
info-h-515:
part big data management
Lecture 3: Velocity and the λ-architecture
.

Stijn Vansummeren
February 25, 2019



..remember the v’s ?



the challenges of big data.

Source: http://www.ibmbigdatahub.com/sites/default/files/infographic_file/

4-Vs-of-big-data.jpg

2

http://www.ibmbigdatahub.com/sites/default/files/infographic_file/4-Vs-of-big-data.jpg
http://www.ibmbigdatahub.com/sites/default/files/infographic_file/4-Vs-of-big-data.jpg


the need to deal with velocity.

..Velocity refers to the speed at which data is being produced, captured, or re-
freshed.

.
Definition

Data is not just Big, it is also Fast ...
• Facebook users upload > 900 million photos/day (= 652,000 photos/minute)
• Twitter processes 500 million tweets/day (= 350,000 tweets/minute)
• The NYSE generates 1 TB of data per trading session (= 2.4 GB/min)

... and requires (near) real-time analysis
• In electronic trading, a 1 millisecond advantage can be worth $100 million to a

major brokerage firm.
• In retail, out-of-stock detection is preferable in seconds or minutes rather than

days or weeks.

3



the need to deal with velocity.

..Velocity refers to the speed at which data is being produced, captured, or re-
freshed.

.
Definition

Data is not just Big, it is also Fast ...
• Facebook users upload > 900 million photos/day (= 652,000 photos/minute)
• Twitter processes 500 million tweets/day (= 350,000 tweets/minute)
• The NYSE generates 1 TB of data per trading session (= 2.4 GB/min)

... and requires (near) real-time analysis
• In electronic trading, a 1 millisecond advantage can be worth $100 million to a

major brokerage firm.
• In retail, out-of-stock detection is preferable in seconds or minutes rather than

days or weeks.

3



the need to deal with velocity.

..Velocity refers to the speed at which data is being produced, captured, or re-
freshed.

.
Definition

Data is not just Big, it is also Fast ...
• Facebook users upload > 900 million photos/day (= 652,000 photos/minute)
• Twitter processes 500 million tweets/day (= 350,000 tweets/minute)
• The NYSE generates 1 TB of data per trading session (= 2.4 GB/min)

... and requires (near) real-time analysis
• In electronic trading, a 1 millisecond advantage can be worth $100 million to a

major brokerage firm.
• In retail, out-of-stock detection is preferable in seconds or minutes rather than

days or weeks.

3



the internet of things.

4

There are more devices
connected to the internet than
people on earth.

Sensors are/will be
everywhere.

How can systems ingest this
continuous data stream?

Source: https://blogs.cisco.com/diversity/the-internet-of-things-infographic

https://blogs.cisco.com/diversity/the-internet-of-things-infographic


the internet of things.

4

There are more devices
connected to the internet than
people on earth.

Sensors are/will be
everywhere.

How can systems ingest this
continuous data stream?

Source: https://blogs.cisco.com/diversity/the-internet-of-things-infographic

https://blogs.cisco.com/diversity/the-internet-of-things-infographic


lecture outline.

5

..

Even if an application does not require real-time
analysis, use of data streaming is widespread
because of the λ-architecture.

Big Data Software Frameworks that allow analysis of high-velocity data are called data
streaming frameworks. We will discuss two, with fundamentally different architectures:

Twitter Storm/Heron Spark Streaming
Tuple-at-a-time Mini-batching



lecture outline.

5

..

Even if an application does not require real-time
analysis, use of data streaming is widespread
because of the λ-architecture.

Big Data Software Frameworks that allow analysis of high-velocity data are called data
streaming frameworks. We will discuss two, with fundamentally different architectures:

Twitter Storm/Heron Spark Streaming
Tuple-at-a-time Mini-batching



lecture outline.

5

..

Even if an application does not require real-time
analysis, use of data streaming is widespread
because of the λ-architecture.

Big Data Software Frameworks that allow analysis of high-velocity data are called data
streaming frameworks. We will discuss two, with fundamentally different architectures:

Twitter Storm/Heron

Spark Streaming

Tuple-at-a-time

Mini-batching



lecture outline.

5

..

Even if an application does not require real-time
analysis, use of data streaming is widespread
because of the λ-architecture.

Big Data Software Frameworks that allow analysis of high-velocity data are called data
streaming frameworks. We will discuss two, with fundamentally different architectures:

Twitter Storm/Heron Spark Streaming
Tuple-at-a-time Mini-batching



lecture outline.

Remember the V’s ?

The λ-Architecture

Message Queues: the sources of Fast Data

Tuple-at-a-time processing

Mini-batching

6



..the λ-architecture



disclaimer.

8

Much of the following material is taken
from the book “Big Data: Principles and
best practices of scalable realtime data
systems” by Nathan Marz and James
Warren April 2015, Manning
Publications, April 2015.



A data system is a system that manages the
storage and querying of data

with a lifetime
measured in years encompassing every version
of the application to ever exist, every hardware
failure, and every human mistake every made.

—Nathan Marz

... What is hence a good way to
architect a (big) data system ?

9



A data system is a system that manages the
storage and querying of data with a lifetime
measured in years

encompassing every version
of the application to ever exist, every hardware
failure, and every human mistake every made.

—Nathan Marz

... What is hence a good way to
architect a (big) data system ?

9



A data system is a system that manages the
storage and querying of data with a lifetime
measured in years encompassing every version
of the application to ever exist

, every hardware
failure, and every human mistake every made.

—Nathan Marz

... What is hence a good way to
architect a (big) data system ?

9



A data system is a system that manages the
storage and querying of data with a lifetime
measured in years encompassing every version
of the application to ever exist, every hardware
failure

, and every human mistake every made.

—Nathan Marz

... What is hence a good way to
architect a (big) data system ?

9



A data system is a system that manages the
storage and querying of data with a lifetime
measured in years encompassing every version
of the application to ever exist, every hardware
failure, and every human mistake every made.

—Nathan Marz

... What is hence a good way to
architect a (big) data system ?

9



A data system is a system that manages the
storage and querying of data with a lifetime
measured in years encompassing every version
of the application to ever exist, every hardware
failure, and every human mistake every made.

—Nathan Marz

... What is hence a good way to
architect a (big) data system ?

9



the problem of mutable data (1/2).

Traditionally, we mutate the database to store only most recent data.

..
Person Location
Sally Philadelphia
Bob Chicago

..
Person Location
Sally New York
Bob Chicago

Sally moves to New York.

10



the problem of mutable data (2/2).

11

Mutable data is corruptable.

• Bugs will be deployed to production software
over the lifetime of a data system.

• Humans can err, therefore operational mistakes
will be made at some point.

• You must design to safeguard against data
corruption.



the problem of mutable data (2/2).

11

Mutable data is corruptable.

• Bugs will be deployed to production software
over the lifetime of a data system.

• Humans can err, therefore operational mistakes
will be made at some point.

• You must design to safeguard against data
corruption.

Examples of errors.
• Deploy a software bug that increments counters by two instead of one
• Accidentally delete data from a database
• Incorrectly modify a data item (Sally did not move to New York, Bob did!)



the problem of mutable data (2/2).

11

Mutable data is corruptable.

• Bugs will be deployed to production software
over the lifetime of a data system.

• Humans can err, therefore operational mistakes
will be made at some point.

• You must design to safeguard against data
corruption.

..Key observation: as long as an error does not lose or corrupt good data, we
can fix what went wrong.



immutability.

12

..
Person Location
Sally Philadelphia
Bob Chicago

..

Person Location
Sally New York
Bob Chicago

.

Sally moves to New York

..Mutable data is corruptable. Therefore,
keep all (master) data immutable.

• An immutable data system captures a
historical record of events

• Each event happens at a particular time,
and remains true forever.

• You can only append new events; never
delete or modify existing event records.

• Filter on the timestamp to see what is true
at a particular moment in time.



immutability.

12

..
Person Location Time
Sally Philadelphia 1318358
Bob Chicago 1237921

..

Person Location Time
Sally Philadelphia 1318358
Bob Chicago 1237921
Sally Philadelphia 1338812

.

Sally moves to New York

..Mutable data is corruptable. Therefore,
keep all (master) data immutable.

• An immutable data system captures a
historical record of events

• Each event happens at a particular time,
and remains true forever.

• You can only append new events; never
delete or modify existing event records.

• Filter on the timestamp to see what is true
at a particular moment in time.



Immutability makes sense:

A data system answers is supposed to answer questions based on data
that was acquired in the past. So why modify acquired data?

Big Data technologies allow to store all raw data so that it can be used
later gain new insights and create new data-driven products, which we
haven’t yet thought of!

13



Immutability makes sense:

A data system answers is supposed to answer questions based on data
that was acquired in the past. So why modify acquired data?

Big Data technologies allow to store all raw data so that it can be used
later gain new insights and create new data-driven products, which we
haven’t yet thought of!

13



Immutability makes sense:

A data system answers is supposed to answer questions based on data
that was acquired in the past. So why modify acquired data?

Big Data technologies allow to store all raw data so that it can be used
later gain new insights and create new data-driven products, which we
haven’t yet thought of!

13



desired properties of a big data system.

• Robust and fault tolerance (under both machine and human failures)
• Scalable: maintain performance under increasing load by adding resources.
• Answer pre-defined queries with low latency
• Support ad-hoc querying
• Low-latency updates
• Extensible/general

14



query = function(all data).

Location Information Database

• How many people live in a
particular location ?

• Where does Sally Live ?
• What is the most popular location

in summer ?

Web Analytics Database
• How many pageviews on

september 2nd ?
• How many unique visitors over

time ?

..• A query hence transforms our immutable raw data into useful information.
• Problem: All data = petabyte scale. How do we get small latency ?

15



query = function(all data).

Location Information Database

• How many people live in a
particular location ?

• Where does Sally Live ?
• What is the most popular location

in summer ?

Web Analytics Database
• How many pageviews on

september 2nd ?
• How many unique visitors over

time ?

..• A query hence transforms our immutable raw data into useful information.
• Problem: All data = petabyte scale. How do we get small latency ?

15



towards the λ-architecture.

16

..
All

Immutable
Data

.

User URL Time
192.168.2.1 foo.com/blog 1318358
192.168.4.8 foo.com/blog 1318458
192.168.4.8 foo.com/about 1318898
192.250.6.9 oof.com/item 1318898
192.250.6.9 foo.com/blog 1818123

… … …

. Query
(Application)

.

How many unique people
visited this domain each
hour for the past three
days?

.

...
Precomputed

Batch
Views

.

URL Hour #Unique
foo.com/blog 1 203
foo.com/blog 2 402
foo.com/blog 3 130
foo.com/blog 4 239
foo.com/blog 5 391

… … …

.

How to compute views?

.

How to compute queries from views?

.

Batch View = function(all data)
Use batch processing framework

...

.

.

Query = fast function(batch view)
Use a batch view database that:

• Is highly available

• Scalable

• Supports batch-writes (from batch framework)

• Supports fast random (indexed) reads (low-latency
querying)

• Note: random writes not necessary!

...

Problem: All data = petabyte scale. How do we get small latency ?
• Computing query answers on the fly has high latency (hours!)

Solution: Precompute views from which the answers to pre-defined queries can
be read/computed with low latency.



towards the λ-architecture.

16

..
All

Immutable
Data

.

User URL Time
192.168.2.1 foo.com/blog 1318358
192.168.4.8 foo.com/blog 1318458
192.168.4.8 foo.com/about 1318898
192.250.6.9 oof.com/item 1318898
192.250.6.9 foo.com/blog 1818123

… … …

. Query
(Application)

.

How many unique people
visited this domain each
hour for the past three
days?

.

...
Precomputed

Batch
Views

.

URL Hour #Unique
foo.com/blog 1 203
foo.com/blog 2 402
foo.com/blog 3 130
foo.com/blog 4 239
foo.com/blog 5 391

… … …

.

How to compute views?

.

How to compute queries from views?

.

Batch View = function(all data)
Use batch processing framework

...

.

.

Query = fast function(batch view)
Use a batch view database that:

• Is highly available

• Scalable

• Supports batch-writes (from batch framework)

• Supports fast random (indexed) reads (low-latency
querying)

• Note: random writes not necessary!

...

Problem: All data = petabyte scale. How do we get small latency ?
• Computing query answers on the fly has high latency (hours!)

Solution: Precompute views from which the answers to pre-defined queries can
be read/computed with low latency.



towards the λ-architecture.

16

..
All

Immutable
Data

.

User URL Time
192.168.2.1 foo.com/blog 1318358
192.168.4.8 foo.com/blog 1318458
192.168.4.8 foo.com/about 1318898
192.250.6.9 oof.com/item 1318898
192.250.6.9 foo.com/blog 1818123

… … …

. Query
(Application)

.

How many unique people
visited this domain each
hour for the past three
days?

.

...
Precomputed

Batch
Views

.

URL Hour #Unique
foo.com/blog 1 203
foo.com/blog 2 402
foo.com/blog 3 130
foo.com/blog 4 239
foo.com/blog 5 391

… … …

.

How to compute views?

.

How to compute queries from views?

.

Batch View = function(all data)
Use batch processing framework

...

.

.

Query = fast function(batch view)
Use a batch view database that:

• Is highly available

• Scalable

• Supports batch-writes (from batch framework)

• Supports fast random (indexed) reads (low-latency
querying)

• Note: random writes not necessary!

...

Problem: All data = petabyte scale. How do we get small latency ?
• Computing query answers on the fly has high latency (hours!)

Solution: Precompute views from which the answers to pre-defined queries can
be read/computed with low latency.



towards the λ-architecture.

16

..
All

Immutable
Data

.

User URL Time
192.168.2.1 foo.com/blog 1318358
192.168.4.8 foo.com/blog 1318458
192.168.4.8 foo.com/about 1318898
192.250.6.9 oof.com/item 1318898
192.250.6.9 foo.com/blog 1818123

… … …

. Query
(Application)

.

How many unique people
visited this domain each
hour for the past three
days?

.

...
Precomputed

Batch
Views

.

URL Hour #Unique
foo.com/blog 1 203
foo.com/blog 2 402
foo.com/blog 3 130
foo.com/blog 4 239
foo.com/blog 5 391

… … …

.

How to compute views?

.

How to compute queries from views?

.

Batch View = function(all data)
Use batch processing framework

...

..

Query = fast function(batch view)
Use a batch view database that:

• Is highly available

• Scalable

• Supports batch-writes (from batch framework)

• Supports fast random (indexed) reads (low-latency
querying)

• Note: random writes not necessary!

...

Problem: All data = petabyte scale. How do we get small latency ?
• Computing query answers on the fly has high latency (hours!)

Solution: Precompute views from which the answers to pre-defined queries can
be read/computed with low latency.



towards the λ-architecture.

16

..
All

Immutable
Data

.

User URL Time
192.168.2.1 foo.com/blog 1318358
192.168.4.8 foo.com/blog 1318458
192.168.4.8 foo.com/about 1318898
192.250.6.9 oof.com/item 1318898
192.250.6.9 foo.com/blog 1818123

… … …

. Query
(Application)

.

How many unique people
visited this domain each
hour for the past three
days?

.

...
Precomputed

Batch
Views

.

URL Hour #Unique
foo.com/blog 1 203
foo.com/blog 2 402
foo.com/blog 3 130
foo.com/blog 4 239
foo.com/blog 5 391

… … …

.

How to compute views?

.

How to compute queries from views?

.

Batch View = function(all data)
Use batch processing framework

....

.

Query = fast function(batch view)
Use a batch view database that:

• Is highly available

• Scalable

• Supports batch-writes (from batch framework)

• Supports fast random (indexed) reads (low-latency
querying)

• Note: random writes not necessary!

...

Problem: All data = petabyte scale. How do we get small latency ?
• Computing query answers on the fly has high latency (hours!)

Solution: Precompute views from which the answers to pre-defined queries can
be read/computed with low latency.



towards the λ-architecture.

16

..
All

Immutable
Data

.

User URL Time
192.168.2.1 foo.com/blog 1318358
192.168.4.8 foo.com/blog 1318458
192.168.4.8 foo.com/about 1318898
192.250.6.9 oof.com/item 1318898
192.250.6.9 foo.com/blog 1818123

… … …

. Query
(Application)

.

How many unique people
visited this domain each
hour for the past three
days?

.

...
Precomputed

Batch
Views

.

URL Hour #Unique
foo.com/blog 1 203
foo.com/blog 2 402
foo.com/blog 3 130
foo.com/blog 4 239
foo.com/blog 5 391

… … …

.

How to compute views?

.

How to compute queries from views?

.

Batch View = function(all data)
Use batch processing framework

...

.

.

Query = fast function(batch view)
Use a batch view database that:

• Is highly available

• Scalable

• Supports batch-writes (from batch framework)

• Supports fast random (indexed) reads (low-latency
querying)

• Note: random writes not necessary!

...

Problem: All data = petabyte scale. How do we get small latency ?
• Computing query answers on the fly has high latency (hours!)

Solution: Precompute views from which the answers to pre-defined queries can
be read/computed with low latency.



are we there yet ?.

Not quite: The raw data changes all the time. How do we keep the batch views up to date?

Answer: Try and incrementalize the batch computation as much as possible.

..
All

Immutable
Data

.

User URL Time
192.168.2.1 foo.com/blog 1318358
192.168.4.8 foo.com/blog 1318458
192.168.4.8 foo.com/about 1318898
192.250.6.9 oof.com/item 1318898
192.250.6.9 foo.com/blog 1818123

.

User URL Time
192.168.2.1 foo.com/blog 1318358
192.168.4.8 foo.com/blog 1318458
192.168.4.8 foo.com/about 1318898
192.250.6.9 oof.com/item 1318898
192.250.6.9 foo.com/blog 1818123
152.214.1.2 goo.com/idx 2010911
182.228.1.2 foo.com/blog 2012918
192.168.4.8 foo.com/about 2318898
192.250.6.9 oof.com/item 2318898

… … …

..
Precomputed

Batch
Views

.

URL Hour #Unique
foo.com/blog 1 203
foo.com/blog 2 402
foo.com/blog 3 130
foo.com/blog 4 239
foo.com/blog 5 391

.
Precomputed

Batch
Views

.

URL Hour #Unique
foo.com/blog 1 203
foo.com/blog 2 402
foo.com/blog 3 130
foo.com/blog 4 239
foo.com/blog 5 391
foo.com/blog 6 203
foo.com/blog 7 402
foo.com/blog 8 130
foo.com/blog 9 239

… … …

17



are we there yet ?.

Not quite: The raw data changes all the time. How do we keep the batch views up to date?

Answer: Try and incrementalize the batch computation as much as possible.

..
All

Immutable
Data

.

User URL Time
192.168.2.1 foo.com/blog 1318358
192.168.4.8 foo.com/blog 1318458
192.168.4.8 foo.com/about 1318898
192.250.6.9 oof.com/item 1318898
192.250.6.9 foo.com/blog 1818123

.

User URL Time
192.168.2.1 foo.com/blog 1318358
192.168.4.8 foo.com/blog 1318458
192.168.4.8 foo.com/about 1318898
192.250.6.9 oof.com/item 1318898
192.250.6.9 foo.com/blog 1818123
152.214.1.2 goo.com/idx 2010911
182.228.1.2 foo.com/blog 2012918
192.168.4.8 foo.com/about 2318898
192.250.6.9 oof.com/item 2318898

… … …

..
Precomputed

Batch
Views

.

URL Hour #Unique
foo.com/blog 1 203
foo.com/blog 2 402
foo.com/blog 3 130
foo.com/blog 4 239
foo.com/blog 5 391

.
Precomputed

Batch
Views

.

URL Hour #Unique
foo.com/blog 1 203
foo.com/blog 2 402
foo.com/blog 3 130
foo.com/blog 4 239
foo.com/blog 5 391
foo.com/blog 6 203
foo.com/blog 7 402
foo.com/blog 8 130
foo.com/blog 9 239

… … …

17



are we there yet ?.

Not quite: The raw data changes all the time. How do we keep the batch views up to date?

Answer: Try and incrementalize the batch computation as much as possible.

..
All

Immutable
Data

.

User URL Time
192.168.2.1 foo.com/blog 1318358
192.168.4.8 foo.com/blog 1318458
192.168.4.8 foo.com/about 1318898
192.250.6.9 oof.com/item 1318898
192.250.6.9 foo.com/blog 1818123

.

User URL Time
192.168.2.1 foo.com/blog 1318358
192.168.4.8 foo.com/blog 1318458
192.168.4.8 foo.com/about 1318898
192.250.6.9 oof.com/item 1318898
192.250.6.9 foo.com/blog 1818123
152.214.1.2 goo.com/idx 2010911
182.228.1.2 foo.com/blog 2012918
192.168.4.8 foo.com/about 2318898
192.250.6.9 oof.com/item 2318898

… … …

.

.
Precomputed

Batch
Views

.

URL Hour #Unique
foo.com/blog 1 203
foo.com/blog 2 402
foo.com/blog 3 130
foo.com/blog 4 239
foo.com/blog 5 391

.
Precomputed

Batch
Views

.

URL Hour #Unique
foo.com/blog 1 203
foo.com/blog 2 402
foo.com/blog 3 130
foo.com/blog 4 239
foo.com/blog 5 391
foo.com/blog 6 203
foo.com/blog 7 402
foo.com/blog 8 130
foo.com/blog 9 239

… … …

17



are we there yet ?.

Still not quite: Even incremental batch computation can be relatively slow.

Solution: Treat “fresh” data separately: real-time stream processing.

18



are we there yet ?.

Still not quite: Even incremental batch computation can be relatively slow.

Solution: Treat “fresh” data separately: real-time stream processing.

18



are we there yet ?.

Still not quite: Even incremental batch computation can be relatively slow.

Solution: Treat “fresh” data separately: real-time stream processing.

18



adding real-time stream processing.

..Incoming
Data

.

All
Immutable

Data

.

Precomputed
Batch
Views

. Query
(Application)

.

Precomputed
Realtime
Views

.....

Stream Processing

.

Realtime view = function(realtime view, new data)
• Exact if possible, otherwise approximate

(see lecture 7)

• Approximate realtime-views become exact batch view over time.

• Realtime view database must support random writes
(= more complex).

......

19



adding real-time stream processing.

..Incoming
Data

.

All
Immutable

Data

.

Precomputed
Batch
Views

. Query
(Application)

.

Precomputed
Realtime
Views

.....

Stream Processing

.

Realtime view = function(realtime view, new data)
• Exact if possible, otherwise approximate

(see lecture 7)

• Approximate realtime-views become exact batch view over time.

• Realtime view database must support random writes
(= more complex).

......

19



adding real-time stream processing.

..Incoming
Data

.

All
Immutable

Data

.

Precomputed
Batch
Views

. Query
(Application)

.

Precomputed
Realtime
Views

.....

Stream Processing

.

Realtime view = function(realtime view, new data)
• Exact if possible, otherwise approximate

(see lecture 7)

• Approximate realtime-views become exact batch view over time.

• Realtime view database must support random writes
(= more complex).

......

19



adding real-time stream processing.

20



in summary: the λ-architecture.

21

Figure Source: Big Data Book

The λ-architecture is a big data
architecture that distinguishes between
three layers.



in summary: the λ-architecture.

21

Figure Source: Big Data Book

The λ-architecture is a big data
architecture that distinguishes between
three layers.

The Batch Layer
• Keeps an immutable, historical log of

all data also known as the data lake.
• Computes batch views from this

master data.
• Allows ad-hoc (but high-latency)

querying.



in summary: the λ-architecture.

21

Figure Source: Big Data Book

The λ-architecture is a big data
architecture that distinguishes between
three layers.

The Serving Layer
• Stores the batch views.
• Uses these views to respond to

pre-defined queries.



in summary: the λ-architecture.

21

Figure Source: Big Data Book

The λ-architecture is a big data
architecture that distinguishes between
three layers.

The Speed Layer
• Computes realtime views on

streaming new data.
• Uses these views to augment the

batch views for responding to
pre-defined queries.



in summary: the λ-architecture.

21

Figure Source: Big Data Book

The λ-architecture is a big data
architecture that distinguishes between
three layers.

..
The λ-architecture is a meta-
architecture: concrete frameworks for
each layer can be chosen on a case-by-
case basis.



the often-forgotten layers.

..

.

Figure Source: https://www.slideshare.net/gschmutz/

big-data-and-fast-data-lambda-architecture-in-action

22

https://www.slideshare.net/gschmutz/big-data-and-fast-data-lambda-architecture-in-action
https://www.slideshare.net/gschmutz/big-data-and-fast-data-lambda-architecture-in-action


the often-forgotten layers.

...

Figure Source: https://www.slideshare.net/gschmutz/

big-data-and-fast-data-lambda-architecture-in-action

22

https://www.slideshare.net/gschmutz/big-data-and-fast-data-lambda-architecture-in-action
https://www.slideshare.net/gschmutz/big-data-and-fast-data-lambda-architecture-in-action


..message queues: the sources of fast data



two ways of processing updates (1/2).

..

Client

.Client.

Client

. Database.

Synchronous
• Direct connection client ↔ database
• Client waits until update complete.

• Client knows when update is done
• Spikes can overload the database

24



two ways of processing updates (1/2).

..

Client

.Client.

Client

. Database.

Synchronous
• Direct connection client ↔ database
• Client waits until update complete.
• Client knows when update is done
• Spikes can overload the database

24



two ways of processing updates (2/2).

..

Client

.Client.

Client

. Update
Queue

. Stream
Processor

. Database.

Asynchronous
• Client submits update to a queue, and continues work without waiting.
• Updates are processed by stream processor when possible.

• Load spikes are easily handled
• Special mechanism required to acknowledge update is processed

.

Preferable for speed layer!

.

25



two ways of processing updates (2/2).

..

Client

.Client.

Client

. Update
Queue

. Stream
Processor

. Database.

Asynchronous
• Client submits update to a queue, and continues work without waiting.
• Updates are processed by stream processor when possible.
• Load spikes are easily handled
• Special mechanism required to acknowledge update is processed

.

Preferable for speed layer!

.

25



two ways of processing updates (2/2).

..

Client

.Client.

Client

. Update
Queue

. Stream
Processor

. Database.

Asynchronous
• Client submits update to a queue, and continues work without waiting.
• Updates are processed by stream processor when possible.
• Load spikes are easily handled
• Special mechanism required to acknowledge update is processed

.

Preferable for speed layer!

.

25



types of message queues (1/2).

26

..

Producer

.

Producer

..

Queue

.

Consumer

. Consumer.

Consumer

..

Single-consumption
• Also known as point-to-point queue, message bus, message queue
• Producers (senders) push messages to queue.
• Consumers (receivers) pop messages from queue.
• Parallellism through (round-robin) distribution over consumers
• Every message is consumed by only one consumer! By default, a message is deleted

from the queue when consumer fetches message (→ fault-tolerance problem).



two types of message queues.

27

..

Producer

.

Producer

..

Broker

..

Topic 1

..
Topic 2

.

Consumer

. Consumer.

Consumer

...

...

Publish-subscribe messaging
• The queue is organized into topics
• A broker is responsible for queue maintenance and message delivery.
• Producers (publishers,senders) push messages to topics on queue.
• Consumers (subscribers,receivers) receive messages from the topics that they are subscribed to. The

broker decides when old messages can be deleted.
• Every message is processed by all consumers subscribed to the message topic!
• Scalability (Parallellism) ?



two types of message queues.

27

..

Producer

.

Producer

..

Broker

..

Topic 1

..
Topic 2

.

Consumer

. Consumer.

Consumer

...

...

Publish-subscribe messaging
• The queue is organized into topics
• A broker is responsible for queue maintenance and message delivery.
• Producers (publishers,senders) push messages to topics on queue.
• Consumers (subscribers,receivers) receive messages from the topics that they are subscribed to. The

broker decides when old messages can be deleted.
• Every message is processed by all consumers subscribed to the message topic!
• Scalability (Parallellism) ?



apache kafka.

28

...

..

..

Apache Kafka is a distributed messaging /
streaming platform based on partitioned
publish-subscribe.
• Topics are partitioned
• Partitions are distributed for scalability

and replicated for fault-tolerance.



apache kafka.

28

..

.

.

.

..

Apache Kafka is a distributed messaging /
streaming platform based on partitioned
publish-subscribe.
• Topics are partitioned
• Partitions are distributed for scalability

and replicated for fault-tolerance.



apache kafka.

28

..

.

.

.

..

Apache Kafka is a distributed messaging /
streaming platform based on partitioned
publish-subscribe.
• Topics are partitioned
• Partitions are distributed for scalability

and replicated for fault-tolerance.

Distributed production:
• Producers can choose to push a message

on topic X to a particular partition of X
(load-balances production)



apache kafka.

28

..

.

..

..

Apache Kafka is a distributed messaging /
streaming platform based on partitioned
publish-subscribe.
• Topics are partitioned
• Partitions are distributed for scalability

and replicated for fault-tolerance.

Hybrid consumption model:
• Consumers are collected into consumer
groups

• Every message to topic X is processed by
each consumer group subscribed to X
(publish subscribe)

• However, each message is handled by
only one consumer inside a consumer
group (point-to-point), which allows
load-balancing consumption



apache kafka.

28

..

.

..

..

Apache Kafka is a distributed messaging /
streaming platform based on partitioned
publish-subscribe.
• Topics are partitioned
• Partitions are distributed for scalability

and replicated for fault-tolerance.

Some specifics:
• Kafka consumption is pull-based;

consumers can choose to retrieve
messages in batch

• All messages are stored on disk and
retained for a configurable period
(consumers can hence replay messages if
need be)

• So you can also think of it as a distributed
filesystem (for temporary files).



..tuple-at-a-time processing



apache storm/twitter heron.

30

Apache Storm
• Distributed and Fault-Tolerant

real-time computation
• Developed at Backtype/Twitter, open

sourced in 2011
• Has been superseded by Heron at

Twitter since 2014 (currently being
open-sourced by Apache).

• Heron has the same programming
model, but different implementation.



storm concepts.

31

..
Tuple

.
Tuple

.
Tuple

.
Tuple

.
Tuple

.
Tuple

.
Stream

Tuple
• Core Unit of Data
• Immutable set of key/value pairs.

Stream
• Unbounded sequence of tuples



storm concepts.

32

..

Spout = data source
• Emits streams.
• Example: a Kafka spout on a particular topic.



storm concepts.

33

..

Bolt = Core function of streaming computation
• Receive tuples and process them, e.g.:

◦ Write to a data store
◦ Lookup a tuple in a data store
◦ Perform arbitrary computation
◦ (Usually, but not necessarily) Emit additional streams



storm concepts.

34

........

.
x

.
x

.

x

.

f(x)

.

g(x)

. h(f(x), g(x)).

f

. g.
h

Topology = DAG of Spouts, Bolts, and Streams
• Data Flow representation of computation.
• Tuples are pushed through the DAG (streaming computation) starting from

spouts.



storm concepts.

34

.........
x

.
x

.

x

.

f(x)

.

g(x)

. h(f(x), g(x)).

f

. g.

h

Topology = DAG of Spouts, Bolts, and Streams
• Data Flow representation of computation.
• Tuples are pushed through the DAG (streaming computation) starting from

spouts.



storm concepts.

35

..

.

Tasks
• Parallel/Distributed execution of Spouts

and Bolts.
• Spouts and Bolts execute as many tasks

across the cluster.
• The programmer defines the number of

tasks for each Spout/Bolt when defining
the topology. (Can be re-configured at
runtime).

• The Storm Scheduler is responsible for
scheduling these tasks across the
physical machines in the cluster.



storm concepts.

35

...

Tasks
• Parallel/Distributed execution of Spouts

and Bolts.
• Spouts and Bolts execute as many tasks

across the cluster.
• The programmer defines the number of

tasks for each Spout/Bolt when defining
the topology. (Can be re-configured at
runtime).

• The Storm Scheduler is responsible for
scheduling these tasks across the
physical machines in the cluster.



storm concepts.

36

..

.

Question: When a tuple is emitted, what
task does it go to ?

Answer: Depends on the grouping specified
by the topology programmer.

Stream grouping

• Shuffle grouping: pick task in
round-robin fashion

• Field grouping: consistent hashing on a
subset of tuple fields

• All grouping: send to all tasks
• Global grouping: pick task with lowest id.



storm concepts.

36

..

.

Question: When a tuple is emitted, what
task does it go to ?

Answer: Depends on the grouping specified
by the topology programmer.

Stream grouping

• Shuffle grouping: pick task in
round-robin fashion

• Field grouping: consistent hashing on a
subset of tuple fields

• All grouping: send to all tasks
• Global grouping: pick task with lowest id.



storm concepts.

36

...

Question: When a tuple is emitted, what
task does it go to ?

Answer: Depends on the grouping specified
by the topology programmer.

Stream grouping
• Shuffle grouping: pick task in

round-robin fashion

• Field grouping: consistent hashing on a
subset of tuple fields

• All grouping: send to all tasks
• Global grouping: pick task with lowest id.



storm concepts.

36

...

Question: When a tuple is emitted, what
task does it go to ?

Answer: Depends on the grouping specified
by the topology programmer.

Stream grouping
• Shuffle grouping: pick task in

round-robin fashion
• Field grouping: consistent hashing on a

subset of tuple fields

• All grouping: send to all tasks
• Global grouping: pick task with lowest id.



storm concepts.

36

...

Question: When a tuple is emitted, what
task does it go to ?

Answer: Depends on the grouping specified
by the topology programmer.

Stream grouping
• Shuffle grouping: pick task in

round-robin fashion
• Field grouping: consistent hashing on a

subset of tuple fields
• All grouping: send to all tasks

• Global grouping: pick task with lowest id.



storm concepts.

36

...

Question: When a tuple is emitted, what
task does it go to ?

Answer: Depends on the grouping specified
by the topology programmer.

Stream grouping
• Shuffle grouping: pick task in

round-robin fashion
• Field grouping: consistent hashing on a

subset of tuple fields
• All grouping: send to all tasks
• Global grouping: pick task with lowest id.



storm: word count example (java).

...

Sentences Spout

..

Word-splitter bolt

..

Word-count bolt

.
Shuffle

.
Partition by “word”

.

/** ... some contents elided ...*/

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout(”spout1”, new KafkaSpout(...) );

builder.setBolt(”splitterBolt”, new SplitSentenceBolt(), 8)
.shuffleGrouping(”spout1”);

builder.setBolt(”countBolt”, new WordCountBolt(), 12)
.fieldsGrouping(”splitterBolt”, new Fields(”word”));

..

Instance of ISpout

..

Instance of IBolt or IBasicBolt

..

Create 8 tasks

..

Consumer decides what data it receives, and how it
is grouped

37



storm: word count example (java).

...

Sentences Spout

..

Word-splitter bolt

..

Word-count bolt

.
Shuffle

.
Partition by “word”

.

/** ... some contents elided ...*/

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout(”spout1”, new KafkaSpout(...) );

builder.setBolt(”splitterBolt”, new SplitSentenceBolt(), 8)
.shuffleGrouping(”spout1”);

builder.setBolt(”countBolt”, new WordCountBolt(), 12)
.fieldsGrouping(”splitterBolt”, new Fields(”word”));

..

Instance of ISpout

..

Instance of IBolt or IBasicBolt

..

Create 8 tasks

..

Consumer decides what data it receives, and how it
is grouped

37



storm: word count example (java).

...

Sentences Spout

..

Word-splitter bolt

..

Word-count bolt

.
Shuffle

.
Partition by “word”

.

/** ... some contents elided ...*/

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout(”spout1”, new KafkaSpout(...) );

builder.setBolt(”splitterBolt”, new SplitSentenceBolt(), 8)
.shuffleGrouping(”spout1”);

builder.setBolt(”countBolt”, new WordCountBolt(), 12)
.fieldsGrouping(”splitterBolt”, new Fields(”word”));

..

Instance of ISpout

..

Instance of IBolt or IBasicBolt

..

Create 8 tasks

..

Consumer decides what data it receives, and how it
is grouped

37



storm: word count example (java).

...

Sentences Spout

..

Word-splitter bolt

..

Word-count bolt

.
Shuffle

.
Partition by “word”

.

/** ... some contents elided ...*/

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout(”spout1”, new KafkaSpout(...) );

builder.setBolt(”splitterBolt”, new SplitSentenceBolt(), 8)
.shuffleGrouping(”spout1”);

builder.setBolt(”countBolt”, new WordCountBolt(), 12)
.fieldsGrouping(”splitterBolt”, new Fields(”word”));

..

Instance of ISpout

..

Instance of IBolt or IBasicBolt

..

Create 8 tasks

..

Consumer decides what data it receives, and how it
is grouped

37



storm api.

...Spout API.

publ ic in te r face ISpout extends Serializable {
void open(Map conf,

TopologyContext context,
SpoutOutputCollector collector);

void close();

void activate();

void deactivate();

void nextTuple();

void ack(Object msgId);

void fail(Object msgId)
}

..

Lifecycle API

..

Core API

..

Reliability API

38



storm api.

...Spout API.

publ ic in te r face ISpout extends Serializable {
void open(Map conf,

TopologyContext context,
SpoutOutputCollector collector);

void close();

void activate();

void deactivate();

void nextTuple();

void ack(Object msgId);

void fail(Object msgId)
}

..

Lifecycle API

..

Core API

..

Reliability API

38



storm api.

...Spout API.

publ ic in te r face ISpout extends Serializable {
void open(Map conf,

TopologyContext context,
SpoutOutputCollector collector);

void close();

void activate();

void deactivate();

void nextTuple();

void ack(Object msgId);

void fail(Object msgId)
}

..

Lifecycle API

..

Core API

..

Reliability API

38



storm api.

...Spout API.

publ ic in te r face ISpout extends Serializable {
void open(Map conf,

TopologyContext context,
SpoutOutputCollector collector);

void close();

void activate();

void deactivate();

void nextTuple();

void ack(Object msgId);

void fail(Object msgId)
}

..

Lifecycle API

..

Core API

..

Reliability API

38



storm api.

...Bolt API.

publ ic in te r face IBolt extends Serializable {
void prepare(Map stormConf,

TopologyContext context,
OutputCollector collector);

void cleanup();

void execute(Tuple input);
}

publ ic in te r face IBasicBolt extends IComponent {
void prepare(Map stormConf, TopologyContext context)
void cleanup()

void execute(Tuple input, BasicOutputCollector collector)
}

..

Lifecycle API

..

Core API

39



storm api.

...Bolt API.

publ ic in te r face IBolt extends Serializable {
void prepare(Map stormConf,

TopologyContext context,
OutputCollector collector);

void cleanup();

void execute(Tuple input);
}

publ ic in te r face IBasicBolt extends IComponent {
void prepare(Map stormConf, TopologyContext context)
void cleanup()

void execute(Tuple input, BasicOutputCollector collector)
}

..

Lifecycle API

..

Core API

39



storm api.

...Bolt API.

publ ic in te r face IBolt extends Serializable {
void prepare(Map stormConf,

TopologyContext context,
OutputCollector collector);

void cleanup();

void execute(Tuple input);
}

publ ic in te r face IBasicBolt extends IComponent {
void prepare(Map stormConf, TopologyContext context)
void cleanup()

void execute(Tuple input, BasicOutputCollector collector)
}

..

Lifecycle API

..

Core API

39



storm api.

...Bolt Output API.

publ ic in te r face IOutputCollector extends IErrorReporter {
List<Integer> emit(String streamId,

Collection<Tuple> anchors,
List<Object> tuple);

void emitDirect( i n t taskId,
String streamId,
Collection<Tuple> anchors,
List<Object> tuple);

void ack(Tuple input);

void fail(Tuple input);
}

..

Core API

..

Reliability API

40



storm api.

...Bolt Output API.

publ ic in te r face IOutputCollector extends IErrorReporter {
List<Integer> emit(String streamId,

Collection<Tuple> anchors,
List<Object> tuple);

void emitDirect( i n t taskId,
String streamId,
Collection<Tuple> anchors,
List<Object> tuple);

void ack(Tuple input);

void fail(Tuple input);
}

..

Core API

..

Reliability API

40



storm api.

...Bolt Output API.

publ ic in te r face IOutputCollector extends IErrorReporter {
List<Integer> emit(String streamId,

Collection<Tuple> anchors,
List<Object> tuple);

void emitDirect( i n t taskId,
String streamId,
Collection<Tuple> anchors,
List<Object> tuple);

void ack(Tuple input);

void fail(Tuple input);
}

..

Core API

..

Reliability API

40



storm: word count example (cont).
..

publ ic c lass SplitSentenceBolt implements IRichBolt {

pr ivate OutputCollector _collector;

publ ic void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {

_collector = collector;
}

publ ic void execute(Tuple tuple) {
String sentence = tuple.getString(0);
for (String word: sentence.split(”␣”)) {

_collector.emit(tuple, new Values(word));
}
_collector.ack(tuple);

}

publ ic void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields(”word”));

}

}
41



storm: word count example (cont).

..
publ ic c lass WordCountBolt extends BaseBasicBolt {

Map<String, Integer> counts = new HashMap<String, Integer>();

publ ic void execute(Tuple tuple, BasicOutputCollector collector) {
String word = tuple.getString(0);
Integer count = counts.get(word);
i f (count == nul l)
count = 0;

count++;
counts.put(word, count);
collector.emit(new Values(word, count));

}

publ ic void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields(”word”, ”count”));

}
}

42



guaranteeing message processing.
..

publ ic c lass SplitSentenceBolt implements IRichBolt {

pr ivate OutputCollector _collector;

publ ic void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {

_collector = collector;
}

publ ic void execute(Tuple tuple) {
String sentence = tuple.getString(0);
for (String word: sentence.split(”␣”)) {

_collector.emit(tuple, new Values(word));
}
_collector.ack(tuple);

}

publ ic void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields(”word”));

}

}

..

“Anchors” tuple to be a parent of
word.

..

Confirm tuple correctly processed

43



guaranteeing message processing.
..

publ ic c lass SplitSentenceBolt implements IRichBolt {

pr ivate OutputCollector _collector;

publ ic void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {

_collector = collector;
}

publ ic void execute(Tuple tuple) {
String sentence = tuple.getString(0);
for (String word: sentence.split(”␣”)) {

_collector.emit(tuple, new Values(word));
}
_collector.ack(tuple);

}

publ ic void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields(”word”));

}

}

..

“Anchors” tuple to be a parent of
word.

..

Confirm tuple correctly processed

43



guaranteeing message processing.
..

publ ic c lass SplitSentenceBolt implements IRichBolt {

pr ivate OutputCollector _collector;

publ ic void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {

_collector = collector;
}

publ ic void execute(Tuple tuple) {
String sentence = tuple.getString(0);
for (String word: sentence.split(”␣”)) {

_collector.emit(tuple, new Values(word));
}
_collector.ack(tuple);

}

publ ic void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields(”word”));

}

}

..

“Anchors” tuple to be a parent of
word.

..

Confirm tuple correctly processed

43



guaranteeing message processing.

44

..

• A spout tuple is not fully processed until all tuples that “descend” from it have
been completely processed.

• The descendant-relationship (encoded by emit) is recorded in a tuple tree.
• If the tuple tree is not completed within a specified timeout, the spout tuple is
replayed. This is known as at least once processing semantics.

• Question: Is replaying a tuple always “safe” ?



conclusion.

45

Apache Storm/Heron
• Distributed and Fault-Tolerant

real-time computation
• Tuple-at-a-time processing model

Noteworthy:
• Twitter uses a domain specific

language (DSL) called Summingbird
to specify computations in a
declarative manner, and compile this
both to M/R and Storm/Heron
Topologies.



..mini-batching



spark streaming.

47

Spark Streaming
• Distributed and Fault-Tolerant (near)

real-time computation
• Developed as a separate library on top of

spark in 2015
• Re-uses spark concepts and programming

model (RDDs, functional transformations,
failure recovery through re-execution).

Key difference with Storm:
• Processes stream tuples in (mini)-batches.
• Has exactly-once semantics.



mini-batching in spark streaming.

48

..

Mini-batching
• Spark streaming partitions the input stream into disjoint time intervals
• The data in each time interval becomes a (mini-batch) RDD; the stream of

mini-batch RDDs is called a Discretized Stream (DStream)
• Mini-batch RDDs are normal RDDs. Therefore, normal spark operators can be

used to transform/act on mini-batch RDDs (possibly jointly with normal RDDs)
• Each transformed mini-batch RDD can then be saved to HDFS, or stored in a DB,

or communicated to a message queue, ….



spark streaming word count example (scala).
..

// Create a local StreamingContext with two working thread and batch
// interval of 1 second.
// The master requires 2 cores to prevent from a starvation scenario.
val conf = new SparkConf().setMaster(”local[2]”).setAppName(”NetworkWordCount”)
val ssc = new StreamingContext(conf, Seconds(1))

// Create a DStream that will connect to hostname:port, like localhost:9999
val lines = ssc.socketTextStream(”localhost”, 9999)

// Split each line into words
val words = lines.flatMap(_.split(”␣”))

// Count each word in each batch
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(_ + _)

// Print the first ten elements of each RDD generated in this DStream
// to the console
wordCounts.print()

ssc.start() // Start the computation
ssc.awaitTermination() // Wait for the computation to terminate

49



spark streaming concepts.

50

..

DStream
• Stream of mini-batch RDDs (interval width is configurable)
• Operations on the stream (flatMap, filter, …) are performed on each

mini-batch RDD in the DStream separately.
• The result is a new DStream.



spark streaming concepts.

51

..

Operations on DSTreams
• print: print the first 10 items of each mini-batch RDD in the DStream

(debugging)
• saveAsTextFiles: save each mini-batch RDD as a separate text file
• foreachRDD(func): apply arbitrary function func to each RDD in the stream.
• …



maintaining state.

52

...

updateStateByKey(updateFn)

.

updateFn: (newValues, oldState) => newState

Question: Assume that we want to maintain the count of every word seen so far,
and update this count whenever new data arrives. How do we do this ?
Answer: Use updateStateByKey or mapWithState (both on pair DStreams)



updatestatebykey example (scala).
..

...

// Create a DStream that will connect to hostname:port, like localhost:9999
val lines = ssc.socketTextStream(”localhost”, 9999)

// Split each line into words
val words = lines.flatMap(_.split(”␣”))

// Count each word in each batch
val pairs = words.map(word => (word, 1))

// create a DStream in which each RDD has the total count for every word
// ever seen
val globalCount = pairs.updateStateByKey( (vals, totalCount) => {

totalCount.match {
//Was there already some state for this key? If so, update
case Some(total) => vals.sum + total
//Otherwise, create the state
case None => vals.sum

}
})

53



mapwithstate example (scala).

54

..
// Create a DStream that will connect to hostname:port, like localhost:9999
val lines = ssc.socketTextStream(”localhost”, 9999)

// Split each line into words
val words = lines.flatMap(_.split(”␣”))

// Count each word in each batch
val pairs = words.map(word => (word, 1))

// Specify the state-update function for mapWithState
// word: the key for which we need to update the state;
val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => {

val sum = one.getOrElse(0) + state.getOption.getOrElse(0)
val output = (word, sum)
state.update(sum) //updates the count for this key (word)
output //we need to output the new total for this word

}

// create a DStream in which each RDD has the total count for every word
// ever seen. StateSpec allows fine-grained tuning (# of partitions, ...)
val globalCount = pairs.mapWithState(StateSpec.function(mappingFunc))



windowing.

55

.

..

// Reduce last 30 seconds of data, every 10 seconds
val windowedWordCounts = pairs.reduceByKeyAndWindow(

(a:Int,b:Int) => (a + b), Seconds(30), Seconds(10))

Question: Assume that we want to maintain a running count of every word seen over the
past 10 minutes, and update this running count whenever new data arrives. How do we do
this ?

Answer: Use windowing operations:
• Every window has a length (3 in figure) and sliding interval (2 in the figure), both must be

multiples of the batch interval
• Window length = the duration of the window
• Sliding interval = the interval at which the window operation is performed



windowing.

55

..

.

// Reduce last 30 seconds of data, every 10 seconds
val windowedWordCounts = pairs.reduceByKeyAndWindow(

(a:Int,b:Int) => (a + b), Seconds(30), Seconds(10))

Question: Assume that we want to maintain a running count of every word seen over the
past 10 minutes, and update this running count whenever new data arrives. How do we do
this ?
Answer: Use windowing operations:
• Every window has a length (3 in figure) and sliding interval (2 in the figure), both must be

multiples of the batch interval
• Window length = the duration of the window
• Sliding interval = the interval at which the window operation is performed



windowing.

55

...

// Reduce last 30 seconds of data, every 10 seconds
val windowedWordCounts = pairs.reduceByKeyAndWindow(

(a:Int,b:Int) => (a + b), Seconds(30), Seconds(10))

Question: Assume that we want to maintain a running count of every word seen over the
past 10 minutes, and update this running count whenever new data arrives. How do we do
this ?
Answer: Use windowing operations:
• Every window has a length (3 in figure) and sliding interval (2 in the figure), both must be

multiples of the batch interval
• Window length = the duration of the window
• Sliding interval = the interval at which the window operation is performed



fault-tolerance semantics.

56

...

Example lineage graph. Each oval is an RDD
and each blue circle an RDD partition. Edges
indicate lineage depencendy.

Remember
• RDDs are immutable and deterministically re-computable given the RDD’s lineage graph

(graph of transformations)
• Likewise, if we track lineage of operations on mini-batch RDDs in a DStream, then we can

re-compute any such RDD when needed.



fault-tolerance semantics.

56

...

Example lineage graph. Each oval is an RDD
and each blue circle an RDD partition. Edges
indicate lineage depencendy.

Some caveats:
• Lineage graph may become very big, especially when state is maintained.
• Add checkpointing to allow truncating the lineage graph
• Recomputation means that input data must be available. To ensure this, spark replicates

input stream data.
• Enable write ahead logging to ensure no data loss.



fault-tolerance semantics.

56

...

Example lineage graph. Each oval is an RDD
and each blue circle an RDD partition. Edges
indicate lineage depencendy.

Possible processing guarantees:
• At most once: Each record will be either processed once or not processed at all.
• At least once: Each record will be processed one or more times. There may be duplicates.
• Exactly once: Each record will be processed exactly once - no data will be lost and no

data will be processed multiple times.



fault-tolerance semantics.

56

...

Example lineage graph. Each oval is an RDD
and each blue circle an RDD partition. Edges
indicate lineage depencendy.

Spark Streaming provides Exactly-Once semantics
• But this is only for data transformations
• If you want end-to-end exactly-once semantics, your data source and your data sink

should also have this semantics. (Which is the case e.g. with Kafka).



references.

• N. Marz, J. Warren. Big Data: Principles and best practices of scalable realtime
data systems Manning Publications, April 2015.

• O. Boykin, S. Ritchi, I. O’Connel, and Jimmy Lin. Summingbird: A Framework for
Integrating Batch and Online MapReduce Computations. Proceedings of VLDB,
2014.

• S. Kulkarni, et al. Twitter Heron: Stream Processing at Scale. SIGMOD
Conference, 2015.

• M. Zaharia et al. Discretized Streams: Fault-Tolerant Streaming Computation at
Scale. SOSP Conference, 2013.

57



Questions?

58


	Remember the V's ?
	The -Architecture
	Message Queues: the sources of Fast Data
	Tuple-at-a-time processing
	Mini-batching

