
Web Services:
Security 2
Endre András, Ferran Delgado, Gauthier Picalausa

Overview

1. Quick Recap
2. WS-family specifications

WS-Security
WS-Authorization
WS-SecureConversation

3. OpenID
4. OAuth
5. Amazon S3

Recap

● Authentication
Confirming identity

● Authorization
Access rights

User Admin
Webservice

Recap

● Integrity
The property that data has not been modified.

● Confidentiality
The property that data is not made available to
unauthorized individuals

Sender Recipient

Recap

● Hash function
Maps a large data set to a smaller fixed length data set.

E.g. MD5, SHA-1

● Hash function
Maps a large data set to a smaller fixed length data set.

E.g. MD5, SHA-1,SWIFFT

plain text, clear text

digest value, hash

Recap

● Public-key cryptography (asymmetric)

Sender Recipient

Recipient's
public-key

Recipient's
private-key

sending encrypted message

Hello Recipient!

8dg*(@#%234

Hello Recipient!

8dg*(@#%234

WS-Security in WS-*

Reliability Transactions Security
WS-Security, WS-SecureConversation

Description & Discovery
WSDL, UDDI

Messaging
SOAP 1.1, SOAP 1.2 , WS-Notification, etc.

Transport

Why WS-Security is needed?

1. The simple case

Sender Recipient

SOAP (req/res style)

Communication between two endpoints

Over HTTP, one can authenticate the caller, sign the message, and encrypt the
contents of the message.

Why WS-Security is needed?

2. SOAP to solve bigger problems

Client

Server 1

The identity, integrity, and security of the message and the caller need to be
preserved over multiple hops

We need end-to-end security, rather than point-to-point

Server 2

What is WS-Security?

It uses existing standards and specifications

● Authentication
Kerberos, X.509, username and password

● Encrypting and signing messages
XML Encryption and XML Signature

● Preparing documents to be signed and encrypted
XML Canonicalization

What is WS-Security?

Is a way (framework) that describes how to embed existing
specifications into a SOAP messages.

SOAP message

authentication

Header

Body

authorization

WSS in SOAP header

Soap Envelope

Soap Header

Soap Body

WS Security Header

Security Token

Signature

Simplified Example

WS-Security credential management

Two special elements covers all:

● <UsernameToken>
Transferring simple user credentials

● <BinarySecurityToken>
Embedding binary security tokens such as Kerberos
Tickets or X.509 Certifications

BinarySecurityToken Example

wsu:Timestamp & wsu:Id

update
update

message is valid for the next 5 min.

Encryption example

Encryption example <soap:body>

Encryption example <soap:body>

WS-Authorization

● Very Similar to XACML

● Manages Data and authorization policies
Makes authorization decisions

● Add role-based authorization

● Current Status : Unknown

WS-Authorization

● Recap : XACML

WS-Authorization

● Role based authorization

WS-SecurityConversation

WS-SecureConversation

 A security context provides a way to provide
session based security, rather than
establishing new keys for every message

WS-SecureConversation

WS-SecureConversation:
Establishing Security Contexts

● Created by a security token service
● Created by one of the communicating

parties
● Created through negotiation

WS-SecureConversation:
Establishing Security Contexts

● Created by a security token service

WS-SecureConversation:
Establishing Security Contexts

● Created by one of the communicating parties

a. The initiator creates a security context token and
sends it to the other parties on a message

b. The recipient can then choose whether or not to
accept the security context token.

WS-SecureConversation:
Establishing Security Contexts

● Created through negotiation

○ The initiating party sends a <RequestSecurityToken> request to the
other party

○ A <RequestSecurityTokenResponse> is returned.

○ Repeat the above 2 steps until a final response containing a
<SecurityTokenReference> and a <ProofTokenReference> is received.

WS-SecureConversation: Derived Key

WS-SecureConversation: Derived Key

A lot of ids !

OpenID

OpenID

OpenID

Is OpenID secure?

OpenID

List of the providers

Name Ease of
us

Security Remembers
info

Multiple
profiles

Antiphishing Password
protected

MyOpenId 8 9 X X X X

Google 7 4 X X

Yahoo! 10 4 X X

VeriSign 7 7 X X X

wordPress 5 1 X X X

OAuth

"You would like people to get access to the
books they want but not the employee list"

● Authorize partial access

● New role : resource owner

OAuth - history

● 2006 : Blaine Cook, OpenID and Twitter

● 2007 : OpenAuth google group
 AOL OpenAuth protocol

● 4th December 2007 : OAuth is released

OAuth - history

● June 2009 : First revision

● March 2009 : OAuth Working Group created

 OAuth Core 1.0 RFC Edition

● November 2009 : OAuth 2.0 project

● October 2012

OAuth - Terminology

Client Server

Authenticated Request

Traditionally

OAuth

Client Server

Authenticated Request

Resource owner

Share secret

OAuth - Terminology

● Protected Resource
"A protected resource is a resource stored on (or

provided by) the server which requires authentication in
order to access it. Protected resources are owned or
controlled by the resource owner. Anyone requesting
access to a protected resource must be authorized to do
so by the resource owner (enforced by the server)."

OAuth - Terminology

● Credentials

○ Client

○ Temporary

○ Token

OAuth - Security

● Basic

● Credentials (client + token)

● Signature and hash

● TimeStamp and Nonce

OAuth - Credential security

Token Request

Token Response

User login + consent

Token + data request

data response

Validation Response

Validation Request

OAuth - Credential security

Token Request

Token Response

User login + consent

Token + data request

data response

Validation Response

Validation Request

OAuth - Data request

OAuth header - sent

realm Bleh

oauth_consumer_key dpf43f3p2l4k3l03

oauth_token nnch734d00sl2jdk

oauth_nonce kllo9940pd9333jh

oauth_timestamp 1191242096

oauth_signature tv90v06QjdPVw3c5EoEAN4/hoW4=

oauth_signature_method HMAC-SHA1

oauth_version 1.0

OAuth - Data request

Http request

GET /photos?size=original&file=vacation.jpg HTTP/1.1
Host: photos.example.net:80
Authorization: OAuth realm="http://photos.example.net/photos",

oauth_consumer_key="dpf43f3p2l4k3l03",
oauth_token="nnch734d00sl2jdk",
oauth_nonce="kllo9940pd9333jh",
oauth_timestamp="1191242096",
oauth_signature_method="HMAC-SHA1",
oauth_version="1.0",
oauth_signature="tR3%2BTy81lMeYAr%2FFid0kMTYa%2FWM%3D"

OAuth - Data Access

● Url

● OAuth header

● 'application/x-www-form-urlencoded' POST
body

OAuth2

● Not backwards compatible

● Aims to improve where 1.0 was limited and
confusing

● New flows

OAuth2

● Bearer tokens

● Simplified signatures

● Short-lived token with long-lived authorisation

OAuth2 - By Eran Hammer

● Unbounded tokens - In 2.0, the client credentials are no
longer used. This means that tokens are no longer bound
to any particular client type or instance.

● Bearer tokens - 2.0 got rid of all signatures and
cryptography at the protocol level. Instead it relies solely
on TLS. This means that 2.0 tokens are inherently less
secure as specified.

OAuth2 - By Eran Hammer

● Expiring tokens - developers now need to implement
token state management. The reason for token expiration
is to accommodate encrypted tokens which can be
authenticated by the server without a database lookup.
Because such tokens are self-encoded, they cannot be
revoked and therefore must be short-lived to reduce their
exposure.

OAuth2 - example

● Google Example

https://oauthssodemo.appspot.com
https://oauthssodemo.appspot.com

Amazon S3

● S3 = Simple Storage Service
Amazon S3 provides storage through web services
interfaces (REST, SOAP, and BitTorrent)

● Buckets
http://s3.amazonaws.com/bucket/key

S3: Authenticate REST requests

● Amazon S3 REST API uses a custom HTTP scheme
based on a keyed-HMAC (Hash Message Authentication
Code) for authentication

● At registration developers get:
AWS Access Key ID
AWS SecretAccess Key

S3: REST requests

GET /photos/puppy.jpg HTTP/1.1
Host: johnsmith.s3.amazonaws.com
Date: Mon, 26 Mar 2007 19:37:58 +0000

Authorization: AWS AKIAIOSFODNN7EXAMPLE:frJIUN8DYpKDtOLCwo//yllqDzg=

AWSAccessKeyId Signature

S3: Signature

Signature = Base64(HMAC-SHA1(SecretAccessKey,UTF-8-Encode(StringToSign)));

StringToSign = HTTP-Verb + "\n" +
Content-MD5 + "\n" +
Content-Type + "\n" +
Date + "\n" +
CanonicalizedAmzHeaders +
CanonicalizedResource;

CanonicalizedResource = ["/" + Bucket] +
<HTTP-Request-URI, from the protocol name up to the query string>

S3: GET request example

Thank you for your attention

WS-Security signing
OpenID symmetric keys

OAuth 1.0 hashing
cryptography REST API

SOAP confidentiality
authentication authorization

integrity encryption
WS-* OAuth 2.0

