
INFOH-511 WEB SERVICES

LECTURE 2: REST & ROA

Seminar division

REST
= REPRESENTATIONAL STATE TRANSFER

REST: some history

• The term REpresentational State Transfer was introduced and
defined in 2000 by Roy Fielding in his doctoral dissertation.

• Fielding is one of the principal authors of the Hypertext
Transfer Protocol (HTTP) specification versions 1.0 and 1.1.

At the beginning of our efforts within the Internet Engineering
Taskforce to define the existing (HTTP/1.0) and design the
extensions for the new standards of HTTP/1.1 and Uniform
Resource Identifiers (URI), we recognized the need for a model of
how the World Wide Web (WWW, or simply Web) should work.
This idealized model of the interactions within an overall Web
application—what we refer to as the Representational State
Transfer (REST) architectural style—became the foundation for the
modern Web architecture, providing the guiding principles by
which flaws in the existing architecture could be identified and
extensions validated prior to deployment.

“

REST: some history
A software architecture is an abstraction of the runtime elements
of a software system during some phase of its operation. A system
may be composed of many levels of abstraction and many phases
of operation, each with its own software architecture. An
architecture determines how system elements are identified and
allocated, how the elements interact to form a system, the amount
and granularity of communication needed for interaction, and the
interface protocols used for communication.

“

REST is a coordinated set of architectural constraints that attempts to minimize
latency and network communication, while at the same time maximizing the
independence and scalability of component implementations. This is achieved by
placing constraints on connector semantics, where other styles have focused on
component semantics. REST enables the caching and reuse of interactions,
dynamic substitutability of components, and processing of actions by
intermediaries, in order to meet the needs of an Internet-scale distributed
hypermedia system.

From “Principled design of the modern Web architecture.”

REST: some history
The name “Representational State Transfer” is intended to evoke
an image of how a well-designed Web application behaves: a
network of Web pages forms a virtual state machine, allowing a
user to progress through the application by selecting a link or
submitting a short data-entry form, with each action resulting in a
transition to the next state of the application by transferring a
representation of that state to the user.

“

• The modern (human) Web is one instance of a REST-style
architecture

• RESTful web services transfer these ideas from the human
web to web services, founded by idea that there should be no
essential difference between the human web (designed for
human consumption) and the “programmable web” designed
for consumption by software

ROA: Some History

• REST is actually a meta-architecture: it is a collection of
architectures – the current Web is just one instance.

• In 2007, Richardson & Ruby introduced the term Resource
Oriented Architecture (ROA) to refer to a set of design
guidelines and best practices (adhering to the REST
constraints) that should be used to design RESTful Web
Services

• We mention the ROA guidelines in what follows.

• Beware, however, that many current web services do not
implement or follow all of these guidelines. [Your milage may
vary].

Key REST concepts

• Rest consists of 4 key concepts:
– Resources

– Resource names (URIs)

– Resource representations

– Links between resources

• And 4 key properties:
– Addressability

– Statelessness

– Connectedness

– The Uniform Interface

Resources

• Resource examples
– A historical building

– The newspaper “le soir”

– The newspaper “le soir” at a particular date

– The collection of all Belgian newspapers

– The Belgian prime minister

– The preferred newspaper of the prime minister

The key abstraction of information in REST is a resource. Any information that can be
named can be a resource: a document or image, a temporal service (e.g., “today’s
weather in Los Angeles”), a collection of other resources, a nonvirtual object (e.g., a
person), a concept and so on.

“

Every object manipulated by the web service (or web application)
should be identified and exposed as a resource.

RESTFUL WEB SERVICE DESIGN GUIDELINE 1:

URIs: names for resources

• A URI is the name of a resource

• Examples:
– http://www.lesoir.be

– http:// www.lesoir.be/edition/20-01-2012

– http:// www.example.org/newspapers/belgium

– http:// www.example.org/newspapers?country=belgium

• Every identified resource must be assigned at least one URI.
This ensures it is addressable

• A URI should never represent more than one resource.

• Resources can have multiple URIs, but should have as few URIs
as possible.

RESTFUL WEB SERVICE DESIGN GUIDELINE 2:

http://www.lesoir.be/
http://www.lesoir.be/
http://www.lesoir.be/edition/20-01-2012
http://www.lesoir.be/edition/20-01-2012
http://www.lesoir.be/edition/20-01-2012
http://www.lesoir.be/edition/20-01-2012
http://www.lesoir.be/edition/20-01-2012
http://www.lesoir.be/
http://www.example.org/newspapers/belgium
http://www.lesoir.be/
http://www.example.org/newspapers?country=belgium

Representations

• A representation is a description of (some part of) the
resource.

• A resource can have multiple representations (one in HTML,
one in XML, one in a Google protocol buffer, …).

• Example:
– http:// www.example.org/newspapers/belgium could support both

HTML and JSON

Specify, for every resource:

• The representations that the service serves to the client

• The representations that the service accepts from the client

Use standard representations whenever possible

RESTFUL WEB SERVICE DESIGN GUIDELINE 3:

http://www.lesoir.be/
http://www.example.org/newspapers/belgium

On content negotiation and URIs

• Content negotiation can be used to get dinstinct
representations of the same resource.

• By giving these distinct representations their own URIs,
however, we also make them addressable

• Example:
– http:// www.example.org/newspapers/belgium

– http:// www.example.org/newspapers/belgium.json

– http:// www.example.org/newspapers/belgium.xml

– http://www.belgium.be/consitution

– http://www.belgium.be/constitution.nl

– http://www.belgium.be/constitution.fr

• Addressability is useful, e.g.,
– http://myservice.com/rank?site=http%3A%2F%2Fwww.example.org%

2Fnewspapers%2Fbelgium.json

http://www.lesoir.be/
http://www.lesoir.be/
http://www.lesoir.be/
http://www.lesoir.be/
http://www.example.org/newspapers/belgium
http://www.example.org/newspapers/belgium
http://www.example.org/newspapers/belgium
http://www.example.org/newspapers/belgium
http://www.example.org/newspapers/belgium
http://www.lesoir.be/
http://www.lesoir.be/
http://www.lesoir.be/
http://www.lesoir.be/
http://www.lesoir.be/
http://www.example.org/newspapers/belgium.json
http://www.example.org/newspapers/belgium.json
http://www.example.org/newspapers/belgium.json
http://www.example.org/newspapers/belgium.json
http://www.example.org/newspapers/belgium.json
http://www.example.org/newspapers/belgium.json
http://www.example.org/newspapers/belgium.json
http://www.lesoir.be/
http://www.lesoir.be/
http://www.lesoir.be/
http://www.lesoir.be/
http://www.example.org/newspapers/belgium.xml
http://www.example.org/newspapers/belgium.xml
http://www.example.org/newspapers/belgium.xml
http://www.example.org/newspapers/belgium.xml
http://www.example.org/newspapers/belgium.xml
http://www.example.org/newspapers/belgium.xml
http://www.example.org/newspapers/belgium.xml
http://www.belgium.be/consitution
http://www.belgium.be/consitution
http://www.belgium.be/consitution
http://www.belgium.be/consitution
http://www.belgium.be/consitution
http://www.belgium.be/consitution
http://www.belgium.be/consitution
http://www.belgium.be/constitution.nl
http://www.belgium.be/constitution.nl
http://www.belgium.be/constitution.nl
http://www.belgium.be/constitution.nl
http://www.belgium.be/constitution.nl
http://www.belgium.be/constitution.nl
http://www.belgium.be/constitution.nl
http://www.belgium.be/constitution.nl
http://www.belgium.be/constitution.nl
http://www.belgium.be/constitution.fr
http://www.belgium.be/constitution.fr
http://www.belgium.be/constitution.fr
http://www.belgium.be/constitution.fr
http://www.belgium.be/constitution.fr
http://www.belgium.be/constitution.fr
http://www.belgium.be/constitution.fr
http://www.belgium.be/constitution.fr
http://www.belgium.be/constitution.fr
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json

Sidenote: JSON, that other XML

• JSON =JavaScript Object Notation

• A syntactical fragment of JavaScript for describing data

• Due to its increased popularity, libraries for reading & writing
JSON exist for virtually every programming language

• Sometimes more compact than XML, but since it does not
specify a schema, XML-like data-binding tools (JAXB, …) are
not available

• Mainly used in conjunction with AJAX

{ “reportData”:
[

{ “year”: 2011, “profit”: 2000000 },
{ “year”: 2010, “deficit”: 1000 },

],
“author”: “John Doe”

}

The Uniform Interface

• All access to resources happens through HTTP uniform
interface (GET, POST, PUT, DELETE, HEAD, OPTIONS).

CRUD REST

CREATE POST Create a (sub)resource

RETRIEVE GET Retrieve a representation of a resource

UPDATE PUT Modify a resource/create a new resource

DELETE DELETE delete a resource

OPTIONS Discover what HTTP methods are supported
by the resource

HEAD requests headers only (similar to GET but
omits representation)

The Uniform Interface (cont.)

HTTP Client Web Server Database

GET /books?isbn=122 SELECT * FROM BOOKS
WHERE ISBN=122

HTTP/1.1 200 OK

{ “title”: “REST”,
“authors”:
[“Auth1”, “Auth2”]

}

RESOURCE RETRIEVAL

The Uniform Interface (cont)

HTTP Client Web Server Database

POST /order
INSERT INTO ORDERS

HTTP/1.1 201 CREATED
Location: /orders/4569

RESOURCE CREATION

Factory URI

The Uniform Interface (cont)

HTTP Client Web Server Database

UPDATE /orders/4569

<item id=“A”, count=“10”/>

UPDATE ORDERS
SET COUNT= 10
WHERE ORDER=4569
AND ITEMID=“A”

HTTP/1.1 200 OK

RESOURCE UPDATE

The Uniform Interface (cont)

HTTP Client Web Server Database

DELETE /orders/4569 DELETE FROM ORDERS
WHERE ORDER=4569

HTTP/1.1 200 OK

RESOURCE DELETION

GET /orders/4569

HTTP/1.1 404 NOT FOUND

The Uniform Interface (cont)

• All access to resources happens through HTTP uniform
interface (GET, POST, PUT, DELETE, HEAD, OPTIONS).

• All information necessary to understand the request must be
contained in the request message.

Specify, for every URI (and hence, resource): the HTTP methods
supported (e.g., GET and POST, but not DELETE, PUT)

Allow querying of these operations by supporting OPTIONS

RESTFUL WEB SERVICE DESIGN GUIDELINE 4:

Statelessness
• Each request from client to server must contain all of the

information necessary to understand the request, and cannot
take advantage of any client stat stored on the server.

• Application state is therefore kept entirely on the client.

• Resource state is of course still kept on the server

• Statelessness:

– Improves reliability because it makes it easier to recover
from partial failiures

– Improves scalability because:
• Servers can quickly free computing resources after each request

• Different requests can be handled by different servers (load
balancing) exactly because the server doesn’t have to manage
resource usage across requests.

Safety & idempotency

• GET, HEAD, OPTIONS are read-only operations but PUT, POST,
DELETE are read-write operations with side effects.

• An operation f is called idempotent if
f(f(x)) = f(x)

• PUT and DELETE are idempotent.

• Idempotent and read-only operations can safely be re-
executed multiple times (e.g., network timeouts) without
risking errors

• POST is not idempotent nor read-only, and is not safe to re-
execute

Why the Uniform Interface matters

• Consider a GET of

http://api.del.icio.us/posts/delete

• This misuses GET and does not adhere to the uniform
interface

• But software programs don’t know this. Programs that follow
a link by GETTing it may hence (inadvertly) delete data. [e.g.,
Google Web Accelerator]

Use the HTTP methods correctly when designing web services.

RESTFUL WEB SERVICE DESIGN GUIDELINE 5:

http://api.del.icio.us/posts/delete
http://api.del.icio.us/posts/delete
http://api.del.icio.us/posts/delete
http://api.del.icio.us/posts/delete
http://api.del.icio.us/posts/delete
http://api.del.icio.us/posts/delete
http://api.del.icio.us/posts/delete
http://api.del.icio.us/posts/delete
http://api.del.icio.us/posts/delete

Connecting resources

• Server response representations should include links to other
relevant resources

• This makes a web service self-documenting (the
representation can be parsed to see what other resources can
be accessed).

• [This will become more clear with the example that follows]

• In a resource-based API, all procedures, instances of domain
data, and files are given a URI.

• HTTP is used as a complete application protocol to define
standard service behavior.

• Information is exchanges based on standardized media types
(JSON, XML, ATOM, …) and HTTP response codes where possible

• Clients manipulate the state of resources through
representations (e.g., a database table row may be represented
as XHTML, XML, or JSON).

Summary: REST = Resource-based API

Client Service

HTTP REQUEST
(GET, PUT, POST, DELETE)

HTTP RESPONSE
(Standardized/propietary

media type OR HTTP response
code)

Request

Response

Procedure

Procedure

Procedure

Discussion

• In order to allow clients to cache representations that do not
change frequently, the server should include the following

headers:

– Last-Modified

– Etags

• This allows clients to use conditional get (using e.g., If-
Modified-Since and If-None-Matches)

AN EXAMPLE

Design procedure

• Richardson and Ruby propose the following design method to
obtain a resource-oriented architecture

• Figure out the data set

• Split the data set into resources

• For each kind of resource

• Expose a subset of the uniform interface

• Design the representation(s) accepted from the client

• Design the representation(s) served to the client

• Integrate this resource into existing resources, using
hypermedia links

• Consider the typical course of events: what’s supposed to
happen?

• Consider error conditions: what might go wrong?

The ROA procedure

The example scenario

• Example taken from Richardson and Ruby RESTful
web services.

• Suppose we want to construct an (imaginary) web
service that serves maps of different kinds:

– Political maps

– Physical maps

– Road maps

– Geological maps

of different planets and at different scales

Step 1: Figure out the data set

• Maps are made out of points (specific longitude & latitude)

• A map concerns a certain planet (Earth, Venus)

• Some points on a map are places (Brussels, the Himalaya, …)

• Places can be of different types

Step 2: split the data into resources

• Web services commonly expose three kinds of
resources:

– Predefined resources for especially important aspects of
the application
• (e.g., top-level directory of other available resources)

– A resource for every object exposed through the service

– Resources representing the results of algorithms applied to
the data set
• (e.g., a search resource http://google.com/search?q=books)

http://google.com/search?q=books
http://google.com/search?q=books
http://google.com/search?q=books
http://google.com/search?q=books
http://google.com/search?q=books

Step 2: our resources so far

• For planets and entire maps:

– The list of planets

– Mars

– Earth

– The satellite map of Mars

– The radar map of Venus

– The road map of Earth

Step 2: our resources so far

• For parts of maps
– 24.9195N 17.821E on Earth

– 24.9195N 17.821E on the political map of Earth

– 24.9195N 17.821E on Mars

– 44N 0W on the geologic map of Earth

• For places:
– The Cleopatra crater on Venus

– Campus Solbosch of ULB in Brussels, Belgium on Earth

– The place called Springfield in Massachusetts, in the
United States of America, on Earth

Step 2: our resources so far

• Algorithmic resources

– Places on Earth called Springfield

– Container ships on Earth

– Craters on Mars more than 1 km in diameter

– Places on the moon named before 1900

Step 2: in conclusion, our resources:

1. The list of planets

2. A place on a planet—possibly the entire planet—
identified by name

3. A geographic point on a planet, identified by
latitude and longitude

4. A list of places on a planet that match some search
criteria

5. A map of a planet, centered around a particular
point

Step 3: name the resources

Some guidelines, born of collective experience:

• Use path variables to encode hierarchy:
/parent/child

• Put punctuation characters in path variables to avoid
implying hierarchy where none exists:

/parent/child1;child2

• Use query variables to imply inputs into an
algorithm:

/search?q=jellyfish&start=20

Step 3: name the resources
1. The list of planets at the root URI

http://maps.example.com

2. A place on a planet, possibly the entire planet, identified by name
http://maps.example.com/Venus
http://maps.example.com/Earth/France/Paris

3. A geographic point on a planet, identified by latitude and
longitude

http://maps.example.com/Earth/24.9195,17.821

4. A list of places on a planet that match some search criteria
http://maps.example.com/Earth?show=Springfield
http://maps.example.com/Mars?show=craters+bigger+than+1km

5. A particular map of a planet, centered around a particular point
http://maps.example.com/geographic/Venus/24.5,17.2

http://maps.example.com/
http://maps.example.com/
http://maps.example.com/
http://maps.example.com/
http://maps.example.com/
http://maps.example.com/
http://maps.example.com/
http://maps.example.com/Venus
http://maps.example.com/Venus
http://maps.example.com/Venus
http://maps.example.com/Venus
http://maps.example.com/Venus
http://maps.example.com/Venus
http://maps.example.com/Venus
http://maps.example.com/Earth/France/Paris
http://maps.example.com/Earth/France/Paris
http://maps.example.com/Earth/France/Paris
http://maps.example.com/Earth/France/Paris
http://maps.example.com/Earth/France/Paris
http://maps.example.com/Earth/France/Paris
http://maps.example.com/Earth/France/Paris
http://maps.example.com/Earth/24.9195,17.821
http://maps.example.com/Earth/24.9195,17.821
http://maps.example.com/Earth/24.9195,17.821
http://maps.example.com/Earth/24.9195,17.821
http://maps.example.com/Earth/24.9195,17.821
http://maps.example.com/Earth/24.9195,17.821
http://maps.example.com/Earth/24.9195,17.821
http://maps.example.com/Earth/24.9195,17.821
http://maps.example.com/Earth/24.9195,17.821
http://maps.example.com/Earth/24.9195,17.821
http://maps.example.com/Earth/24.9195,17.821
http://maps.example.com/Earth/24.9195,17.821
http://maps.example.com/Earth/24.9195,17.821
http://maps.example.com/Earth/24.9195,17.821
http://maps.example.com/Earth?show=Springfield
http://maps.example.com/Earth?show=Springfield
http://maps.example.com/Earth?show=Springfield
http://maps.example.com/Earth?show=Springfield
http://maps.example.com/Earth?show=Springfield
http://maps.example.com/Earth?show=Springfield
http://maps.example.com/Earth?show=Springfield
http://maps.example.com/Mars?show=craters+bigger+than+1km
http://maps.example.com/Mars?show=craters+bigger+than+1km
http://maps.example.com/Mars?show=craters+bigger+than+1km
http://maps.example.com/Mars?show=craters+bigger+than+1km
http://maps.example.com/Mars?show=craters+bigger+than+1km
http://maps.example.com/Mars?show=craters+bigger+than+1km
http://maps.example.com/Mars?show=craters+bigger+than+1km
http://maps.example.com/Mars?show=craters+bigger+than+1km
http://maps.example.com/Mars?show=craters+bigger+than+1km
http://maps.example.com/geographic/Venus/24.5,17.2
http://maps.example.com/geographic/Venus/24.5,17.2
http://maps.example.com/geographic/Venus/24.5,17.2
http://maps.example.com/geographic/Venus/24.5,17.2
http://maps.example.com/geographic/Venus/24.5,17.2
http://maps.example.com/geographic/Venus/24.5,17.2
http://maps.example.com/geographic/Venus/24.5,17.2
http://maps.example.com/geographic/Venus/24.5,17.2
http://maps.example.com/geographic/Venus/24.5,17.2
http://maps.example.com/geographic/Venus/24.5,17.2
http://maps.example.com/geographic/Venus/24.5,17.2
http://maps.example.com/geographic/Venus/24.5,17.2
http://maps.example.com/geographic/Venus/24.5,17.2
http://maps.example.com/geographic/Venus/24.5,17.2

Step 4: design representations

• An XML representation of the list of planets

• Note: Richardson and Ruby choose XHTML in their
examples (using the “class” attribute to denote
semantics), but this is inferior to choosing XML.

<?xml version="1.0"?>
<planets>
<planet href="http://maps.example.com/Earth" name="Earth" />
<planet href="http://maps.example.com/Venus" name="Venus" />
...
</planets>

Step 4: design representations

• An XML representation of a given planet

<?xml version="1.0"?>
<planet>
<name> Earth </name>
<maps>

<map href=“/road/Earth”> Road </map>
<map href=“/satellite/Earth”>Satellite</map>
…

</maps>
<description> Third planet from the So … </description>
</planet>

Step 4: design representations

• An XML representation of a point on a map

<?xml version="1.0"?>
<point>

<coordinate> 37.0,-95</coordinate>
<tile src=“/road/Earth/images/37.0,-95.png”/>
<nav direction=“north” href=“46.0518,-95.8”/>
<nav direction=“northeast” href=“46.0518,-89.7698”/>
<nav direction=“south” href=“36.4642,-84.5187”/>
<nav direction=“southeast” href=“32.3513,-95.8”/>
…
<zoom direction=“in” href=“…” />
<zoom direction=“out” href=“…/>

</point>

Step 4: design representations

• An XML representation of results of search “list of places
called springfield in the US”

<?xml version="1.0"?>
<result>

<description> … </description>
<places>

<place href=“/Earth/USA/IL/Springfield”>Springfield, IL</place>
<place href=“/Earth/USA/MA/Springfield”>Springfield, MA</place>
…

</places>
</result>

Expose a subset of the Uniform Interface

• Let’s say that the service is read-only for now
– We only provide GET and HEAD

• What is supposed to happen? What can go
wrong
– GET:

• 200 OK if resource exists + representation

• 404 Not Found if resource does not exist …

• …or 303 See other if we think we have an alternate
solution

– HEAD: same, but no representation

What about read&write resources?

• See example in handouts available on website

DISCUSSION

Discussion

• REST = synchronous

• Asynchronous can be crafted on top by splitting
asynchronous requests into multiple synchronous
requests, but this essentially defeats the uniform
interface:

– POST to a URL to submit a new asynchronous request

– Server replies with 202 “Created” + URI at which the
status of the request can be queried (GET) or by which the
request can be deleted (DELETE)

– [Note that asynchronous operations hence cannot be
GETten because they create new suboperations]

Discussion

• Lots of web services claim RESTfullness, but
actually overloaded POST:

– They send data to a particular process to call a
particular function = RPC call

– If possible, restrict POST to the use of factory
URI’s!

References

• R. T. Fielding and R. N. Taylor. Principled design of the modern
Web architecture. ACM Transactions on Internet Technology
(TOIT), 2(2), May 2002, pp. 115-150.

• L. Richardson and S. Ruby. RESTful Web Services. O’Reilly,
2007.

