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PREREQUISITES

• This is an advanced Master level course. Students
are expected to have the following required prior
knowledge:
– INFOH-509 XML & Web Technologies

– Basic knowledge about computer networks

– Basic programming skills (Java)

• It is possible to follow the course without these
prerequisites, but beware that this implies an
additional workload to obtain the required prior
knowledge!



Course objectives
• To give an introduction to web services and their 

related technologies, in particular:
– Obtain a working knowledge of the internet  and the HTTP 

protocol
– Obtain an understanding of the 2 major classes of web 

service technologies :
• the "Big Web Services" (WS-*)
• the "REST"-style web services ;

– To critically analyze the advantages and disadvantages of 
both sets of technologies ;

– To obtain a background on Service Oriented Architecture 
(SOA) and Resource Oriented Architecture (ROA) ;

– To obtain an insight into current trends of Services on the 
Web.



Competences to develop

• After successful completion of this course you 
should be able to

– build programming-language specific web service 
client wrappers given a web service to connect to, 
based on the working knowledge of HTTP, SOAP, 
WSDL, UDDI 

– analyze web service requirements, and choose the 
according appropriate technology for implementation 

– design and implement web services from the server 
side ;

– critically evaluate new web service technologies.



COURSE ORGANISATION

• The course is organized as a mixture of:

– Ex-cathedra lectures

– Seminars prepared by, presented by, discussed with 
students

– Technical exercises

– Project work

• Seminar assignments, reading assignments, project 
assignment are all published on the course website:

http://cs.ulb.ac.be/public/teaching/infoh511

• Check regularly for updates!

http://cs.ulb.ac.be/public/teaching/infoh511


Course schedule



Examination

• The course does not have a traditional exam

• You are graded on:

– Active participation to the seminars (4 / 20)

– The preparation & presentation of one seminar 
(6/20)

– Project work (10 / 20)



Seminars
• For each seminar, a small group of two to three students is

given a list of reading resources on a particular topic as well as
a set of accompanying questions.

• The group is asked to prepare a presentation on the topic
(answering the given questions) and present this presentation
during the seminar.

• The non-presenters are requested to read the same resources
in preparation of the seminar ;

• During the seminar, the presenters present their presentation
while the others critically evaluate this presentation, and fuel
discussion on the answers presented to the questions.

• Attending seminars is a mandatory requirement for passing
the course!



Seminar assignment example



Group distribution
Seminar Date Students

SOAP

WSDL

UDDI

SECURITY 1

SECURITY 2

ADDRESSING, RESOURCES, 
NOTIFICATION

CURRENT TRENDS IN 
SERVICES ON THE WEB

TODO? Send by email / fix groups



WEB SERVICE = SERVICE ON THE WEB

• What is the Web?

• What is a Service?



THE WEB: 
BASIC ARCHITECTURE & PROTOCOLS



The Web ≠ the Internet

• The Internet is a global system of 
interconnected computer networks. 

• The Web is a subset of the Internet. It is a 
collection of resources, linked by hyperlinks 
and URLs, transmitted by web browsers and 
web servers talking HTTP.



The Internet: some history

• ARPANET (1969): 
Advanced Research Project Agency NETwork

– Created by the US Department of Defense

– First operational packet switching network 

– Early ARPANET applications

• Email, SMTP (1971), Ray Tomlinson

• File Transfer Protocol, FTP (1973) 

• Standardized Internet Protocol Suite
(TCP/IP, 1983)



First ARPANET Logical Map



The Internet: simplified operation

• The Internet is a global system of interconnected computer 
networks.

• Computers that have a “physical link” (ethernet wire, WIFI, 
satelite, …) can talk directly to each other.

• Messages between non-adjacent computers are routed 
through adjacent computers to the destination.



IP: Internet Protocol

• IP allows unreliable communication of limited size data
packets (called datagrams) between machines identified by
IP addresses (e.g., 164.15.59.215)

• Each datagram is sent and routed independently (and may
arrive out of order). Routing is done transparently by the
protocol.

TO: 192.1.1.5

192.1.1.5



IP: Internet Protocol [Dataflow]
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TCP: Transmission Control Protocol

• Transmission of arbitrary-length data in streams

• Transparently cuts up streams into fixed-size IP datagrams,
and uses IP to send them to destination.

• Builds a reliable bi-directional communication channel on
top of IP by retransmitting lost datagrams, reordering, etc.

TO: 192.1.1.5 PORT 21

192.1.1.5
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TCP: Transmission Control Protocol

• TCP is Connection-oriented

– Establish connection between client and server process

– Transmit data in both directions

– Close connection

• End point of connection given by a pair

• A port numbers identifies the server/client process for 
which the data is intended

• Standard services (email, web browsing, ftp) have a fixed 
port number (see http://www.iana.org/assignments/service-
names-port-numbers/service-names-port-numbers.xml)

IP address : port number
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TCP [Dataflow]
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TCP allows transparent host-to-host communication

THE INTERNET



HTTP: Hypertext Transfer Protocol

• Layer on top of TCP

• Essentially an envelope format

• Request and response communication protocol for
exchanging web resources (e.g., HTML, XML, TEXT, …)

• Communication is always initiated by the client

• Server typically runs on port 80

• Stateless, light-weight



HTTP = Request/Response protocol

HTTP REQUEST

HTTP RESPONSE

THE INTERNET

Effect of typing http://www.ulb.ac.be/index.html in web browser :
1. Use a domain name service (DNS) to get the IP address for 

www.ulb.ac.be
2. Create a TCP connection to address 164.15.59.215 on port 80
3. Send a HTTP request message over the TCP connection
4. Receive the HTTP response (and visualize in a browser)

http://www.ulb.ac.be/index.html
http://www.ulb.ac.be/


Example HTTP Request message

GET /index.html HTTP/1.1
Host: www.ulb.ac.be
User-Agent: 
Accept: text/html,application/xhtml+xml,application/xml
Accept-language: text/xml,application/xml,text/html;q=0.9,…
Accept-encoding: us,en;q=0.5
Accept-charset: ISO-8895-15,utf-8;q=0.7,*;q=0.7
Connection: keep-alive

HTTP REQUEST



Example HTTP Response message

HTTP/1.1 200 OK
Date: Mon, 19 Dec 2011 16:39:16 GMT
Server: Apache/2.2.11 (Unix) mod_ssl/2.2.11 OpenSSL/0.9.7d
Last-Modified: Mon, 19 Dec 2011 15:48:25 GMT
ETag: "2725d3-11441-4b473e18e0130"
Accept-Ranges: bytes
Content-Length: 70721
Content-Type: text/html

<html xmlns=http://www.w3.org/1999/xhtml> … </html>

HTTP RESPONSE





HTTP [Dataflow]
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General structure of a HTTP request

• HTTP is a document-based protocol: the client puts a
document in an envelope and sends it to the server

• The server replies with a response document in an envelope

• HTTP defines what the envelope should look like, but doesn’t
care what goes inside

Host: www.ulb.ac.be
User-Agent: Mozilla/5.0 …
Accept: text/html, …
Accept-language: us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-15,…
Connection: keep-alive

GET /index.html HTTP/1.1 Start Line

Request Headers
(= a list of key/value pairs)
“the stickers on the envelope”
Many standard headers
User-defined headers possible

Empty line (CRLF)

The optional entity-body 
(document, resource representation)

HTTP Method Path Version



General structure of a HTTP response

• HTTP is a document-based protocol: the client puts a
document in an envelope and sends it to the server

• Server replies with a response document in an envelope

• HTTP defines what the envelope should look like, but doesn’t
care what goes inside

Date: Mon, 19 Dec 2011 …
Server: Apache/2.2.11 …
Last-Modified: Mon, 19 Dec … 
ETag: …
Accept-Ranges: bytes
Content-Length: 70721
Content-Type: text/html

HTTP/1.1 200 OK

<html …> … </html>

Status Line

Response Headers
(= a list of key/value pairs)
“the stickers on the envelope”
Many standard headers
User-defined headers possible

Empty line (CRLF)

The optional entity-body 
(document, resource representation)

Version Response code



HTTP Methods [request only]

• The HTTP methods that can be used in a request are: 

• Most websites use only GET

GET request a resource representation

POST send data to server and receives result

PUT create or update a resource

DELETE delete a resource

OPTIONS Discover what HTTP methods are supported at target URI

HEAD requests headers only (similar to GET but omits entity 
body)



The message body [request + response]

• The body is a sequence of bytes

• If a HTTP message includes a body, there is usually a header 
line that describes the MIME format of the body

• The MIME type identifies how the entity body should be 
interpreted.

• Full list of MIME types: 
http://www.iana.org/assignments/media-types/index.html

Content-Length: 70721
Content-Type: text/html

Length in bytes

MIME type
(others include image/gif, application/xml, 
application/json, …)

http://www.iana.org/assignments/media-types/index.html
http://www.iana.org/assignments/media-types/index.html
http://www.iana.org/assignments/media-types/index.html


HTTP response codes [response only]

• The response code is a three-digit integer, where the first
digit identifies the general category of response:

– 1xx indicates an informational message only

– 2xx indicates success of some kind

– 3xx redirects the client to another URL

– 4xx indicates an error on the client's part

– 5xx indicates an error on the server's part

• The most common status codes are:

• The code is followed by a human-readable phrase, which
may vary from server to server

200 OK 404 Not Found



A note on URIs

• A Uniform Resource Identifier (URI) is either a Uniform 
Resource Locator (URL)  or a Uniform Resource Name (URN), 
or both

• It takes the form 

Scheme:scheme-specific-part

• Conventions about the use of /, #, and ?



A note on URIs

• A Uniform Resource Name functions like a person’s name

urn:isbn:0-486-27557-4

That is: it defines an item’s identity



A note on URIs

• A Uniform Resource Locator functions like a street address:

http://www.google.com

That is: it gives an item’s location



The anatomy of a URL

http://tools.ietf.org/html/rfc3986

http://www.google.be/search?q=ULB&start=10#1

URI Scheme Authority/
Host

Path

Query Fragment



Content negotiation

• Used to select “best” response for a request

– Server-driven negotiation

– Agent-driven negotiation

– Transparent negotiation (not discussed here)

• Server-driven negotiation is normally used



Server-driven content negotiation

• User agent provides a list of preferences

• Server decides “best” resource from those available

• Vary header may be returned to tell caches what request 
headers are/can be used to make the decision, e.g.,

Accept: text/html, …

Accept-language: us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-15,…

List of MIME media types

List of languages

List of content encodings

List of character sets

Vary: Accept-language,Accept-Charset





Agent-driven content negotiation

• User agent provides a list of preferences, as before

• Server returns status code 300 and a list of choices (with 
their URIs) in either header fields or entity-body

• User-agent decides which one is “best” and issues new 
request for it (using the provided URIs)

• Requires multiple trips to the server

• Less widely used



Conditional requests

• Certain request headers can be included to make a request 
conditional

• Based on date and time of last modification:

• Based on entity tags (returned by server in ETAG: header)

• When specified condition is true, server returns requested 
resource, otherwise a status code is returned with no 
message-body (304 Not Modified or 412 Precondition Failed)

If-Modified-Since: Sat, 28 Jan 2012 19:43:31 GMT

If-Unmodified-Since: Sat, 28 Jan 2012 19:43:31 GMT

If-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"

If-None-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"



Design advantages of HTTP

• Lightweight

• No client state on server, hence scalable (load 
balancing through multiple servers)

• HTTP brings a uniform interface to sharing 
data on the web (more on this later)



Web Servers

• A Web Server is a server that talks HTTP

• Responsibilities:
1. Setup connection

2. Receive & process HTTP requests

3. Create & send HTTP response

4. [Logging]

• Well-known web servers:
– Apache HTTP Server [www.apache.org]

Freely available

– Microsoft Internet Information Services



Conclusion: The Web ≠ the Internet 
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Ethernet, sattelite links, ATM, …

th
e 

In
te

rn
et

the Web



SERVICES



What is a service?
• The term service is like the term multimedia: lots of people

have given different definitions.

• Essentially, a service is a software function or component:
– It may carry out a business task,
– provides access to files,
– Perform generic functions like authentication and logging,
– …

• Services reflect a new ‘service-oriented’ approach to
programming, based on the idea of composing applications
by discovering and invoking network-available services
rather than building new applications or by invoking
available applications to accomplish some task.



Some history: from local to distributed objects

• Object-oriented programming allows encapsulation of both
behavior and data.

• Clients use objects by first instantiating an object, and then
calling their properties & methods

• Re-use is usually restricted to the same programming
language and platform

Customer 
Object

Invoice 
Address
Object

(e.g., Java)



Some history: from local to distributed objects

• Components were devised to facilitate software reuse across
disparate programming languages.

• Components group related objects into (binary) units that can
be plugged into applications (cf. electronic component
assembly in circuit boards).

• Component reuse typically restricted to same computing
platform due to incompatible binary interfaces.

Client
Customer 

Object

Platform-specific 
interface

Invoice 
Address
Object

Customer component

(e.g., C++) (e.g., Java)



Some history: from local to distributed objects

• Distributed objects. To share and reuse objects, objects were
deployed to remote servers. Clients connect to such objects
through a remoting technology (CORBA, DCOM, Java or .NET
Remote Method Invocation).

• Clients and distributed objects live in separate machines, and
can therefore live in separate programming languages and
platforms.

• Reuse restricted to the same remoting technology

• Scalability problems due to client state

Client Proxy Stub
Customer 

Object

Client Process Server process 
for distributed object

Platform A Platform B

Network



Some history: from local to distributed objects

• Distributed objects were quickly grouped into a logic tier that         
stores all of the application logic – these are already “services”

Here be services!



What is a service? (cont.)

• Services hence provide logical functions that are shared
across different applications. They enable software that
runs on disparate computing platforms to collaborate.

• A platform may be any combination of hardware, operating
systems (e.g., Windows, Linux, Android, iOS), software
framework (java, .Net, Rails), and programming language.

• The service-oriented paradigm to programming utilizes
services as the constructs to support the rapid
development of easily composable distributed applications
(again cf. electronic component assembly in circuit boards).



What is a Web Service?

• Service reuse is restricted to the same remoting technology 
when built on traditional distributed object architectures.

• This is especially problematic in enterprise integration and 
communication scenarios, where services must be callable 
from outside enterprise boundaries.

Logic & Services tier
[CORBA]

Data tier

Logic & Services tier
[.NET]

Data tier

Enterprise BEnterprise A

?



What is a Web Service?

• Web services integrate disparate systems and expose
reusable business functions over the web (HTTP).

• They leverage HTTP either:
– as a simple transport over which data is carried (e.g., SOAP/WSDL

services), or

– a complete pre-defined application protocol (RESTful services).

Logic & Services tier
[CORBA]

Data tier

Logic & Services tier
[.NET]

Data tier

Enterprise BEnterprise A

HTTP
Web Server Web Server



Where are Services used?
• Within an enterprise (Enterprise Application Integration)

– Accelerate and reduce the cost of integration
– Save on infrastructure deployment and management costs
– Reduce skill requirements
– Improve reuse

• Between enterprises (E-business integration, B2B)
– Providing service to a company’s customers
– e.g., an Insurance company wishes to link its systems to the systems of a new 

institutional customer

– Accessing services from a company’s partners and suppliers
– e.g., dynamically link to new partners and suppliers to offer their services to 

complement the value the company provides

– Standards and common infrastructure reduce the barriers
– Simplicity accelerates deployment
– Dynamics opens new business opportunities



Web Service API styles

• RPC (Remote Procedure Call)

• Message-based

• Resource-based



• Client sends message to a remote server and blocks while
waiting for response

• Request message identifies the procedure to be executed and its
arguments

• Server decodes message, maps message arguments directly to
input parameters, executes procedure, and sends (serialized)
results back to client

RPC Style (1/2)

Client Service

Procedure name
AND

Procedure arguments

Procedure results

Request

Response

Procedure



• Pros:

– Very easy to implement (lots of frameworks that automate the
process, e.g. AX-WS framework for Java)

• Cons:

– Usually inflexible and fragile: tight coupling between client and
service, if procedure needs to change (e.g., number of arguments),
all clients need to be rewritten.

– Usually restricted to synchronous communication (client blocks
while waiting for response)

RPC Style (2/2)



• In a message-based API, messages are not derived from the
signatures of remote procedures.

• Instead, messages may carry information on specific topics, tasks
to execute, and events.

• The server selects the correct procedure to execute based on
the message content

Message-based style

Client Service

Topic, Task, or Event ID
AND

Structured msg content

Standardized content

Request

Response

Procedure

Procedure

Procedure



• Pros:

– Looser coupling between clients and servers

– Support for asynchronous communication [necessary on web-scale
networks]

• Cons:

– Messages must be standardized somehow. This is easy if
communication is within the same organization, but more difficult
when many parties are involved.

Message-based Style (2/2)



• In a resource-based API, all procedures, instances of domain
data, and files are given a URI.

• HTTP is used as a complete application protocol to define
standard service behavior.

• Information is exchanges based on standardized media types
(JSON, XML, ATOM, …) and HTTP response codes where possible

• Clients manipulate the state of resources through
representations (e.g., a database table row may be represented
as XHTML, XML, or JSON).

Resource-based style

Client Service

HTTP REQUEST 
(GET, PUT, POST, DELETE)

HTTP RESPONSE
(Standardized/propietary

media type OR HTTP response 
code)

Request

Response

Procedure

Procedure

Procedure



Two competing technology stacks

• Big Web Services (WS-*)
– Various (complex) protocols on top of HTTP 

(SOAP, UDDI, WSDL, WS-Addressing, …)
– Is mostly used to implement RPC-style services, but 

can be used to implement any of the three
– Lots of standards! Primarily meant to create web 

services that involve more than 2 peers.

• RESTful Web Services
– Use ONLY HTTP and standar media types
– Restricted to Resouce-style services
– Conceptually simpler, but mainly restricted to web 

services that are limited to two endpoints



WS-* Technology Stack





WS-* Message, Description & Discovery 

• While SOAP & WSDL are frequently used, UDDI has never 
caught on.

Service Requester
(Client)

Service Provider
(Server)

Service Registry

Service descriptionService descriptionService description

Service description

Service

PUBLISH

BIND

FIND

UDDI

SOAP

WSDL



A word of caution

• Web Service call entail distributed communication &
programming

– Network latency

– Failures

– Complexity of distributed programming

• So using web services only makes sense in situations
where out-of-processes and cross-machine calls
make sense.
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