainly to recognize cluster in the data, or
to know the numbers of relationships (edges), doing a special emphasis in queries like how
many friends do you have, or how many friends or friends in different grades of deep. This is
the main reason that Graph Databases are very useful to manage social networks. The next
picture 3.3.1 is a Graph using neo4j, with the relationship “Follows” of the twitter account of
the student Andres Vivanco limited to one hundred nodes.

Picture 3.3.1 Graph Network of “Follows” relationship of the

twitter account of Andres Vivanco.

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

Global queries in graph compute engines are optimized for scanning and
processing large connections of nodes in batches, very similar to another batch analysis
technology such as datamining or OLAP. Some graph compute engines (see picture 3.3.2)
include a system of record (SOR) database with OLTP properties. Also a layer for
processing data with is requested for an external application to respond the query with
the results. A high-level overview of a graph computation engine setup

Data extractior(;, ltra(r;sformation, Gfaph Compute
and loa I Engine

i
[In—Memory Promng]
| Working Storage) |

Stored Records

Picture 3.3.2. A high-level overview of a graph computation engine setup

3.4) Graph Database Vs Relational Database

From the 80s, Relational Databases have been the most useful databases of the software
applications. A relational database stores structured data in tables with certain types of columns
and a lot rows of the same type of information.

For references one table with another tables are necessary to set primary key attributes
and foreign keys, to kept the referential integrity is necessary to do constraints. The cost for doing
join queries is exponential.

This costly join operation with join tables, are usually focusing by denormalization of the
data to decrease the numbers of joins necessary.

Relationships are the strongest point of the graph database comparing with another
database management system, because each node in a graph database contains directly and
physically a list of relationships-records, which represents the relationship with another node.

5 Sonal Raj (2015). Neo4j High Performance. p.16. Pack Publishing Ltd. Birmingham, UK.

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

In other words, the Join operation in a Relational Databases is replaced in a graph
database by itself, because the graph database just uses the list of relationships of each node in
a direct way deleting the need for an expensive search or math computation.

This highlight of pre-materializing relationships, enable to the graph database do join
gueries with large amount of data from minutes (with relational database) to seconds (with graph
database).

In theory, a graph database should be much faster than a relational database in graph
traversal. To illustrate it, in a social network, the search friends of friends, while more deeply is
the search of friends of friends the time execution of a graph database is better that relational
database.

The above table 3.4 Time execution MySQL vs Neo4j © is the result of an experiment did
for Aleksa Vukotic and Nicki Watt, authors of the book Neo4J in Action. This experiment consisted
of in a social network, finding all the friends of a user’s friend in different grades of depth. They
ran queries in MySQL and NEO4J with a database of one millions of users. For it was used a 7—
powered commodity laptop with 8 GB of RAM

Execution Time* — Execution Time *-—
MySQL Neo4j

2 0.016 0.010

3 30.267 0.168

4 1,543.505 1.359

5 Not Finished in 1 Hour 2.132

Table 3.4. Time execution MySQL vs Neo4j
*Execution time is in seconds, for 1000 users

Meanwhile in depth 2 and 3 the results are not very surprising, the results of query 4
and 5 are really dramatic with a significant degradation of performance, especially in the depth
5 when MySQL was choked. The reason of it, is that to find friends of friend in a depth 5, the
engine of MySQL need to calculate the Cartesian product of the table user_friend five times, for
example a table with 50,000 records, the result will be 50,000° rows, which is too much time
for computing it, also it is necessary to discard more than 99% to return 1,000 records that we
request.

6 Aleksa Vukotic and Nicki Watt (2015). Neo4j in Action. Chapter 1. Manning Publications, USA.

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

4) Neo4)

4.1) Neo4) Features

Neo4) is the most leading graph database management system, it is implemented in Java
and Scala. The source code is available in GitHub’. Successful cases of using Neo4j, including
different type of industries such as matchmaking, analytic and scientific research, routing,
network management, project management, and especially social networks. Etc.

The main feature is that neo4j not depend heavily on index because it supplies a natural
adjacency by the graph. Neo4j using this locality to move through the graph. These operations
could be kept with an excellent efficiency, crossing millions of nodes per second.

Graph Databases, specially Neo4j, don’t depend heavily on indexes because it is supply
Some highlights of Neo4) are:

e ACID transaction compliance

e Materializing of relationships at creation time.

e Constant time for crossing of relationships.

e Developed on top of the Java Virtual Machine

e Memory caching for graphs and compact storage.

e Capability to manage billions of entities in a moderate computer.

e Easy data modeling

e |t uses a visualization framework for the representation of data and query results
e Compatible bindings for Python, Java, Ruby and others.

e Disk based storage manager optimized

e |tis highly scalable.

e It has a powerful traversal framework for better performance

e [t is completely transactional in nature.

e Supporting features as JTA, 2PC, XQ, Transaction Recovery, Deadlock detection
e Neo4] can traverse graph depths of more than 1000 levels in a few seconds

e Neodj uses Cypher Query Languages

e Easy to write queries about relationships with many types of deep.

7 Neo4j Source code: https://github.com/neo4j/neo4j

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

4.2) The Cypher Query Languages (CQL)

The Cypher Query Languages is a ‘declarative’ language, in another words it means that a
user does not need to indicate how to go to a node, just the user needs to ask which is the
node to study.

CRUD operations in NEO4J (Create, read, update, delete)

Neodj stores entities (i.e. Person, City) in nodes, theses nodes are connected to each other
by relationships (edges) (i.e. Person “is friend of” Person, or City “is part of” State). Nodes
and relationships could be defined with properties or metadata with key-value pairs.

The next are the commands to each CRUD operation.
Create
Creating a node Person with three properties

e name:'Andres'
e |astName: 'Vivanco'
o title: 'Developer

Code:

CREATE (n:Person {name :'Andres', lastName: 'Vivanco',

title: 'Developer'}) RETURN n

Result in Console:

<id>:3 lastName: Vivanco title: Developer name:

Creating a node Person with three properties

e name:'William'
e lastName: 'Esponiza’
e title: 'Engineer

Code:

(NEOJ)-{:1S AJ->(GRAPH DATABASE)

CREATE (n:Person {name :'William', lastName: 'Espinoza',

title: 'Engineer'})

RETURN N

Creating a relationship named ‘knows’

Code:

MATCH (a:Person), (b:Person)

WHERE a.name ='Andres' AND b.name ='William'

CREATE (a) -[r:Knows]->(b)
RETURN r

Result in Console:

(NEOJ)-{:1S AJ->(GRAPH DATABASE)

Read

Read the node named ‘William’ and return the title.

Code:

MATCH (n:Person)
WHERE n.name = 'William' RETURN n.title

Result in console:

:::] n.title
R

Engineer

Update
Update the node named ‘Andres’ with the next:
e title: 'Manager'

Code:

MATCH (n { name: 'Andres' })
SET n.title = 'Manager' RETURN n

Result in console:

L%

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

Delete

Delete the node (Andres) with all its relationships

Code:

MATCH (n { name: 'Andres' })
DETACH DELETE n

Result in console:

e
=

Q

Deleted 1 node, deleted 1 relationship, statement executed in 1359 ms

Outstanding operations, queries and functions in Neo4j.

There are some operations, queries and functions that could be used in Neo4j for
doing analysis optimized or loading data in the graph database properly.

A continuation the most relevant:
Importing CSV files with Cypher

CSV files with nodes and relationships could be store on the graph database
indicating the Path in the computer or a URL, Neo4j support load csv via https, http, and
ftp.

For loading nodes, the code is the next:

LOAD CSV WITH HEADERS FROM
"http://neodj.com/docs/2.3.1/csv/artists-with-headers.csv' AS
line CREATE (:Artist { name: line.Name, year: toInt(line.Year)})

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

Result in console:

Rows Added 4 labels, created 4 nodes, set 8 properties, statement executed in 1471 ms

AIMPORTANT for Importing large amounts of data is necessary to write previously
“USING PERIODIC COMMIT “, it will optimize the loading and doing commit each 1000
rows per default. The numbers of rows could be set, for example do commit after each
500 rows, the command is in this form: USING PERIODIC COMMIT 500.

For loading nodes using periodic commit the code is the next:

USING PERIODIC COMMMIT 500

LOAD CSV WITH HEADERS FROM
"http://neodj.com/docs/2.3.1/csv/artists.csv' AS line

CREATE (:Artist { name: line.Name, year: toInt(line.Year)})

Result in console:

Rows Added 4 labels, created 4 nodes, set 8 properties, statement executed in 2207 ms.

Find related neighbors

(NEOJ)-{:1S AJ->(GRAPH DATABASE)

This code allows to find “neighbors” of a node, in this case we given the NationallD

of a node of Person.

Code:

MATCH (n:Person { NationalID: '
(neighbors) RETURN n, neighbors

Result in console:

<4

oreoh [T

L) <id>:2 PollingPlacelD: 101023 L

100697455" })-[:KNOWS]-

fe

d: GUEVARA Nati 1ID: 1006974556 «

(NEOJ)-{:1S AJ->(GRAPH DATABASE)

Variable length paths

This code allows to find “neighbors” of a node, in different grades of depth for
example we can define friends of friends (depth 2), friends of friends of friends (Depth 3),
etc. For do this we need to set the level in the next way, we will find friends with the
relationship “Knows”:

Depth Code Explanation
2 [:KNOWS*1..2] Friends of friends
3 [(KNOWS*1..3] Friends of friends of friends
e [:KNOWS*] Infinite friends of friends, depends

how many friends of friends of
friends.... Exists!
Code:

MATCH (n:Person { NationalID: '100697455' })-[:KNOWS*1..3]]-
>(friend_of_friend) RETURN DISTINCT
friend_of_friend.FirstName,

friend_of_friend.LastName

ORDER BY friend_of_friend.FirstName ,
friend_of_friend.LastName

Result in console:

MATCH (Person {NationalID: '111480057"})-[:KNOWS*1..3]->(friend of fri
@ friend_of_friend.FirstName friend_of_friend.LastName
e ANDREA PATRICIA PORRAS
<> MANUEL JOSEPH MONGE
NAYLA INES PACHECO
TAYRON CASTILLO
VIVIANA RIVERA
WILLIAM ALFONSO RAMIREZ
Returned 6 rows in 22053 ms

(NEOJ)-{:1S AJ->(GRAPH DATABASE)

Shortest path

This code shows the shortest path, between two nodes, in another words, the
shortest path with the less relationships needs, the way needs to start in one node and

finish with the another one.

Code:

MATCH p=shortestPath(a:Person {NationalID: '111480057'})-[*]-
(b:Person {NationalID: '111480065'})

)
RETURN p

Result in console:

e

ON

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

4.3) Performance in NEO4)

These are some tips for Tune Neo4j for maximum performance:

e Ascertain if Neo4J Java process has enough memory. If the JVM heap
resident needs more memory, then the OS will swap it out to storage.
When occurs a garbage collection, it will be swapped out, and this
swap-trashing effect has a negative impact on the performance of
Neodj. In steady-state, a well-tuned Neo4j database does not need to
have any swap activity.

e Ascertain if the Java Virtual Machine has enough memory, the next
values are recommended. Open the JVM with —server flag and -
Xmx<good sized heap>, for example in good sized heap try with the
maximum memory possible, one best one is Xmx4g for 4GB
(considering that currently a new laptop has 8GB or 12 GB of memory),
Sometimes a too large heap could be affect the performance, so try
by yourself the best heap sizes in your case.

e Ascertain that neo4j is using a concurrent garbage collector, one of the
best values is: -XX:+UseG1GC.

e Ascertain that file caching memory is enough to fit the entire store, set
in neodj.properties the values of dbms.pagecache.memory, it value
could be based in the next formula:

o dbms.pagecache.memory = ((totalnodes * 15)+
(totalrelationships * 34) + (number of properties *64))

e Ascertain if the size of the JVM heap is correct for your database
application, it could be set in the file: conf/neo4j-wrapper.conf . The
attribute wrapper.java.maxmemory could be set with the next values
of the picture 4.3% Guide Lines for Heap Size, recommended by Neo
Technology

Guidelines for heap size

Number of Heap Reserved RAM for
entities RAM size configuration the OS

10M 2GB 512MB ~1GB

100M 8GB+ 1-4GB 1-2GB

1B+ 16GB- 4GB+ 1-2GB

32GB+

Picture 4.3 Guide Lines for Heap Size.

8 Guide Lines for Heap Size. http://neo4j.com/docs/stable/performance-guide.html

http://neo4j.com/docs/stable/performance-guide.html

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

4.4) Indexing and constraints for faster search

Queries in Neo4j could be optimized if the data is indexed, and also applying some
constraints. With this trick we will avoid redundant matches and does directly to the desired
index location.

For applying index on a label the code is the next:
e CREATE INDEX ON: Person(NationallD)
On the another hand, to create constraints for example unique values is with the next code:
e CREATE CONTRASTRAINT ON n:Person
ASSERT n.NationallD is UNIQUE

Managing Index and constraints will be more efficient the queries, especially search
large amount of data.

4.5) Neod4j Editions

Neo4j has 2 types of licenses:

e Community Edition. It is free and open source, is a high performance
with whole features described in the chapter 4.1.

e Enterprise Edition. Include all features of chapter 4.1 and also include
scalable clustering, fail-over, high-availability, cache sharding, live
backups, and comprehensive monitoring.

(NEOJ)-{:1S AJ->(GRAPH DATABASE)

4.6) Installation of Neo4j and two ways to use it.

For our experiment we used Neo4j Community Edition v.2.3°:

1.) Download the last version available of Neo4j from http://neo4j.com/download/

T ————
€)@ neotjcom/downioad ¢ Q “B O3 AOO

Install Neo4j and Take it for a Spin

Get started with our Develog urces to Jump start your graph application

Enterprise Edition Community Edition
All of the same great features as the Community Ideal for learning, and smaller do-it-yourself projects

Edition, with enter e-grade avallability that require high levels of scaling, Excludes

professionz 00
Download Community Edition ’

2.) Open the Installer and select the folder where it will be installed

management, and scale-up & scale-out capabilities

Download 30 Day Free Trial

Release Information

. A
Select Destination Directory
Where should Neo4) Community Edition be installed? Q neo !
-

Select the folder where you would like Neo4j Community Edition to be installed, then dick
Next,

Destination directory

:\Program Files\Neo4j CE 2.3.0 Browse ...

Required disk space: 74 MB
Free disk space: 68 GB

Next > Cancel

® Neo4j Community Edition v.2.3 http://neo4j.com/download/

http://neo4j.com/download/
http://neo4j.com/download/

(NEOJ)-{:1S AJ->(GRAPH DATABASE)

3.) Accept the agreement, and next, next

License Agreement .
Please read the following important information neo
before continuing.

Please read the following License Agreement. You must accept the terms of this agreement
before continuing with the installation.

NOTICE

Thes package contains software icensed under different

licenses, please refer to the NOTICE. txt file for further
informaton.

-

The software ("Software”) developed and owned by Network Engine for
Objects n Lund AB (referred to in this notice as Neo Technology”) is
licensed under the GNU GENERAL PUBLIC LICENSE Version 3 to all thrd
parties and that license is induded below.

(@ 1 accept the agreement
(O 1do not accept the agreement

< Back Next > Cancel

4.) Wait until it finishes to install all components

Installing

= @Neoy,

bin'neodj-desktop-2.3. 1.jar
I

5.) Click in Finish and open Neo4j

Completing Setup

Setup has frished nstaling Neo4) Community
. Edton

£ Run Neo4) Community Editon

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

6.) When you open neodj, please select in the bottom “choose”, the folder when you
want to work. Each different folder, is like a different database

@neoy) -

Database Location

7.) Do clickin Start, now is running

—

Database Location

Status
Neo4; is ready. Browse to hitp:/localhost:7474/

For working in neo4j, there are two ways one is in the browser, the another one is in shell
console:

1.) For usingin a browser, do click in the link in the green box or open in a browser with
the next url: http://localhost:7474/browser/ . For writing queries is in the red circle

http://localhost:7474/browser/

(NEO4J)-[:1S AJ->(GRAPH DATABASE)

® Neotj X

4= localhost y L+ =] 4 & & 6 =

S.Qneo i

Learn about Neo4j

A graph epiphany awaits you

/‘\ What is a graph
TRt \ database?

2.) For using from a shell console, to do click in the bottom Options, after do click in
bottom Command Prompt , in the shell write “Neo4jShell” and Enter.

&
Command-ine Tooks

Use the command prompt to run command dne tools such as neod

Command Prompt

Database Tung
neod).propertes contans tuning configuration such as cache settings.
You will need o stop and re-start the database for changes to take effect

Edt
Server Configuration
neod-server propertes contans server configuration such as port bindngs.
You will need to stop and re-start the database for changes to take effect

Edt

Java Y Tuning
Neod)-commurty . vmoptions is for adjusting Java VM settings, such as memory usage
You will need to dose and re-start ths appication for changes to take effect

Edt
Plugns and Extensions
Neo4) looks for Server Plugns and Unmanaged Extensions in this folder
Open
Cose

&
Neo4j Command Prompt

This window is configured with Neo4j on the path.
Available commands:

¥ Neo4jshell

* Neo4jImport

ers\andre\DocumentsXNeo4d]>

ilable commands:

* NeodjShell

Neo4j Import

\andre\Documents
ING! This batch script has_ been deprecated. Please use t
e provided PowerShell scripts instead: http://neo4j.com/doc
table/powershell.html
jelcome to the Neo4j Shell! Enter 'help' for a list of comma

: Remote Neo4j graph database service 'shell' at port 13

sh ()%

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

5) Building a Graph Database Application

5.1) Selection of the topic: Electoral Roll and Friend’s Relationship

The Database application selected to work with Neo4J is about “Electoral Roll” adding by
ourselves manually information of friend’s relationship between citizens to evaluate main
features of graph databases and comparing with a classic relational database like SQL Server
2016.

The input data downloaded is public information of Costa Rica'® about Electoral Roll of
2015.

TRIBUNAL SUPREMO
o i DE ELECCIONES Q

SIS REPUBLICA DE COSTA RICA

CMICMOS AIOONS WosROCW @ y CUYMRMIM EVSUOMDONICINN AMOOES ‘
REOITRO CIVIL / DESCARGA DL PADAON NACIONAL ELECTORAL, OROENADO POR MOMERO DI CAOULA

The present information was downloaded of the website of the Supreme Electoral
Tribunal of Costa Rica (or in Spanish Tribunal Supremo de Elecciones de la Republica de Costa
Rica) contains:

e (Citizens (People in our model): 3.198.597,00
e Polling Places (Number of Districts): 2.123,00
e (Cities: 124,00
e Provinces: 8,00
e Relationship (People VOTING ON districts) 3.198.597,00

10 Electoral Roll of Costa Rica (2015) http://www.tse.go.cr/descarga_padron.htm

http://www.tse.go.cr/descarga_padron.htm

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

It’s important to considerer that in the data downloaded also exist information about
citizens who voting in different embassies of Costa Rica around the world, and the
information about the place where they voting is:

Tables or nodes of Places For people living abroad

District City of the Embassy
City Country of the Embassy
Province Static value ‘CONSULADO’

Like we said previously, we also created “invented” data about “Friend’s relationship”
with the name “Knows” to simulate that one person “Knows” to another person. The
numbers of this relationships are:

e Relationships (‘Knows’): 3.764.822,00

5.2) Conceptual Model
The next picture 5.2.1 is the Conceptual Model of our Database Application

5 Province

City

PART OF

District

(Polling Place)

Person

Picture 5.2.1 Conceptual Model

(NEOJ)-{:1S AJ->(GRAPH DATABASE)

5.3) Relational Model

The next picture 5.2.2 is the Relational Model of our Database Application

city province
? cityid ? province_id
ity CO———E= province_name
province_id
8
8
district
¢ district_id
district
city_id
8
l:er:l‘a:,ti':nallD o |§I‘|0Pi\:s
PollingPlacelD ¢ Fid
o Sex
FirstName
LastName
LastNameSecond

Picture 5.2.2 Relational Model

(NEOJ)-{:1S AJ->(GRAPH DATABASE)

5.3) Graph Model

The next picture 5.2.3 is a graph which represents the nodes and how these are connected |
our graph database in neo4;j

City ISPARTOF | Province

District

(Pollina Place)

KNOWS

Picture 5.2.3 Graph Model

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

5.4) Populating of the Databases

For loading data in the database, we use some tools depending the technology. Also
previously we changed the headers of the files with names more readable.

Loading data in SQL Server 2016

For loading data in SQL server, we used the tool of the SQL Server “Import and
Export Data” which is included in the SQL Server 2016.

Welcome to SQL Serverimportand
e Export Wizard

This wizard helps you to create simple packages that import and |

export data between many popular data formats including databases,
spreadsheets, and text files. The wizard can also create the
destination database and the tables into which the data is inserted

To move or copy databases and their objects from one server
instance to another, cancel this wizard and use the Copy Database

\Wizard instead. The Copy Database Wizard is available in SQL
Server Management Studio.

™ Do not show this starting page again ‘

Help I Next > Cancel |

Picture 5.4.1 Tool for Import in SQL Server

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

Loading data in NEO4J

For loading data in NEO4J, we used the tool showed in the chapter 4.2, in the sub charter:
Importing CSV files with Cypher.

Example code to upload a csv with headers with data of People:

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/Neo4J/ELECTORAL ROLL.csv" AS row

CREATE (n:Person)
SET n =row

AIMPORTANT, for an optimized work we considered these important points.

e Forimporting we used always “USING PERIODIC COMMIT “.

e We split files greater than 3 million of rows or more, in files of 1.5
million maximum in one load.

e Always create index with the nodes and properties more usables.

Example the index for person for search by National ID is:
CREATE INDEX ON :People(NationallD)

- localhost c google translate 8 U & A & 8 3

Picture 5.4.2 Tool for Import in Neo4)

file://///Neo4J/PADRON_100.csv

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

5.5) Comparative Queries (Neo4j vs SQL Server 2016)

We will run X number of queries to compare the performance. It is will be running in Cypher Query
Language and Structure Query Language for comparing the expressivity of both technologies.

1) Search the country and the city where a Citizen of Costa Rica, living abroad could vote. The
name of the citizen is “Esteban Zimanyi”:

@neoy] 45 server

2016

MATCH (p:Person)-[:VOTING_ON]->(District)- SELECT c.city as Country, d.district as
[IS_IN]->(City)-[PART_OF]->(Province) EmbassyCity

WHERE p.LastName = 'ZIMANYI' AND p.FirstName FROM District d, Person p , City c, Province pr
WHERE d.district_id = p.PollingPlaceId and

- ESTEBAN . d.city_id = c.city_id and
RETURN City.city_name as Country , c.province_id - pr.province_id
District.district_name as EmbassyCity - and p.LastName = 'ZIMANYI' AND
P.FirstName = 'ESTEBAN'
[H Results [y Messages
‘ Country EmbassyCity
g county EmbassyCity 1 éBELGICA | BRUSELAS
BELGICA BRUSELAS

anco (52) Padron_Electoral 00:00:01 1 rows

1.1 In the same way of this query, showing graphically the connections of the graph

MATCH (p:Person)-[*]->(Province) It is Not Possible to do it in Sql Server
WHERE p.LastName = 'ZIMANYI' AND p.FirstName =
"ESTEBAN'
RETURN *
e (oo L) WHERE b st © oTMANET RuD oo L X S 0

. O District)]
cen

=l

<S>

Displaying 4 nedes, 3 relationships (completed with 3 additional relationships). AUTO-COMPLETE ([ON

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

2) Count the number of citizens (People) who voting in each district (Polling Place):

@ neOAJ &, %QWI'_ Server

2016
MATCH (Person)-[:VOTING_ON]->(District) SELECT d.district as 'PollingPlace', count(*) as
RETURN District.district_name as ‘Number of People’
PollingPlace, count(*) as NumberofPeople FROM District d, Person p

WHERE d.district_id = p.PollingPlaceld

order by District.district_name GROUP BY d.district order by PollingPlace

MATCH (Person)- [:VOTING ON)-» (District) RETURN District.district nam L X S O E Results 13 Messages
BB PollingPlace NumberofPeople - PollingPlace Number of People A
Rows 1 GARITA 3224
GARITA 3224
2 LLANO GRANDE 178
¢/> LLANO GRANDE 178
. 3 ABANGARITOS 308
ABANGARITOS 308
4 ABROJO NORTE(VEGAS ABRON) 596
ABROJO NORTE(VEGAS ABRO N) 506
ABROOMONTEZUMA . 5 ABROJO-MONTEZUMA 265
ASUNDANGIA ws 6 ABUNDANCIA 955
ACAPULCO 434 7 ACAPULCO 434
ACOYAPA 7 8 ACOYAPA 271
AGUA AZUL 108 9 AGUA AZUL 109
AGUA BLANCA (PARTE NORTE) 573 10 AGUA BLANCA (PARTE NORTE) 573
AGUA CALIENTE 247 11 AGUACALIENTE 502
AGUA CALIENTE 255 12 AGUABUENA 27
AGUABUENA 2271 13 AGUACATE 84
AGUACATE 84 14 AGUAS BUENAS 337
AGUAS BUENAS 337 15 AGUAS CLARAS 1555 v
AOUAS CLARAS B4 N ESVIV\avivanco (52) Padron_Electoral 00:00:01 1644 rows
Returned 2038 rows in 21810 ms, displaying first 10 S
3) Count the number of citizens (People) who voting in each City:
H Microsoft”
ﬁeOAJ < SQLServer
2016
MATCH (Person)-[:VOTING_ON]->(District)- SELECT c.city as 'City', count(*) as 'Voters'
[IS_IN]->(City) FROM District d, Person p , City c
RETURN City.city name as City, count(*) as WHERE d.district_id = p.PollingPlaceld and

d.city_id = c.city_id

Voters order by City.city name GROUP BY c.city order by City

MATCH (Peraon) - [:VOTING_ON]-> (District)-[15_IN)->(City) RETURN City.ci £ 1 Resulls 33 Messages
city Voters City Voters A
Bl /5ANGARES 13209 1 RBNCIEEN 13200

o ©aosr 2 ACOSTA 16027
AELTA 07 3 ALAJUELITA 49037
ALEMANIA " 4 ALEMANIA 241
ALVARADO 987 5 ALVARADO 9987
ARGENTINA 163 6 ARGENTINA 163
ASERRI 41820 7 ASERRI 41820
ATENAS 19643 8 ATENAS 19643
AUSTRALIA 72 9 AUSTRALIA 72
AUSTRIA 57 10 AUSTRIA 57
BAGACES 13059 11 BAGACES 13059
BARVA 31434 12 BARVA 31434
BELEN 18018 13 BELEN 18018
BELGICA 8 14 BELGICA 66
BELICE 7 15 BELICE 7 v
BOLIVIA 34
Retumed 118 rows in 57177 ms VIV\avivanco (52) | Padron_Electoral 00:00:02 118 rows

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

4) Count the number of citizens (People) who voting in the province of “Cartago”

@ neOAJ &, %le'_ Server

2016
MATCH (Person)-[:VOTING_ON]->(District)- SELECT pr.province_name as 'Province', count(*) as
[IS_IN]->(City)-[PART_OF]- 'Voters'
>(Province{province_name: 'CARTAGO'}) FROM DisFricF d,.Person p ,.City ¢, Province pr
RETURN Province.province_name as Province, WHERE d.district_id - p.PollingPlaceld and
count(*) as Voters order by d.city id = c.city id and

c.province_id = pr.province_id

and pr.province_name = 'CARTAGO'
GROUP BY pr.province_name order by
pr.province_name

Province.province_name

MATCH (Person)-[:VOTING ON]->(District)-([IS_IN]->(City)- (PART OF]->(Bx Results [y Messages
Province Voters
gg Province Voters]
o 1 CARTAGO : 374064
CARTAGO 374064 :
Returned 1 row in 20832 ms.
\avivanco (52) = Padron_Electoral 00:00:00 1 rows

5) Considering that in the data, exist information about people who living abroad but they are
voting in the embassies of Costa Rica over the world, count the number of citizens (People) who

voting in each Country, in this case the province is with the value of “CONSULADO” and order the
results in descendent order.

@ neOAJ &, %le'_ Server

2016
MATCH (Person)-[:VOTING_ON]->(District)- SELECT c.city as 'Country' ,count(*) as 'Voters'
[IS_IN]->(City)-[PART_OF]- FROM District d, Person p , City c, Province pr
>(Province{province_name: 'CONSULADO'}) WHERE d.district_id = p..PollingP.lace.Id and
RETURN City.city_name as Country, count(*) as _ . .. dr:C1:g'\/—il:C; icd‘C1ty—1d and
Voters order by Voters desc P - pr-p =

and pr.province_name = 'CONSULADO'
GROUP BY «c.city order by Voters desc;

¥ ° T Results) Messages

Country Voters - Counlty ____ Vaters A

Bl r=Tacos winos 15131 1 | ESTADOS UNIDOS | 15131
canaga . 2 CANADA 725
uEXICO st 3 MEXICO 619
ESPAGA 0 4 ESPANA 504
PANAMA . 5 PANAMA 406
GUATEMALA 20 6 GUATEMALA 203
VENEZUELA 202 7 VENEZUELA 202
NICARAGUA P 8 NICARAGUA 241
ALEMANA P 9 ALEMANIA 241
FRANCIA 229 10 FRANCIA 229
coLoMBiA 227 11 COLOMBIA 227
EL SALVADOR 217 12 ELSALVADOR 217
suiza 20 13 SuiZa 208
HONDURAS s 14 HONDURAS 173
ARGENTINA 16 15 ARGENTINA 163

e s } 16 ITALIA 158 v

ivanco (52) Padron_Electoral 00:00:01 42 rows

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

6) Search friends of friends of the Person with National ID 100697455:

@neoqj

MATCH (Person {NationallD:

[:KNOWS*1..2]->(friend_of_friend)

RETURN DISTINCT friend_of_friend.FirstName,

friend_of_friend.LastName

ORDER BY friend_of_friend.FirstName ,

friend_of_friend.LastName

friend_of_friend.FirstName

ADELA

ALICIA DEL CARMEN
ANTONIA
ARNOLDO
CARMEN

CLARA ROSA
CONSTANCIA
EZEQUIEL
HERMINIA
JORGE RAFAEL
JOSE

MARIA CRISTINA
MARIA GERARDA
MARTA

RAFAEL
SOCORRO

Retumed 17 rows in 21733 ms.

friend_of_friend LastName

ZAMORA
ESPINOZA
RAMIREZ
MIRANDA
CORRALES
FERNANDEZ
ARIAS
LEON
MENA
SANABRIA
CASTRO
PADILLA
AMADOR
VILLALTA
AGUERO
UMASA

'100697455" }) -

Ie

Microsoft*

< SQLServer

2016

select distinct P.FirstName, P.LastName

from Knows , Person P

where Fid = P.NationalID and Pid IN (

Select distinct Fid from Knows

where Pid = 100697455) --order by P.FirstName,
P.LastName)

Union select distinct P.FirstName, P.LastName from
Knows , Person P where Fid = P.NationalID and Fid
IN (Select distinct Fid from Knows

where Pid = 100697455) order by P.FirstName,
P.LastName

Results [J3 Messages
FirstName LastName
1 ADELA | ZAMORA
2 "ALICIADEL CARMEN ESPINOZA
3 ANTONIA RAMIREZ
4 ARNOLDO MIRANDA
5 CARMEN CORRALES
6 CLARA ROSA FERNANDEZ
7 CONSTANCIA ARIAS
8 EZEQUIEL LEON
9 HERMINIA MENA
10 JORGE RAFAEL SANABRIA
11 JOSE CASTRO
12 MARIA CRISTINA PADILLA
13 MARIA GERARDA AMADOR
14 MARTA VILLALTA
15 RAFAEL AGUERO
16 SOCORRO UMARNA
17 SOLEDAD SEQUEIRA
ivanco (53) Padron_Electoral 00:00:01 17 rows

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

7) Search friends of friends of friends (3™ Grade of Depth) of the Person with National
ID 100697455:

@neoy] P58 server

2016

select distinct P.FirstName, P.LastName
from Knows , Person P
where Fid = P.NationalID and Pid IN (
Select Fid
from Knows
where Pid IN (Select Fid
from Knows
where Pid = 100697455))
union
select distinct P.FirstName, P.LastName
from Knows , Person P
where Fid = P.NationalID and Pid IN (
Select Fid
from Knows
where Pid IN (Select Fid
from Knows
where Fid = 100697455))
union
select distinct P.FirstName, P.LastName
from Knows , Person P
where Fid = P.NationalID and Pid IN (
Select Fid
from Knows
where Fid IN (Select Fid
from Knows
where Fid = 100697455)) order by
P.FirstName, P.LastName

MATCH (Person {NationallID: '100697455'})-

[:KNOWS*1..3]->(friend_of_friend)

RETURN DISTINCT friend_of_friend.FirstName,
friend_of_friend.LastName

ORDER BY friend_of_friend.FirstName ,
friend_of_friend.LastName

MATCH (Person (NationalID: '100697455'})-[:KNOWS*1..3]->(friend of fr & X P | @ Results LjaMessages
ER friend_of_friend FirstName friend_of_friend.LastName FirstName LastName A
" ADELA ZAMORA 16 EZEQUIEL LEON
¢/> ADORACION OBANDO 17 GERMAN VARGAS
ALICIA DEL CARMEN ESPINOZA -IS HERM'N‘A MENA
:::‘;’E'D"D m:zi 19 HORTENSIA ESQUIVEL
AURELIA TREJOS 20 JORGE RAFAEL SANABRIA
BENIGNA CASTILLO 21 JOSE CASTRO
CARMEN CORRALES 22 JOSE CRUZ
CARMEN QCAMPO 23 JOSE MARIA SANDI
CARMEN ORTEZ 24 MARGARITA AGUILAR
e i 25 MARGARITA ALVARADO
R, pens 26 MARIACRISTINA PADILLA
EMILIO VINDAS 27 MARIADEL SOCOR... CHAVARRIA
ETELVINA PARRA 28 MARIA GERARDA AMADOR
EZEQUIEL LEON 29 MARIA REGINA CALVO v
Returned 33 rows in 23704 ms
W\avivanco (53) Padron_Electoral 00:00:03 @ 33 rows

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

8) Search friends of friends of friends (5t Grade of Depth) of the Person with National
ID 100697455:

@neoy] P $51 server

2016
select distinct P.FirstName, P.LastName
. Lo ' from Knows , Person P
MATCH (Person {Nat}onaIID. }00697455 - where Fid - P.NationalID and Pid IN (
[:KNOWS*1..5]->(friend_of_friend) Select Fid £rom Knows
RETURN DISTINCT friend_of_friend.FirstName, where Pid IN (Select Fid from Knows
friend of friend.LastName where Pid IN (Select Fid from Knows
TN Lt . . where Pid IN (Select Fid from Knows
ORDER BY friend_of_friend.FirstName , where Pid - 100697455))))
friend_of_friend.LastName UNION
select distinct P.FirstName, P.LastName
from Knows , Person P
where Fid = P.NationalID and Pid IN (
Select Fid from Knows
where Pid IN (Select Fid from Knows
where Pid IN (Select Fid from Knows
where Pid IN (Select Fid from Knows
where Fid = 100697455))))
UNION
select distinct P.FirstName, P.LastName
from Knows , Person P
where Fid = P.NationalID and Pid IN (
Select Fid from Knows
where Pid IN (Select Fid from Knows
where Pid IN (Select Fid from Knows
where Fid IN (Select Fid from Knows
where Fid = 100697455))))
UNION
select distinct P.FirstName, P.LastName
from Knows , Person P
where Fid = P.NationalID and Pid IN (
Select Fid from Knows
where Pid IN (Select Fid from Knows
where Fid IN (Select Fid from Knows
where Fid IN (Select Fid from Knows
where Fid = 100697455))))
UNION
select distinct P.FirstName, P.LastName
from Knows , Person P
where Fid = P.NationalID and Pid IN (
Select Fid from Knows
where fid IN (Select Fid from Knows
where Fid IN (Select Fid from Knows
where Fid IN (Select Fid from Knows
where Fid = 100697455))))
MATCH (Person [NationallD: '100637455"))-[:KNOWS*1..5]-> (Eriend of £ L X S O 3 Resulls [}5 Messages
~ FirstName LastName ~
R friend_of friend FirstName friend_of_friend.LastName ; !
= 1 | ADORACION ;| OBANDO
ADELA SANORA 2 ALICIADEL CARMEN ESPINOZA
<[> ADORACION OBANDO 3 CARMEN OCAMPO
ALICIA SANAHUJA 4 CARMEN PORRAS
ALICIA DEL CARMEN ESPINOZA 5 CLAUDIO JIMENEZ
ANICELTELA CAMACHE 8 CONSTANCIA ARIAS
ANTORIA RAMIREZ 7 DELFIN ELIZONDO
ARNOLDO MIRANDA 8 DORA UMAK‘A
AURELIA TREJOS 9 ENOC MORALES
BEMGHA CASTILLE 10 EZEQUIEL LEON
BETTILA BONILLA 11 HORTENSIA ESQUIVEL
CARVEN CORRALES 12 LETICIA CHINCHI._.
CARMEN OCAMPO 13 MANUEL DELGADO
CARMEN o 14 MARGARITA AGUILAR
CARMEN FoRRAS 15 MARIA CRISTINA PADILLA
CARMEN RODRIGUEZ 16 MARIA GERARDA AMADOR
AR viLaeRes ’ 17 OFELIA CUBILLO v
Returned 62 rows in 22139 ms - e [
) ANDRESVIM\avivanco (53) Padron_Electoral 00:02:13 62 rows

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

9) Let’s suppose, that we want to connect or introduce two people between them, we
don’t know the name of the relationships or nothing about how they can be connected, the
unique data that we have is just the two National Ids. We want to know how can connect
them in a short way possible.

Search the Shortest Path between Two People with NationallDs “100697455 “and
“101018697”

@ ﬂeOL'j & ngI'_ Server

2016
MATCH p=shortestPath(
(a:Person {NationalID: '100697455'})-[*]-

(b:Person {NationalID: '101018697'}) It is Not Possible to do it in Sqgl Server
) because for create a query, is necessary to
RETURN p know previously which relationships are in the

middle, but it could violate the constraint
that we stablished for this query.

Districti 1}

A iw

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

10) We want to know all the circle of friends of friends. given a NationallD of a person.

Find all friends of friends possible for one person, in another words, search friend of

friends of friends... until the last one that exist, to do it for the Person with the NationallD
“111480058”

@ N eOL|j % gQwﬁ Server

2016
MATCH (Person {NationalID: '111480058'})-
[:KNOWS*]->(friend_of_friend)

RETURN DISTINCT friend_of_friend.FirstName, It is Not Possible to do it in Sql Server
friend_of_friend.LastName because for Sql always 1is needed to
ORDER BY friend_of_friend.FirstName , stablish the grade of depth of friendship

friend_of_friend.LastName

MATCH (Person {NationallD: '111480058'})-[:KNOWS*]->(friend of_friend)

e

g friend_of_friend.FirstName friend_of_friend.LastName
" ANA CAROLINA MORALES
<P ANDREA PATRICIA PORRAS

KATTIA NAVARRO

MANUEL JOSEPH MONGE

TAYRON CASTILLO

VIVIANA RIVERA

WILLIAM ALFONSO RAMIREZ

Returned 7 rows in 17294 ms.

10.1In the same way, we want to watch graphically the circle of friends of the query 9.

MATCH (Person {NationallID: '111480058'})-
[:KNOWS*]->(friend_of_friend)

RETURN DISTINCT friend_of_friend It is Not Possible to do it in Sql
Server
MATCH (Person (NationallID: ‘111480058"})-(:KNOWS*]->(friend_of_friend) L X S O
4

¢-8-¢
e

Displaying 7 nodes, 10 relationships (completed with 10 additional relationships). AuTo-comPLETE (G

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

5.6) Analysis of Results (Neo4j vs SQL Server 2016)

We worked in a Laptop (Microsoft Surface Pro 3) with the next features:

e Processor: Intel Pentium 5
e RAM: 8GB

We started from cero, in both databases, creating it, loading the data, creating the index
in Neodjand primary and foreign keys in SQL Server.

We created different types of queries for evaluate time execution and the expressivity.

Our conclusion per groups of Query is the next:

From Query 1 to Query 5: We can notice that these queries are simples query
without not too much data to search, and with information in 4 different tables in
SQL server, and in neo4j with 4 different types of nodes.
In this case SQL server had the best performance with the best time execution, for
each query, about the expressivity we can conclude that it could be similar, in both
cases for specific information we need to write each relationship or how the nodes
are connected to search the result.
But, for showing graphically the connections of one person like in the query 1.1,
neodj has an incredible functionality, and it is very friendly for the users, also the
expressivity of the query is significant, with less lines of codes.
Just we need to write the node to find, addressed to with node we want to know
the information, like for Example:

MATCH (p:Person)-[*]->(Province)

WHERE p.LastName = 'ZIMANYI' AND p.FirstName = 'ESTEBAN'
RETURN *

In this case only knowing the input data (Name of the citizen) and indicate the last
node that we want to know, in this case Province, we can obtain nodes and
relationships between both. Like this:

7 Pag, o

BELGICA

This important feature is named Traversal, and this is unique of graph model

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

From Query 6 to Query 8: We did queries about friends of friends, in different
grades of depth, in SQL server we used the table “knows” meanwhile in Neo4j the
relationship “knows”.

We can notice for this type of queries SQL was superior in time execution until
depth 3th, in another words “friends of friends of friends”. But our surprised was
when we run friends of friend with depth 5(Query #8), SQL server did it in more
than 2 minutes, whereas in Neo4j was less of one minute. The theory of the
differences of these types of queries was proven. Another significant point and
not less important is the expressivity, practically in neo4j for this type of query is
the same query just with different parameters, but do this types of queries in SQL
server, to major grade of depth, is major the number of code lines.

Query 9: For this type of queries, about the shortest path, the unique solution was
in Neo4l, neodj like is a graph, using the mathematical algorithm for do it, it could
be very helpful for example to know the shortest way between two places. For
doing it in SQL server is necessary to know the relationships and the result could
be a complex query, but we supposed that we don’t need to know information
about relationships or how the tables are connected.

Query 10: For this type of queries, the unique solution was in Neo4J, because in a
graph database we don’t need to indicate how to go to the information, just we
need to write what patrons or nodes we want to find. And the graph database
does it by itself. It is a powerful tool that could help in many circumstances to
explore information or inclusive in datamining, for example, to see connection
between people to avoid money laundering.

(NEO4J)-{:1S AJ->(GRAPH DATABASE)

6) Conclusion
The next are some important conclusions, to summarize whole work in the passionate world of

graph databases that we researched.

Leonard Euler resolved “The Konigsberg Bridge Problem”, but also create a math basis to
solve it

A Graph has Entities (nodes) and relationships (edges)

The nodes, and relationships could possess properties

The relationships have a named and direction to connect nodes.

A graph could be modeled with almost any technology, i.e. relational, but the main
differences is the performance, for example execution time

Linear cost to retrieve adjacent nodes: depends on the number of local neighbors
Graphs are whiteboard friendly in comparative with a RDBMS

Doing join queries in a graph database is more efficient and more expressive than a
relational database.

Traversal, is the operation of visiting a set of nodes in a graph, going between nodes
connected with the relationships, this operation is unique of a graph mode.

This is very powerful when the user wants to explore a set of data, because given double
click in the node, the user could watch more nodes related to it, and discovering
information, a little like datamining

Shortest path, is a function very helpful, for example to find the shortest path between
two places, or search the shortest path to introduce one person to another one like in the
social network LinkedIn.

Although, In the storing computing world, Graphs databases seems like the next step of the

relational databases, we can notice some important points to consider it.

Is not necessary leave to work with Relational DBMS, and just focus to work with a graph
database or just neodj, but perhaps, you can combine to work the graph database with
your traditional database, and use neo4j specially to find relationships in your database,
because the engine of the graph database is focusing in optimize search or relationships.
See a graph database like a search engine for relations
Due to the advantages of graph database we recommend to use it for:

o Fraud Detection, Money laundering

o Social Network

o Managing of relationship with good performance

o Exploring Data that you don’t know, just doing “Double click” you can discover
many things
Recommendations Systems (l.e. Amazon recommends to buy something, Netflix)
o Route Planning Systems

O

