
Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

INFO - H - 415
2017 - 2018

18 December 2017

Document stores and MongoDB
Project: Advanced Databases

2

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

Table of contents

1. Introduction to the scenario

1.1. Company activity and needs

1.2. Currently implemented solution

1.3. Future infrastructure requirements

2. NoSQL Databases

2.1. Introduction to NoSQL databases

2.2. Types of NoSQL databases

2.3. Infrastructure-compatible NoSQL databases

3. Document Store

3.1. Introduction to document-oriented databases

3.2. Comparison to relational databases

3.3. Document Store DBMSs

4. MongoDB

4.1. Introduction to MongoDB

4.2. Choice motivation

4.3. Install

4.4. Main operations (CRUD)

4.5. Particularities

5. Scenario using MongoDB

5.1. Scenario in action

5.2. MongoDB advantages and disadvantages

6. Conclusion

7. Bibliography

3

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

1. Introduction to the scenario

1.1. Company activity and needs

The startup requiring database consultancy is Nahmazon; a small online book store.

The company will start its commercial activities by selling books, but if its revenue is

decent enough, it will expand to related products and beyond.

At the moment, the startup would like to have databases that are easily manageable,

understandable and not too constraining. If tradeoffs exist, the company would like to

focus on ease of management and understanding.

In case the startup becomes successful, there will be need for expansion. As a result,

the chosen DBSA should be able to scale, admit new inventory and offer data security

by using cloud technologies or multiple backups.

1.2. Currently implemented solution

As the Nahmazon team did not dispose of sufficient time to analyze several solutions,

the startup went for the most popular solution: relational databases. Currently, the

databases are managed using SQL languages.

1.3. Future infrastructure requirements

As mentioned previously, the founders of Nahmazon hope to have massive sales and

become successful. In order to prevent future problems, they would like to have an

infrastructure that easily scales, admits new inventory and offers data security.

All in all, Nahmazon would like to know whether the choice of relational databases and

SQL languages is the most adapted to the company’s goals and, if not, what would be

a more suiting alternative.

4

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

2. NoSQL Databases

2.1. Introduction to NoSQL databases

2.1.1. Definition

NoSQL refers to a wide variety of models that don’t fit into the relational model. The

problems induced by Big Data have led to new ways of data storage and management

that don’t correctly fit into the well-known relational approach. That’s why this approach

has been named « NoSQL ».

The term NoREL (no relational) is an alternative name, as the only common aspect of

all NoSQL databases is their non-relational structure. NoSQL could have been named

according to this logic, thus meaning SQL is not required in order to manage NoSQL

databases. Instead, other query languages are used. NoSQL could also stand for “Not

only SQL” meaning that the systems use SQL along with other technologies and query

languages.

2.1.2. Main differences between SQL and NoSQL databases

2.1.2.1. Tables

SQL databases provide a store of related data tables. These are rigid; they have to be

modelled and created before any data can be manipulated. Once this model is

initialized, no major changes can be operated in the model.

ISBN Title Author Format Price

9000395807 MongoDB: A smart

implementation

Kaïs Albichari ebook 35.00

0000409718 Document Stores:

small introduction

Tanguy d’Hose ebook 40.00

Figure 1: book information structure

Every row of figure 1 represents a book record. In SQL, this structure is static. The

table can’t accept the storage or insertion of a wrong type of data. NoSQL databases

store their information in a JSON-like field-value pair document.

Figure 2: JSON-like field-value pair document

5

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

Similar documents are stored in a collection, which is equivalent to an SQL table. The

NoSQL DBMSs are more flexible: they accept data without any restriction on the

structure. For instance, new attributes could be added when creating a new document

for an existing object. These loosened restrictions make NoSQL databases very useful

when using agile development techniques.

One the one hand, SQL tables have a strict data model that prevents many mistakes

from happening. On the other hand, NoSQL loosened restrictions allow much more

actions, but the ability to store any type of data anywhere at any time could possibly

cause issues in the long run.

2.1.2.2. Schema

SQL databases require the definition of tables and field types before allowing data

manipulation. These are referred to as the schema. The schema can contain additional

information, such as primary keys, indexes, relationships and other functionalities such

as triggers and stored procedures.

The definition of the schema is close to the concept of static tables. The schema must

be designed before any manipulation on the data can occur. If, for some reason,

changes must be applied later, their execution could become complicated.

On the contrary, NoSQL databases have no need for a schema. As much information

as required can be added without having to create a new collection for it. For instance,

the insertion of a document in a “book” collection can be executed without having

created the collection on beforehand. The execution of the insert operation will create

the collection implicitly and proceed to inserting the document within this new

collection.

2.1.2.3. Scalability

NoSQL databases are perfectly suited for horizontal scaling. This means that the data

can be split across multiple computers that do not need to know the partitions of data

contained on the other computers in order to perform their tasks. In other words, the

database is shared among a pool of servers. The main advantage of this approach is

that the architecture can be adapted depending on the load. This adjustment is

achieved by building a clustered environment, which is a way to perform tasks much

more efficiently and independently.

Even though relational DBMSs could also scale horizontally, clustering will make data

management a lot harder. SQL DBMSs will rather « scale up », or scale vertically,

meaning that resources are added to the single machine/server in order to increase its

performances and be able to support the load.

6

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

2.1.2.4. Normalization

Minimizing redundancy can be achieved in SQL databases by applying normalization.

If a “publisher” attribute was to be added to a “book” record, it wouldn’t be optimal to

repeat all information about a publisher in every concerned book record. In order to

avoid this from happening, a new table storing publisher’s information should be

created. This table could be related to the book table by sharing information, the

publisher’s ID for instance. If the publisher has to be updated, this can now be done

without having to update information in several book records.

The same principle can be applied to NoSQL databases. Although, this process isn’t

always practical. This is the main reason why denormalization is usually applied: all

“book” records will contain all information concerning their related “publisher” data

object. Since all required information is nested within a same file, it obviously leads to

a faster querying speed. When updating a publisher’s information, all related books will

also be updated, resulting in a significantly slower update speed.

The use of denormalization in NoSQL databases is due to the lack of a JOIN operator.

In case books were have to be joined with publisher’s information, all book documents

and all publisher documents would have to be fetched and then all should be linked

manually. It goes without saying that this operation is quite time-consuming simply to

achieve a join.

2.1.2.5. Data integrity

The capability of enforcing the data integrity using foreign key constraints is a direct

consequence of the schema structure in SQL. Foreign key constraints ensure the

validity of the key of all records possessing them, thus guaranteeing an entry in the

correct table.

Unfortunately, these also introduce new difficulties: removing an entry is impossible

while an object is still using a key referring to it. The use of constraints prevents

developers or users to add, edit or remove records that if added, edited or removed

would lead to invalid data.

In NoSQL databases, data integrity options don’t exist. Since a single document is the

source of all information regarding a specific data object, data can be added, edited or

removed without having to take other documents into account.

7

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

2.1.2.6. Transactions

SQL databases implement the concept of “transaction”, allowing database managers

to execute multiple updates at the same time. This results in a success or fail for all

planned updates. The use of transactions is really useful when it comes to data

integrity.

As multiple documents cannot be updated simultaneously, NoSQL databases do not

implement the concept of transactions. However, the modification of a single document

is atomic, meaning that the update of multiple values will either lead to a success or

fail of all updates.

2.1.3. Characteristics

The term “NoSQL” is used to refer to a particular group of DBMSs that share some

common characteristics. In some cases, they might not share all of these.

2.1.3.1. Non-relational

Being non-relational means that the relational model, as proposed by E. F. Codd in

1970, does not fit the requirements. This could be related to having mainly semi- or

unstructured data. Another reason could be that the system would eventually need to

scale to a large number of computers.

2.1.3.2. Open Source

Being open source is not a requirement for a NoSQL DBMS, but most of the NoSQL

DBMSs are open source. Moreover, the NoSQL movement tends to assemble multiple

organizations to contribute to developing a single solution.

2.1.3.3. Lack of adherence to ACID principles

ACID stands for Atomicity, Consistency, Isolation and Durability. The aim of all NoSQL

DBMSs is to provide high availability and scalability across clustered environments,

which means that they could lose in durability or consistency, or at least have to find a

balance between these properties.

2.1.3.4. No standard query language

There is no standard query language supported by all NoSQL databases. Some of

them have their own query languages, while others can support various languages

such as JSON, XQuery, etc.

8

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

2.2. Types of NoSQL databases

There are 4 families of NoSQL databases. Since this document focuses on document

stores, the 4 families will be briefly explained. In addition to document stores, there

exists column stores, key-value stores and the graph stores.

2.2.1. Column Stores

Column stores are also referred to as “extensible record sets”, these databases share

some similarity with traditional databases in their use of rows, columns and tables. The

main difference is that columns are created for each row, instead of being created by

the table structure.

A simple way to visualize this is to consider them as key-value collection where each

value can either be a simple data or another key-value collection.

2.2.2. Key-Value Stores

Key-value databases are much faster than their equivalent relational database. This is

because key-value databases are conceived in a much simpler way. In these

databases, the data records use a primary key to uniquely identify the items.

The increased time-efficiency lies in the fact that the database ignores the type of data

that is being stored. It is the application side’s job to know how to interpret the data that

is being retrieved and stored. Since each operation only requires one hard drive disk

access, it allows faster lookups and data saves within the database.

2.2.3. Document Stores

Document stores use the concept of documents instead of tables. These documents

are designed to handle semi-structured data, which wouldn’t fit at all in the relational

model.

Whilst the database system does not interpret the data in the key-value stores, a

document store is aware of the structure of the stored data. A document can contain

different pairs of key-value, key arrays and even nested documents. Different

documents can also be grouped into a collection. As document stores form one of the

larger topics of this document, they will be explained more profoundly later.

9

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

2.2.4. Graph Databases

Some databases keep the items in a list, using an index to travel through these items.

Graph databases have a graph structure, where each node contains its own

information and information about how it is related to other nodes using pointers.

Graph databases are useful when working with a system in which a lot of links exist

between different data objects. This kind of data management is most useful when

relationships between stored data objects are important. Therefore, the use of famous

algorithms such as the shortest path is a must.

Even though graph databases seem to be the perfect solution for several types of

systems and architectures, it cannot always guarantee a better performance: when

data is frequently updated, the performance of the system will suffer.

2.3. Infrastructure-compatible NoSQL databases

Nahmazon will require its databases to store potentially massive amounts of products,

but also user information and additional information such as comments, reviews, lists

of producers and so on. As relational databases are too constraining for rapid

expansion and secured backups, we will choose amongst NoSQL databases.

Though all NoSQL databases could potentially be infrastructure-compatible, they

aren’t necessarily suitable. The main goal of Nahmazon is to sell products, these aren’t

necessarily related and could potentially be stored in huge amounts and have different

characteristics. Column stores and Key-Value stores will require lots of updates. Graph

databases will not be efficient as all entities aren’t necessarily related. For that reason,

document stores seem to be the most suitable choice for an online sales startup.

10

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

3. Document Store

3.1. Introduction to document-oriented databases

Most products that require data storage and manipulation use relational databases.

Relational data-schemas are simple and straightforward. In most applications, it makes

sense to represent objects as being sets of relationships. Because these relationships

between different types of data are specified within the database schema, the

database can be queried using a Structured Query Language (SQL). But, the evolution

of data environments and programming techniques also required evolution in database

types:

- The introduction of cloud computing significantly decreased deployment and

storage costs, but required data to be spread across multiple servers easily

without any disruption. Using traditional relational databases for complex cloud-

based projects requires multiple large tables to be joined together in order to

execute a query. Executing distributed joins is a very complex problem when

using relational databases.

- The growing popularity of social-based projects, such as social networks, has

boosted the need for unstructured data storage. SQL databases are very

efficient at storing structured data, but require workarounds and compromises

when it comes to querying unstructured data.

- Agile development techniques require databases to change easily and rapidly

reflecting changes in demand and requirements. As SQL databases require the

structure to be specified in advance using relationships, time consuming ALTER

operations would be necessary to adjust the structure to the requirements.

To loosen the restrictions on the database schema, new ways of storing data, such as

the previously discussed NoSQL, have been introduced. These new ways allow data

to be grouped together more naturally and logically.

Document stores is one of the most popular ways to store data. A document store

database uses a document-oriented model in order to store data. Document store

databases store each record and its associated data within a single document,

meaning that everything related to a database object is encapsulated together. This

way of storing data offers multiple advantages:

- Documents are independent units, making performance better and increasing

the ease to distribute data across multiple servers.

- Application logic is easier to write. There’s no need for a translation between

application objects and SQL; objects can directly be turned into a document.

- Unstructured data can be stored easily, since the documents contain all keys

and values required by the application. As a result, the database doesn’t require

to know the schema in advance and costly migrations can be avoided.

11

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

Document store databases are characterized by powerful indexing features and query

engines. These features are aimed at increasing the ease and speed of execution of

many different optimized queries.

Typically, documents inserted into document store databases are created using XML

or JSON. A document representing a ‘Student’ object could look like this:

Figure 3: XML Student object

Figure 4: JSON Student object

12

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

3.2. Comparison to relational databases

As mentioned previously, document store databases don’t require the specification of

the database schema, whereas relational databases rely on a rigorously defined

database schema. If we would like to create a relational database matching the

documents of figure 3 and figure 4, it would look like this:

Figure 5: Relational equivalent of Figures 3 and 41

We notice that stand-alone documents require multiple tables and relationships linking

them together using primary and foreign keys if they were represented in a relational

model.

3.2.1. Main differences between document store and relational databases

3.2.1.1. NoSQL

Document stores use the previously mentioned NoSQL language in order to manage

their data. This not the case for all database types; most relational databases use SQL

as standard query language.

3.2.1.2. Tables

Relational databases use multiple tables in order to store data. Each one of those

tables contains columns, reflecting attributes, and rows representing records. The

information about any entity could be contained in one or spread amongst multiple

tables. Relationships are used to link associated data from different tables.

Document databases don’t use tables. Instead, they store all data related to a given

entity within a single document. As all associated data is stored inside the same

document, relationships aren’t necessary.

1 Anonymous. Session 1 – Active Databases (1/3) [Exercice notes]. Retrieved from

http://cs.ulb.ac.be/public/_media/teaching/infoh415

13

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

3.2.1.3. Schemas

When using relational databases, a schema must be provided or created before

loading any data into the database. Document stores (and most of NoSQL databases)

do not require a previously defined schema in order to function; data can be loaded

into the database without having defined any schema.

Having no defined schema means that document stores can take advantage of

loosened restrictions when it comes to insertions: two documents could have a different

structure and contain different data while still being similar records. For example,

inserting a new student in the relational database that would correspond figure 3 would

be done this way:

Figure 6: insertion of new student in relational model corresponding to figures 3 and 4

If one of the values isn’t specified and not required, the record is still inserted but the

missing value is set to null or a specified default value. When two documents differ in

this same way, the value that isn’t specified isn’t at all part of the record.

3.2.1.4. Scalability

Document stores easily scale horizontally. They’re perfectly suited for sharding: being

stored over many thousands of computers whilst maintaining a well-performing

system. Relational databases are best suited for vertical scaling. As there exists a limit

to the quantity of resources that can be fit inside a machine, horizontal scaling is the

best long-term solution and relational databases are considered as being poorly

scalable.

3.2.1.5. Relationships

Relational databases use foreign keys in order to enforce relationships between tables.

This concept doesn’t exist in document stores. If a link, similar to a relationship in

relational databases, exists between documents, the application level would be in

charge of handling it.

However, the document store philosophy is to centralize all information related to an

object within the same document. Therefore, the need to establish any relationship

between documents is less common than in the relational model.

14

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

3.3. Document Store DBMSs

As document store databases have gained popularity throughout last years, the

number of document store DBMSs have also increased. Here is a non-exhaustive list

of these database management systems:

- BaseX - CrateIO - Informix - OrientDB

- Caché - DocumentDB - Jackrabbit - RethinkDB

- Cloudant - ElasticSearch - MarkLogic - SimpleDB

- CouchDB - HyperDex - MongoDB - TokuMX

As MongoDB is by far the most popular document oriented DBMS, we will continue the

exploration of document stores trough MongoDB.

4. MongoDB

4.1. Introduction to MongoDB

MongoDB is the most popular document store database. It offers flexibility and

scalability. From a development point of view, it is simple for developers to learn and

use.

The key features of MongoDB are:

• Stores data in flexible, JSON-like documents

• Data can easily be accessed and analyzed using ad hoc queries, indexing

and real-time aggregation

• Distributed database, offering high availability, possibility for horizontal

scaling and geographic distribution

• Free and open-source

4.2. Choice motivation

MongoDB is a well-known document oriented DBMS. Throughout the years it has

gained in popularity and is increasingly used in applications. The choice of MongoDB

enables us to familiarize with newer types of databases, but also to understand why

these types of databases are more suited for some software. All in all, we hope this

project will give us insight about document oriented databases, and will push us to use

MongoDB when developing software that doesn’t necessarily need relational

databases.

15

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

4.3. Install

The installation of MongoDB is rather easy. The installation can be done through

Homebrew by following the steps described in MongoDB’s documentation. In this

document, the classical way of installing will be described: the manual install.

These are the steps to follow:

1. Download MongoDB’s binary

2. Extract the files from the downloaded archive

3. Copy the extracted file to the target directory

4. Ensure the location of the binaries is in the PATH variable

If any difficulties appear when trying to install MongoDB, it is useful to consult their

online documentation as it is very complete.

4.4. Main operations (CRUD)

For practical purposes, all operations will be described in Mongo Shell. The syntax of

these operations is very similar to the syntax used for combining Mongo with other

languages.

4.4.1. Create Operation

The create operation will add a new document to a collection. As mentioned previously

in the document, if the collection doesn’t exist yet, the operation will create it first before

adding the new document to it. MongoDB distinguishes two methods to insert

documents in a collection:

Figure 7: MongoDB’s insertion commands

If a new book was to be added to the books collection, the following MongoDB

operation would handle it:

Figure 8: MongoDB’s insertion of a record

16

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

If several new books were to be added, the insertMany function would be the one to

handle the operation:

Figure 9: MongoDB’s insertion of a record

All writes are atomic at the level of a single document. Figure 9 is also a perfect

example of loosened restrictions as the second inserted book does not specify the

format.

4.4.2. Read Operation

The read operation will retrieve a document from a collection. In other words: it queries

a collection for a specific document. MongoDB implemented the following methods to

do so:

Figure 10: MongoDB’s read commands

As expected, criteria or query filters can be specified in order to identify the documents

that should be returned. Thus, querying for a book written by Kaïs Albichari can be

done by executing the following operation:

Figure 11: MongoDB’s specific read commands

17

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

If only one result was required, the use of the findOne method is more appropriate.

MongoDB has lots of possibilities when it comes to specifying criteria:

Figure 12: MongoDB’s specific read commands

The examples above show that MongoDB can execute the same operations as the

classical SQL language. As there are a lot of possibilities for different query types and

operations, this document will not go further into the details. Nonetheless, all

possibilities are listed in MongoDB’s online documentation.

4.4.3. Update Operation

The update operation aims to modify the information of one or multiple records of the

document store. MongoDB implements this operation trough three methods:

Figure 13: MongoDB’s update commands

The first two methods represent classical updates similar to the SQL INSERT

command. The last method can be considered as a shortcut for deleting a record and

replacing it by a new record. The syntax of these operations follows the conventions

established for the previous operations:

Figure 14: MongoDB’s specific update commands

Figure 14 shows how to update all books written by the same author. Interestingly,

MongoDB’s methods are very readable and easy to use.

18

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

4.4.4. Delete Operation

As usual, MongoDB implements multiple methods for the deletion of records. The two

methods in charge of deleting records in MongoDB are:

Figure 15: MongoDB’s delete commands

When deleting all records concerning a book of a same author, the command will be

as follows:

Figure 16: MongoDB’s specific delete command

4.5. Particularities

A particularity of MongoDB is its capacity to execute bulk actions. Some simple

examples of these kinds of actions are the insertMany, updateMany and deleteMany

methods. Of course, SQL also allows multiple updates and deletions using one

operation. MongoDB surpasses these standard operations by implementing the

bulkWrite method.

This method enables the user to specify multiple types of operations, execute them

simultaneously and get a feedback.

Figure 17: MongoDB’s bulkwrite command

This method generates a feedback with all information regarding the number of

updates, deletions, insertions, etc.

19

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

5. Scenario using MongoDB

5.1. Scenario in action

5.1.1. Problem’s exposure

As mentioned previously, the startup named Nahmazon is using a classic relational

database. However, the possible expansion of this startup, whether in international

presence or inventory size, is a potential problem for the current SQL-based relational

database management system.

Entities could potentially change multiple times or be declined in multiple ways, and

product-specific social features could be implemented. It becomes obvious that

Nahmazon will be confronted to unstructured data in large quantities without

necessarily requiring relationships between entities.

For that reason, we believe a non-relational model would fit better. A part from the

strictly conceptual point of view, the expansion of Nahmazon will require server-side

investments. As relational models do not scale horizontally easily, the company will

have to invest in expensive servers. If the company opts for a NoSQL approach,

horizontal scaling becomes the best possibility. Popular DBMSs such as MongoDB

allow the server to be divided in pools where more affordable machines could manage

only some of the data. Consequently, MongoDB would be a perfect fit for the company.

5.1.2. Migration from SQL data to MongoDB

It is crucial the problem is handled before the startup really grows. Therefore, we

suggest a migration from the SQL infrastructure to an equivalent MongoDB setup. For

this purpose, we use a software called Mongify. This software makes migrations from

SQL to Mongo something trivial and well executed.

To install the software, simply open the terminal and run following command:

Figure 18: Mongify install command

Once the installation is completed, open the database.config file to create the

connection for both the relational database and MongoDB. The command “mongify

check -c database.config” checks the connection of the SQL and the NoSQL

databases.

The most important part of the process is the command “mongify translation -c

database.config”. It will obviously translate the structure of the SQL database into a

MongoDB structure.

20

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

It is interesting to pipe the translation into a file with the command “mongify translation

-c database.config > ‘translation_file’”. Having this file allows the user to specify some

behavior he’d like to have in the MongoDB database, such as an equivalent of foreign

keys.

As previously mentioned, the NoSQL model does not work with keys. However, the

startup’s current database is managed using SQL. In other words, the current

infrastructure relies on keys. For that reason, during the translation, the user can

specify in which place some value has to be the same as another.

The final command is “mongify process ‘translation_file’ -c database config”. After

these 3 commands, and possibly some modifications in the translation file, the

migration is completed. From now on, Nahmazon can start working with this brand-

new database.

5.1.3. Comparison SQL – MongoDB

Some runs have been set to check the viability of the proposed solution. At this end,

let’s consider 3 data sets DS1, DS2, DS3 of 500, 5000 and 50 000 records respectively.

5.1.3.1. Select operation

Data Sets sqlite MongoDB

DS 1 12 ms 15 ms

DS 2 66 ms 2681 ms

DS 3 798 ms 12173 ms

21

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

5.1.3.2. Insert operation

Data Sets Sqlite MongoDB

DS 1 34609 538

DS 2 422731 4122

DS 3 3947183 42696

5.1.3.3. Deductions

The graphs show that these are two inverse behavior, where sqlite is faster for a

great amount of selections, while MongoDB is faster with insertions.

However, for DS2 and DS3, the larger sets, the execution time for a selection with

MongoDB is better than the execution time for an insertion with sqlite.

As the startup wishes to expand his activity, a great amount of incoming data is

predictable.

It goes without saying that the insertions of these data won’t be a problem with

MongoDB. With the startup expanding, there will be a huge number of insertions,

which would take too much time with sqlite.

5.1.4. Current scenario : SQL vs MongoDB

22

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

Figure 19: current infrastructure in SQL

Figure 20: current infrastructure in MongoDB

Though differences may seem small between the two infrastructures, the real structural

need for MongoDB is still unclear as the differences are quite small. Fortunately, the

next section clearly depicts why MongoDB is the best choice for Nahmazon.

5.1.5. Future scenario: SQL vs MongoDB

As mentioned previously, the startup’s ambition to develop and expand their current

inventory is one of the elements that has led to the migration to MongoDB. For

instance, the Sale table in the SQL structure is using a foreign key pointing to a book

record. This means that there will always be a field pointing to the Book table. Unless

all the future products the startup will sell in the future are already present in the

database, the Sale table will have to be modified to include each new product. As a

result, the sale table will be enormous and full of None values.

When using MongoDB, the Sale collection hasn’t any constraint concerning its fields.

The variety of recorded products can grow without the needing to change the

23

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

collection’s structure: the field currently used for the Books, could easily be used for

any other product.

Figure 21: partial future infrastructure in SQL

When designing a future infrastructure in SQL, different entities make everything more

complicated: all entities have their own structure and keys. As Nahmazon clearly stated

it would like to increase ease of management, such a infrastructure wouldn’t be

compatible with their possible expansion.

When replicating a similar infrastructure using MongoDB, we quickly notice that the

fact that it accepts unstructured data simplifies the architecture.

24

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

Figure 22: partial future infrastructure in MongoDB

When using MongoDB, all items of the inventory can be generalized to an Item without

having to consider each item’s particularities. As data is unstructured, all item specific

keys and additional features can also be customized case by case. All in all, apart from

scaling, security trough sharding and ease of management, MongoDB also offers ease

of structural design.

5.2. MongoDB advantages and disadvantages

5.2.1. Pros

MongoDB offers several advantages. First of all, the fact that MongoDB is free and

open source enables any startup to use it and run it on a Linux server. The budget that

would otherwise have gone into DBMS-costs can now be used for other needs of the

company.

Next, the schema-less aspect of MongoDB is perfectly adapted for an eternally

changing platform. This enables the company reconsider its infrastructure at any time

and always have a database structure that corresponds to their needs.

The horizontal scalability perspectives offered by MongoDB is hugely interesting for a

company such as Nahmazon. Trough sharding, MongoDB makes it possible to go

beyond hardware limitations and distributes the data across multiple physical

partitions. By adding more machines, the working set will beneficiate from more RAM.

Finally, MongoDB supports replica sets. This means that it is capable to handle the

failover mechanism. If the primary server goes down for any reason, the secondary

server takes the upper hand and becomes the primary server. As MongoDB

automatically handles this, no human intervention is required.

5.2.2. Cons

First of all, due to denormalization and the presence of field names in each document,

the size of the database will be larger than when using a relational model.

Next, the absence of JOIN operator makes queries less flexible. Even though

denormalization is able to handle JOIN-like requests, update queries will be slower.

Finally, the available RAM is what determines to limitations of the database. If the

database grows in a way that wasn’t predictable, the lack of RAM could lead to failed

insertions, without any warning.

6. Conclusion

25

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

Concerning the objective, it is obvious Nahmazon needs to change its infrastructure

and move its data to MongoDB. The features offered by MongoDB fulfil all their

requirements, making it the best option for comfortable data management and

company expansion.

Concerning the project, this project has been really useful to discover the wide variety

of database paradigms and DBMSs. The research of NoSQL, document stores and

MongoDB has clearly shown us that there is much more than only relational databases

and SQL.

Aside from opening our perspectives on the world of databases, this project has shown

us that research is important when building software: it is important to know what is to

be achieved and expected, but also know about all the constraints and ultimately find

the best suiting infrastructure

7. Bibliography

Amazon Web Services, Inc. (2017). Présentation de NoSQL – Amazon Web Services (AWS). [online]
Available at: https://aws.amazon.com/fr/nosql/?nc1=h_ls [Accessed 1 Dec. 2017].

Basho. (2017). Document Databases. [online] Available at: http://basho.com/resources/document-
databases/ [Accessed 1 Dec. 2017].

Basho. (2017). NoSQL Databases. [online] Available at: http://basho.com/resources/nosql-databases/
[Accessed 1 Dec. 2017].

Database.guide. (2017). What is a Document Store Database? | Database.Guide. [online] Available at:
http://database.guide/what-is-a-document-store-database/ [Accessed 1 Dec. 2017].

Mongify.com. (2017). Mongify - Move data from SQL to MongoDB with ease - Transforming your data
from sql to MongoDB in a few simple steps - Mongify.com. [online] Available at:
http://mongify.com [Accessed 18 Dec. 2017].

MongoDB. (2017). Document Databases. [online] Available at: https://www.mongodb.com/document-
databases [Accessed 1 Dec. 2017].

MongoDB. (2017). NoSQL Databases Explained. [online] Available at:
https://www.mongodb.com/nosql-explained [Accessed 1 Dec. 2017].

26

Kaïs Albichari 000395807 M-INFOS
Tanguy d’Hose 000409718 M-INFOS

MongoDB. (2017). What Is MongoDB?. [online] Available at: https://www.mongodb.com/what-is-
mongodb [Accessed 1 Dec. 2017].

Msdn.microsoft.com. (2017). Data Points - What the Heck Are Document Databases?. [online]
Available at: https://msdn.microsoft.com/en-us/magazine/hh547103.aspx [Accessed 1 Dec.
2017].

SearchDataManagement. (2017). How to determine which NoSQL DBMS best fits your needs. [online]
Available at: http://searchdatamanagement.techtarget.com/feature/How-to-determine-which-
NoSQL-DBMS-best-fits-your-needs [Accessed 1 Dec. 2017].

Sisense. (2017). Postgresql vs. MongoDB for Storing JSON Database | Sisense. [online] Available at:
https://www.sisense.com/blog/postgres-vs-mongodb-for-storing-json-data/ [Accessed 1 Dec.
2017].

