
INFOH-511 WEB SERVICES

LECTURE 1: Introduction

COURSE RESPONSIBLES

• Stijn Vansummeren

ULB, Campus Solbosch, UB4.125

stijn.vansummeren@ulb.ac.be

• Francois Picalausa

ULB, Campus Solbosch, UB4.133

fpicalau@ulb.ac.be

PREREQUISITES

• This is an advanced Master level course. Students
are expected to have the following required prior
knowledge:
– INFOH-509 XML & Web Technologies

– Basic knowledge about computer networks

– Basic programming skills (Java)

• It is possible to follow the course without these
prerequisites, but beware that this implies an
additional workload to obtain the required prior
knowledge!

Course objectives
• To give an introduction to web services and their

related technologies, in particular:
– Obtain a working knowledge of the internet and the HTTP

protocol
– Obtain an understanding of the 2 major classes of web

service technologies :
• the "Big Web Services" (WS-*)
• the "REST"-style web services ;

– To critically analyze the advantages and disadvantages of
both sets of technologies ;

– To obtain a background on Service Oriented Architecture
(SOA) and Resource Oriented Architecture (ROA) ;

– To obtain an insight into current trends of Services on the
Web.

Competences to develop

• After successful completion of this course you
should be able to

– build programming-language specific web service
client wrappers given a web service to connect to,
based on the working knowledge of HTTP, SOAP,
WSDL, UDDI

– analyze web service requirements, and choose the
according appropriate technology for implementation

– design and implement web services from the server
side ;

– critically evaluate new web service technologies.

COURSE ORGANISATION

• The course is organized as a mixture of:

– Ex-cathedra lectures

– Seminars prepared by, presented by, discussed with
students

– Technical exercises

– Project work

• Seminar assignments, reading assignments, project
assignment are all published on the course website:

http://cs.ulb.ac.be/public/teaching/infoh511

• Check regularly for updates!

http://cs.ulb.ac.be/public/teaching/infoh511

Course schedule

Examination

• The course does not have a traditional exam

• You are graded on:

– Active participation to the seminars (4 / 20)

– The preparation & presentation of one seminar
(6/20)

– Project work (10 / 20)

Seminars
• For each seminar, a small group of two to three students is

given a list of reading resources on a particular topic as well as
a set of accompanying questions.

• The group is asked to prepare a presentation on the topic
(answering the given questions) and present this presentation
during the seminar.

• The non-presenters are requested to read the same resources
in preparation of the seminar ;

• During the seminar, the presenters present their presentation
while the others critically evaluate this presentation, and fuel
discussion on the answers presented to the questions.

• Attending seminars is a mandatory requirement for passing
the course!

Seminar assignment example

Group distribution
Seminar Date Students

SOAP

WSDL

UDDI

SECURITY 1

SECURITY 2

ADDRESSING, RESOURCES,
NOTIFICATION

CURRENT TRENDS IN
SERVICES ON THE WEB

TODO? Send by email / fix groups

WEB SERVICE = SERVICE ON THE WEB

• What is the Web?

• What is a Service?

THE WEB:
BASIC ARCHITECTURE & PROTOCOLS

The Web ≠ the Internet

• The Internet is a global system of
interconnected computer networks.

• The Web is a subset of the Internet. It is a
collection of resources, linked by hyperlinks
and URLs, transmitted by web browsers and
web servers talking HTTP.

The Internet: some history

• ARPANET (1969):
Advanced Research Project Agency NETwork

– Created by the US Department of Defense

– First operational packet switching network

– Early ARPANET applications

• Email, SMTP (1971), Ray Tomlinson

• File Transfer Protocol, FTP (1973)

• Standardized Internet Protocol Suite
(TCP/IP, 1983)

First ARPANET Logical Map

The Internet: simplified operation

• The Internet is a global system of interconnected computer
networks.

• Computers that have a “physical link” (ethernet wire, WIFI,
satelite, …) can talk directly to each other.

• Messages between non-adjacent computers are routed
through adjacent computers to the destination.

IP: Internet Protocol

• IP allows unreliable communication of limited size data
packets (called datagrams) between machines identified by
IP addresses (e.g., 164.15.59.215)

• Each datagram is sent and routed independently (and may
arrive out of order). Routing is done transparently by the
protocol.

TO: 192.1.1.5

192.1.1.5

IP: Internet Protocol [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

…

TO: 192.1.1.5

TCP: Transmission Control Protocol

• Transmission of arbitrary-length data in streams

• Transparently cuts up streams into fixed-size IP datagrams,
and uses IP to send them to destination.

• Builds a reliable bi-directional communication channel on
top of IP by retransmitting lost datagrams, reordering, etc.

TO: 192.1.1.5 PORT 21

192.1.1.5
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC

ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC

TCP: Transmission Control Protocol

• TCP is Connection-oriented

– Establish connection between client and server process

– Transmit data in both directions

– Close connection

• End point of connection given by a pair

• A port numbers identifies the server/client process for
which the data is intended

• Standard services (email, web browsing, ftp) have a fixed
port number (see http://www.iana.org/assignments/service-
names-port-numbers/service-names-port-numbers.xml)

IP address : port number

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml

TCP [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

…

TRANSPORT
LAYER

TRANSPORT
LAYER

TCP allows transparent host-to-host communication

TO: 192.1.1.5 PORT 21

ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC

TCP allows transparent host-to-host communication

THE INTERNET

HTTP: Hypertext Transfer Protocol

• Layer on top of TCP

• Essentially an envelope format

• Request and response communication protocol for
exchanging web resources (e.g., HTML, XML, TEXT, …)

• Communication is always initiated by the client

• Server typically runs on port 80

• Stateless, light-weight

HTTP = Request/Response protocol

HTTP REQUEST

HTTP RESPONSE

THE INTERNET

Effect of typing http://www.ulb.ac.be/index.html in web browser :
1. Use a domain name service (DNS) to get the IP address for

www.ulb.ac.be
2. Create a TCP connection to address 164.15.59.215 on port 80
3. Send a HTTP request message over the TCP connection
4. Receive the HTTP response (and visualize in a browser)

http://www.ulb.ac.be/index.html
http://www.ulb.ac.be/

Example HTTP Request message

GET /index.html HTTP/1.1
Host: www.ulb.ac.be
User-Agent:
Accept: text/html,application/xhtml+xml,application/xml
Accept-language: text/xml,application/xml,text/html;q=0.9,…
Accept-encoding: us,en;q=0.5
Accept-charset: ISO-8895-15,utf-8;q=0.7,*;q=0.7
Connection: keep-alive

HTTP REQUEST

Example HTTP Response message

HTTP/1.1 200 OK
Date: Mon, 19 Dec 2011 16:39:16 GMT
Server: Apache/2.2.11 (Unix) mod_ssl/2.2.11 OpenSSL/0.9.7d
Last-Modified: Mon, 19 Dec 2011 15:48:25 GMT
ETag: "2725d3-11441-4b473e18e0130"
Accept-Ranges: bytes
Content-Length: 70721
Content-Type: text/html

<html xmlns=http://www.w3.org/1999/xhtml> … </html>

HTTP RESPONSE

HTTP [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

…

TRANSPORT
LAYER

TRANSPORT
LAYER

TO: 192.1.1.5 PORT 80

HTTP allows client/response communication between
processes

APPLICATION
LAYER

APPLICATION
LAYER

General structure of a HTTP request

• HTTP is a document-based protocol: the client puts a
document in an envelope and sends it to the server

• The server replies with a response document in an envelope

• HTTP defines what the envelope should look like, but doesn’t
care what goes inside

Host: www.ulb.ac.be
User-Agent: Mozilla/5.0 …
Accept: text/html, …
Accept-language: us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-15,…
Connection: keep-alive

GET /index.html HTTP/1.1 Start Line

Request Headers
(= a list of key/value pairs)
“the stickers on the envelope”
Many standard headers
User-defined headers possible

Empty line (CRLF)

The optional entity-body
(document, resource representation)

HTTP Method Path Version

General structure of a HTTP response

• HTTP is a document-based protocol: the client puts a
document in an envelope and sends it to the server

• Server replies with a response document in an envelope

• HTTP defines what the envelope should look like, but doesn’t
care what goes inside

Date: Mon, 19 Dec 2011 …
Server: Apache/2.2.11 …
Last-Modified: Mon, 19 Dec …
ETag: …
Accept-Ranges: bytes
Content-Length: 70721
Content-Type: text/html

HTTP/1.1 200 OK

<html …> … </html>

Status Line

Response Headers
(= a list of key/value pairs)
“the stickers on the envelope”
Many standard headers
User-defined headers possible

Empty line (CRLF)

The optional entity-body
(document, resource representation)

Version Response code

HTTP Methods [request only]

• The HTTP methods that can be used in a request are:

• Most websites use only GET

GET request a resource representation

POST send data to server and receives result

PUT create or update a resource

DELETE delete a resource

OPTIONS Discover what HTTP methods are supported at target URI

HEAD requests headers only (similar to GET but omits entity
body)

The message body [request + response]

• The body is a sequence of bytes

• If a HTTP message includes a body, there is usually a header
line that describes the MIME format of the body

• The MIME type identifies how the entity body should be
interpreted.

• Full list of MIME types:
http://www.iana.org/assignments/media-types/index.html

Content-Length: 70721
Content-Type: text/html

Length in bytes

MIME type
(others include image/gif, application/xml,
application/json, …)

http://www.iana.org/assignments/media-types/index.html
http://www.iana.org/assignments/media-types/index.html
http://www.iana.org/assignments/media-types/index.html

HTTP response codes [response only]

• The response code is a three-digit integer, where the first
digit identifies the general category of response:

– 1xx indicates an informational message only

– 2xx indicates success of some kind

– 3xx redirects the client to another URL

– 4xx indicates an error on the client's part

– 5xx indicates an error on the server's part

• The most common status codes are:

• The code is followed by a human-readable phrase, which
may vary from server to server

200 OK 404 Not Found

A note on URIs

• A Uniform Resource Identifier (URI) is either a Uniform
Resource Locator (URL) or a Uniform Resource Name (URN),
or both

• It takes the form

Scheme:scheme-specific-part

• Conventions about the use of /, #, and ?

A note on URIs

• A Uniform Resource Name functions like a person’s name

urn:isbn:0-486-27557-4

That is: it defines an item’s identity

A note on URIs

• A Uniform Resource Locator functions like a street address:

http://www.google.com

That is: it gives an item’s location

The anatomy of a URL

http://tools.ietf.org/html/rfc3986

http://www.google.be/search?q=ULB&start=10#1

URI Scheme Authority/
Host

Path

Query Fragment

Content negotiation

• Used to select “best” response for a request

– Server-driven negotiation

– Agent-driven negotiation

– Transparent negotiation (not discussed here)

• Server-driven negotiation is normally used

Server-driven content negotiation

• User agent provides a list of preferences

• Server decides “best” resource from those available

• Vary header may be returned to tell caches what request
headers are/can be used to make the decision, e.g.,

Accept: text/html, …

Accept-language: us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-15,…

List of MIME media types

List of languages

List of content encodings

List of character sets

Vary: Accept-language,Accept-Charset

Agent-driven content negotiation

• User agent provides a list of preferences, as before

• Server returns status code 300 and a list of choices (with
their URIs) in either header fields or entity-body

• User-agent decides which one is “best” and issues new
request for it (using the provided URIs)

• Requires multiple trips to the server

• Less widely used

Conditional requests

• Certain request headers can be included to make a request
conditional

• Based on date and time of last modification:

• Based on entity tags (returned by server in ETAG: header)

• When specified condition is true, server returns requested
resource, otherwise a status code is returned with no
message-body (304 Not Modified or 412 Precondition Failed)

If-Modified-Since: Sat, 28 Jan 2012 19:43:31 GMT

If-Unmodified-Since: Sat, 28 Jan 2012 19:43:31 GMT

If-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"

If-None-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"

Design advantages of HTTP

• Lightweight

• No client state on server, hence scalable (load
balancing through multiple servers)

• HTTP brings a uniform interface to sharing
data on the web (more on this later)

Web Servers

• A Web Server is a server that talks HTTP

• Responsibilities:
1. Setup connection

2. Receive & process HTTP requests

3. Create & send HTTP response

4. [Logging]

• Well-known web servers:
– Apache HTTP Server [www.apache.org]

Freely available

– Microsoft Internet Information Services

Conclusion: The Web ≠ the Internet

LINK LAYER

INTERNET LAYER

TRANSPORT LAYER

APPLICATION LAYER

OUR APPS/WEB SERVICES

DNS, HTTP, SMTP, FTP

TCP, UDP

IP

Ethernet, sattelite links, ATM, …

th
e

In
te

rn
et

the Web

SERVICES

What is a service?
• The term service is like the term multimedia: lots of people

have given different definitions.

• Essentially, a service is a software function or component:
– It may carry out a business task,
– provides access to files,
– Perform generic functions like authentication and logging,
– …

• Services reflect a new ‘service-oriented’ approach to
programming, based on the idea of composing applications
by discovering and invoking network-available services
rather than building new applications or by invoking
available applications to accomplish some task.

Some history: from local to distributed objects

• Object-oriented programming allows encapsulation of both
behavior and data.

• Clients use objects by first instantiating an object, and then
calling their properties & methods

• Re-use is usually restricted to the same programming
language and platform

Customer
Object

Invoice
Address
Object

(e.g., Java)

Some history: from local to distributed objects

• Components were devised to facilitate software reuse across
disparate programming languages.

• Components group related objects into (binary) units that can
be plugged into applications (cf. electronic component
assembly in circuit boards).

• Component reuse typically restricted to same computing
platform due to incompatible binary interfaces.

Client
Customer

Object

Platform-specific
interface

Invoice
Address
Object

Customer component

(e.g., C++) (e.g., Java)

Some history: from local to distributed objects

• Distributed objects. To share and reuse objects, objects were
deployed to remote servers. Clients connect to such objects
through a remoting technology (CORBA, DCOM, Java or .NET
Remote Method Invocation).

• Clients and distributed objects live in separate machines, and
can therefore live in separate programming languages and
platforms.

• Reuse restricted to the same remoting technology

• Scalability problems due to client state

Client Proxy Stub
Customer

Object

Client Process Server process
for distributed object

Platform A Platform B

Network

Some history: from local to distributed objects

• Distributed objects were quickly grouped into a logic tier that
stores all of the application logic – these are already “services”

Here be services!

What is a service? (cont.)

• Services hence provide logical functions that are shared
across different applications. They enable software that
runs on disparate computing platforms to collaborate.

• A platform may be any combination of hardware, operating
systems (e.g., Windows, Linux, Android, iOS), software
framework (java, .Net, Rails), and programming language.

• The service-oriented paradigm to programming utilizes
services as the constructs to support the rapid
development of easily composable distributed applications
(again cf. electronic component assembly in circuit boards).

What is a Web Service?

• Service reuse is restricted to the same remoting technology
when built on traditional distributed object architectures.

• This is especially problematic in enterprise integration and
communication scenarios, where services must be callable
from outside enterprise boundaries.

Logic & Services tier
[CORBA]

Data tier

Logic & Services tier
[.NET]

Data tier

Enterprise BEnterprise A

?

What is a Web Service?

• Web services integrate disparate systems and expose
reusable business functions over the web (HTTP).

• They leverage HTTP either:
– as a simple transport over which data is carried (e.g., SOAP/WSDL

services), or

– a complete pre-defined application protocol (RESTful services).

Logic & Services tier
[CORBA]

Data tier

Logic & Services tier
[.NET]

Data tier

Enterprise BEnterprise A

HTTP
Web Server Web Server

Where are Services used?
• Within an enterprise (Enterprise Application Integration)

– Accelerate and reduce the cost of integration
– Save on infrastructure deployment and management costs
– Reduce skill requirements
– Improve reuse

• Between enterprises (E-business integration, B2B)
– Providing service to a company’s customers
– e.g., an Insurance company wishes to link its systems to the systems of a new

institutional customer

– Accessing services from a company’s partners and suppliers
– e.g., dynamically link to new partners and suppliers to offer their services to

complement the value the company provides

– Standards and common infrastructure reduce the barriers
– Simplicity accelerates deployment
– Dynamics opens new business opportunities

Web Service API styles

• RPC (Remote Procedure Call)

• Message-based

• Resource-based

• Client sends message to a remote server and blocks while
waiting for response

• Request message identifies the procedure to be executed and its
arguments

• Server decodes message, maps message arguments directly to
input parameters, executes procedure, and sends (serialized)
results back to client

RPC Style (1/2)

Client Service

Procedure name
AND

Procedure arguments

Procedure results

Request

Response

Procedure

• Pros:

– Very easy to implement (lots of frameworks that automate the
process, e.g. AX-WS framework for Java)

• Cons:

– Usually inflexible and fragile: tight coupling between client and
service, if procedure needs to change (e.g., number of arguments),
all clients need to be rewritten.

– Usually restricted to synchronous communication (client blocks
while waiting for response)

RPC Style (2/2)

• In a message-based API, messages are not derived from the
signatures of remote procedures.

• Instead, messages may carry information on specific topics, tasks
to execute, and events.

• The server selects the correct procedure to execute based on
the message content

Message-based style

Client Service

Topic, Task, or Event ID
AND

Structured msg content

Standardized content

Request

Response

Procedure

Procedure

Procedure

• Pros:

– Looser coupling between clients and servers

– Support for asynchronous communication [necessary on web-scale
networks]

• Cons:

– Messages must be standardized somehow. This is easy if
communication is within the same organization, but more difficult
when many parties are involved.

Message-based Style (2/2)

• In a resource-based API, all procedures, instances of domain
data, and files are given a URI.

• HTTP is used as a complete application protocol to define
standard service behavior.

• Information is exchanges based on standardized media types
(JSON, XML, ATOM, …) and HTTP response codes where possible

• Clients manipulate the state of resources through
representations (e.g., a database table row may be represented
as XHTML, XML, or JSON).

Resource-based style

Client Service

HTTP REQUEST
(GET, PUT, POST, DELETE)

HTTP RESPONSE
(Standardized/propietary

media type OR HTTP response
code)

Request

Response

Procedure

Procedure

Procedure

Two competing technology stacks

• Big Web Services (WS-*)
– Various (complex) protocols on top of HTTP

(SOAP, UDDI, WSDL, WS-Addressing, …)
– Is mostly used to implement RPC-style services, but

can be used to implement any of the three
– Lots of standards! Primarily meant to create web

services that involve more than 2 peers.

• RESTful Web Services
– Use ONLY HTTP and standar media types
– Restricted to Resouce-style services
– Conceptually simpler, but mainly restricted to web

services that are limited to two endpoints

WS-* Technology Stack

WS-* Message, Description & Discovery

• While SOAP & WSDL are frequently used, UDDI has never
caught on.

Service Requester
(Client)

Service Provider
(Server)

Service Registry

Service descriptionService descriptionService description

Service description

Service

PUBLISH

BIND

FIND

UDDI

SOAP

WSDL

A word of caution

• Web Service call entail distributed communication &
programming

– Network latency

– Failures

– Complexity of distributed programming

• So using web services only makes sense in situations
where out-of-processes and cross-machine calls
make sense.

References

• R. Daignau, Service Design Patterns, Addisson-
Wesley

• M. P. Papazoglou, Web Services: Principles and
Technology, Prentice Hall

