
An Introduction to XPath Processing

Stijn Vansummeren

February 26, 2010

1 Introduction

In these notes, we present an efficient algorithm for processing (a fragment of) XPath 2.0
queries that was proposed in 2002 by Gottlob, Koch, and Pichler [3].1 Before this proposal,
it was unclear whether a truly efficient algorithm for processing XPath existed. Indeed,
the XPath 1.0 and XPath 2.0 W3C recommendations [1, 2] explain the semantics of XPath
location paths in a way that immediately suggests the following naive recursive algorithm for
evaluating location paths. Let t be the tree representation of the input XML document, let x
be the current context node, and let Q be the XPath location path that we need to evaluate.
For simplicity, we write Q.head for the first location step in Q, and Q.tail for the list obtained
from Q by deleting the first location step. In particular, Q.tail is empty if Q contains only
one step expression.

Example 1. To illustrate, when Q = child::a[position()=1]/descendant::b then Q.head =
child::a[position()=1] and Q.tail = descendant::b. Furthermore, (Q.tail).head = descendant::b
and (Q.tail).tail is empty.

Algorithm 1: naive(Q, t, x)
Input: a location path Q, an XML tree t, context node x
Result: set of all nodes that can be reached by Q in t starting form x
begin1

Compute S := set of all nodes reachable from context node x in t by step Q.head2

if Q.tail is empty then3

return S4

else5

Initialize set R := ∅6

foreach y in S do R := R∪ naive(Q.tail, t, y)7

return R8

end9

end10

naive, shown in Algorithm 1, processes a location path step by step: it first computes the set
of nodes S that are reachable from the context node x by applying the step Q.head. If there

1It should be noted that in [3] even more refined algorithms are given for processing XPath queries. For
simplicity, we present here a relatively simple one.

1

remain further steps to be evaluated (i.e. Q.tail is non-empty), then process-location-
path is recursively called for each y ∈ S, which serves as the new context node. Otherwise,
S is the result.

Remark 1. Note that the result of an XPath 2.0 location path is normally a sequence
of nodes, sorted in document order. naive, in contrast, returns a set of nodes, and is
hence unordered. We can, however, always sort this set in document order very efficiently in
O(N logN) time using standard sorting techniques, where N is the number of nodes to be
sorted. For this reason, all algorithms in these notes will return without loss of generality a
set of items instead of a sequence. We implicitly assume that this set is turned into a sequence
as a post-processing step.

We claim that naive is inherently inefficient. To see why, we introduce the following
definitions.

Definition 1. Let #t denote the number of nodes in the XML tree t and let #Q denote the
number of location steps in location path Q.

Example 2. Consider the simple XML document <a>2. Its tree t representa-
tion is

a
b b

and hence #t = 4 (remember that each XML tree has a special root node). Moreover, the
location path Q = child::a[position()=1]/descendant::b from Example 1 has #Q = 2 since it
consists of two location steps.

The following proposition shows that naive requires time exponential in the length of the
XPath query in the worst case.

Proposition 1. The worst-case running time of naive is Ω(#t
#Q
2
−1).

Proof. To obtain this proposition, we construct a family {Q1, Q2, Q3, . . . } of XPath location
paths such that:

• every Qi has #Qi = 2i for 1 ≤ i;

• the time needed to evaluate naive(Qi, t, x) for arbitrary t and x is at least (#t)i−1.

In particular, we construct this family by induction on i as follows:

Q1 = ancestor-or-self::*[not(parent::*)] / descendant-or-self::*

Qi+1 = ancestor-or-self::*[not(parent::*)] / descendant-or-self::* /Qi

Hence, Q1 first moves from the context node to the root node by means of the

ancestor-or-self::*[not(parent::*)]

step, and then selects all nodes by means of the descendant-or-self::* step. This switching
between the root node and all its descendants is repeated i times by Qi. So, for every odd

2For simplicity, we omit all XML declarations in our examples.

2

step in Qi the set S computed in line 2 of Algorithm 1 contains only 1 node, while for every
even step in Qi, it contains #t nodes.

Let us analyze the time complexity of naive on (Qi, t, x) for an arbitrary i, t, and x.
Suppose for simplicity that we can compute line 2 in constant time. We actually need more
time to evaluate a location step (a concrete algorithm will be given in Section 4.1), but if
we can show that naive takes time at least Ω(#ti−1) when location steps can be evaluated
in constant time, then naive will also take time at least Ω(#ti−1) time when location steps
require more than constant time.

Evaluating line 2 of naive for the first step ancestor-or-self::*[not(parent::*)] of Qi hence
takes some constant time C. Since the root node is the only node that satisfies this step, the
set S hence computed consists only of the root node. naive then recursively calls itself with
the root as context node. Hence, line 2 is now executed for the second step descendant-or-self::*
of Qi, costing an additional time C. The set S now consists of all nodes in the document. If
i = 1 we are finished, otherwise we need to call evaluate Qi−1 for every node in S. In other
words, Qi−1 is evaluated #t times. Hence, the time Ti needed to evaluate naive on input
(Qi, t, x) is given by the recurrence

Ti =

{
2C if i = 1
2C + #t× Ti−1 otherwise

In other words,
Ti = 2C + 2C#t+ 2C#t2 + · · ·+ 2C#ti−1.

Clearly, this is Ω(#ti−1). Substituting i = #Qi

2 , we obtain Ti = Ω(#t
#Qi

2
−1), as desired.

Curiously enough, experiments performed by Gottlob, Koch, and Pichler with various
XPath processors (including the XPath processor of Microsoft Internet Explorer 6) indi-
cate that in 2002 many XPath processors actually used algorithms like naive with inherent
exponential-time behavior. You are encouraged (but not required) to read Section 2 in their
paper in this respect. In contrast, in the following sections, a processing algorithm is given
that runs in worst-case time polynomial in both #t and #Q. It is hence vastly more efficient
in the worst case.

To simplify the presentation, we will focus on a small fragment of XPath 2.0 and ignore
features like external functions, generalized comparisons, namespaces, . . . which can easily be
added. We introduce the necessary definitions and notation in Section 2, and present the
actual fragment in Section 3. Section 4 describes the algorithm.

2 The execution environment

The algorithm will work with the tree representation of an XML document that was intro-
duced in the lesson ’HTML & XML’. In particular, recall that the tree representation of an
XML document is a tree in which each node is of a particular type. We will consider here
only root, element, text, and attribute nodes, and ignore comment, namespace, and processing
instruction nodes (which, again can easily be added). Recall also that the root node is the
only of type root, which is the parent of the root document element node. Only element nodes
can occur as interior nodes; attribute and text nodes must always be leaves. Element nodes
and attribute nodes have a name associated with them; text nodes do not. Furthermore, all

3

nodes have a string value associated with them: for text and attribute nodes this is simply
their content and value, respectively; for root and element nodes this is the concatenation of
the string values of all descendant text nodes in document order.

To access the information of an XML tree t we assume given the following operations:

Operation Semantics Complexity
root(t) Returns the root node of t (of type root) Constant time (O(1))
firstchild(x, t) Returns the first child of node x in t , nil if x has

no children. The first child may be an attribute
node, and hence needs not be an element or text
node

Constant time (O(1))

parentnode(x, t) Returns the parent node of x in t, null if x has
no parent

Constant time (O(1))

nextsib(x, t) Returns the next sibling node of x in t, and null
if x has no next sibling

Constant time (O(1))

prevsib(x, t) Returns the previous sibling of x in t, and null
if x has no next sibling

Constant time (O(1))

is elemnode(x, t) Returns true if x is an element node, false oth-
erwise

Constant time (O(1))

is textnode(x, t) Returns true if x is a text node, false otherwise Constant time (O(1))
is attrnode(x, t) Returns true if x is an attribute node, false oth-

erwise
Constant time (O(1))

strval(x, t) Returns the string value of node x in t Linear time (O(size(t)))
name(x, t) Returns the name of node x in t. Yields a run-

time error if x is not an element or attribute
node

Constant time (O(1))

Here, size(t) refers to the total size of tree t, defined as follows:

Definition 2. Define size(t) to be the sum of the number of nodes #t and of the total length
of all node labels, attribute values, and text content, viewed as a string.

Example 3. To illustrate, the tree t in Example 2 consists of 4 nodes. The name of each
element node consists of a single character. Hence, size(t) = 4 + 3 = 7.

In other words: we assume that the data structure used to encode XML trees allows us to
(1) move to the root; (2) to move from a node to its neighboring nodes; and (3) compute the
string value and names of nodes in linear time. Items (1) and (2) can be realized in constant
time by maintaining pointers to the root and (for each node) to neighboring nodes. Item (3)
may require linear time in the total size of t since, for instance, the string value of an element
node requires us to visit all of its descendant text nodes, and to concatenate all of their string
contents.

In addition to the above operations on trees, we assume that we are given the following
operations on sets, numbers, booleans, and strings. Let |s| denote the length of a string s.
We assume that numbers fit in one machine word so that operations on numbers take only
constant time.

4

Operation Semantics Complexity
|S| Returns the cardinality of set S Constant time (O(1))
empty?(S) Returns boolean true if set S is empty, and false

otherwise
Constant time (O(1))

to num(s) Converts string s to a number Linear time (O(|s|)
streq(s1, s2) Returns true if strings s1 and s2 are equal, and

false otherwise
O(|s1|+ |s2|)

+,−,∗,div Numerical operations on numbers Constant time (O(1))
numeq(s1, s2) Returns true if numbers s1 and s2 are equal, and

false otherwise
Constant time (O(1))

3 The fragment

In order to easily illustrate the main idea of the evaluation algorithm, we restrict ourselves
to the following fragment of XPath 2.0:

• We only consider XPath expressions in abbreviated syntax. This is not a restriction,
since we can always transform an abbreviated XPath expression into an unabbreviated
XPath expression in a pre-processing step.

• Moreover, we ignore most of the standard functions and operators. It is straightforward
to add more functions, although it should be stressed that the worst-case time complex-
ity of our evaluation algorithm may grow if we do so. (For example, if we add support
for a function that requires exponential time , then our evaluation algorithm will also
be exponential in the worst case.)

• We ignore variables. Again, it is not difficult to add them.

• We ignore namespaces.

• Finally, we require that the programmer makes all typecasts that normally happen
implicitly in XPath (from the empty sequence to the boolean false, from the non-empty
sequence to the boolean true, from a string to a number, . . .) explicit through the use
the (standard) function fn:empty and number(). Other typecasts can be added without
much difficulty.

To illustrate this restriction, consider the expression child::a[descendant::text()] that se-
lects all a-labeled children of the context node that have a text-node descendant. Since
the predicate [descendant::text()] implicitly converts the secquence returned by descen-
dant::text() into a boolean, this expression is not in our fragment. Nevertheless, it
can equivalently be written as child::a[not(fn:empty(descendant::text()))], which is in our
fragment.

Concretely, the XPath fragment that we consider is given by the grammar shown in Figure 1.
There, terminal symbols are typeset in sans serif and non-terminals in italics.

There are four main kinds of expressions:

1. sequence expressions (produced by seqexp) that evaluate to a set of nodes (actually, a
sequence of nodes, but again this sequence can be obtained from the set by sorting it
in document order);

5

seqexp ::= path | /path
path ::= step | step/path
step ::= axis::test | axis::test [boolexp] . . . [boolexp]
axis ::= self | child | parent | descendant | ancestor | descendant-or-self | ancestor-or-self

| following | preceding | following-sibling | preceding-sibling | attribute
test ::= * | name | element() | text()

boolexp ::= true() | false() | not(boolexp)
| boolexp and boolexp | boolexp or boolexp
| comp
| fn:empty(seqexp)

comp ::= strexp = strexp | numexp =numexp

numexp ::= count(seqexp) | position() | last() | number() | numliteral
| numexp + numexp | numexp − numexp
| numexp ∗ numexp | numexp div numexp

strexp ::= string() | string(seqexp) | name() | name(seqexp) | strliteral

Figure 1: The syntax of our XPath fragment

2. boolean expression (produced by boolexp) that evaluate to a single boolean value;

3. numerical expressions (produced by numexp) that evaluate to a single (real) number;

4. string expressions (produced by strexp) that evaluate to a single string.

No production rules are given for the non-terminals numliteral and strliteral . We assume
that these non-terminals capture numeric literals (like the constant 5, the constant 3.1415
etc) and string literals (like ”test literal”), respectively.

4 The Algorithm

Intuitively, naive is inefficient because it evaluates subexpressions for each context node
separately. As such, it recomputes many intermediate results over and over again. Indeed,
suppose that we evaluate a location path step1/step2/ . . . /stepn starting from context node
x. naive begins by computing the set {x1, . . . , xk} of all nodes reachable from x by step1.
For each of 1 ≤ i ≤ k, it then recursively calls itself with context node xi. To illustrate
in what sense intermediate results are recomputed many times, let Ri be the set of context
nodes reachable form xi by step2. When processing step2/ . . . /stepn with xi as context node,
naive recursively calls itself for each node in Ri. However, since each xi is treated in isolation,
and since Ri and Rj need not be disjoint for i 6= j, naive ends up duplicating the recursive
computation for nodes that occur in multiple of the Ri’s. In particular, if node y occurs in
every Ri (i.e., y ∈ R1 ∩ · · · ∩Rk) then this computation is duplicated k times.

In essence, the algorithm introduced in this section circumvents such recomputation by
not evaluating subexpressions for each context node separately. Instead, each subexpression

6

is evaluated for all relevant context nodes together. In Database Systems, this is called batch
processing.

In contrast to naive, which takes as input a triple of the form (expression, tree, single
context), our evaluation algorithm will hence take as input a triple of the form (expression,
tree, vector-of-contexts). The vector of contexts contains all contexts for which we need to
evaluate the expression. For the purpose of evaluating numexp expressions we will need not
only the context node, but also the context position and context size. This brings us to the
following definition.

Definition 3. A context on an XML tree t is a triple 〈x, p, s〉 such that:

• x is a node in t;

• s is a natural number called the context size. It must be smaller than the total number
of nodes in t; and

• p is a natural number called the context position. It must be smaller than s.

Remark 2. In the handbook, as well as in the lesson ‘Navigating XML trees with XPath’
the context was defined to consist also of a set of variable bindings, a function library, and
a set of namespace declarations. These components are not necessary here since we ignore
variables, external functions, and namespaces.

Actually, we are not going to define a single evaluation function, but four evaluation
functions, one for each of the four main kinds of expressions seqexp, boolexp, numexp, and
strexp. These evaluation functions (eval-seqexp, eval-boolexp, eval-numexp, and eval-
strexp, respectively) take as input a triple (e, t,~c) where (1) e is an expression of the corre-
sponding kind; (2) t is the input XML tree; and (3) ~c is a variable-length vector of contexts
on t:

• For eval-seqexp, the result is a vector (R1, . . . , Rk) of sets of nodes in t such that Ri

is the result of evaluating the input expression e on t starting from context ci, for each
1 ≤ i ≤ k. For ease of use, we will abbreviate “set of nodes in t” simply as nodeset in
what follows.

• For eval-boolexp, the result is a vector (b1, . . . , bk) of booleans such that bi is the
result of evaluating e on t starting from context ci.

• For eval-numexp, the result is a vector (n1, . . . , nk) of numbers such that ni is the
result of evaluating e on t starting from context ci.

• For eval-strexp, the result is a vector (s1, . . . , sk) of strings such that si is the result
of evaluating e on t starting from context ci.

4.1 Evaluating seqexp expressions

eval-seqexp is the function that actually requires the most sophistication, the other three
functions are straightforward to define.

In particular, eval-seqexp, shown in Algorithm 2, first checks whether the input expres-
sion e is an absolute location path of the form /e′. If so, then the result of evaluating e will be
the same for each input context: it is the result of evaluating e′ starting from the root. Hence,

7

Algorithm 2: eval-seqexp(e, t,~c)
Input: a seqexp e; a tree t; and a variable-length vector of contexts ~c = (c1, . . . , ck);
Result: a vector of node sets (R1, . . . , Rk) of the same length as ~c such that Ri is the

result of evaluating e on ci.
begin1

Let ~c = (〈x1, p1, s1〉, 〈x2, p2, s2〉, . . . , 〈xk, pk, sk〉)2

if e is / e′ then /* e is an absolute location path */3

Compute R := eval-seqexp(e′, t, (〈root(t), 1, 1〉))4

return (R, . . . , R) /* k times */5

else /* e is a relative location path */6

Let e = step1 / . . . / stepn7

Initialize (R1, . . . , Rk) := ({x1}, . . . , {xk})8

for i := 1 to n do9

(R1, . . . , Rk) := process-step(stepi, t, (R1, . . . , Rk))10

end11

return (R1, . . . , Rk)12

end13

eval-seqexp recursively calls itself with the context 〈root(t), 1, 1〉, and copies the resulting
node set k times to the output. If e is not absolute, but of the form step1 / . . . / stepn, it
evaluates each step in turn using the auxiliary function process-step shown in Algorithm 3.
process-step takes as input a triple (step, t, ~X) where step is the location step to evaluate,
t is an XML tree, and ~X = (X1, . . . , Xk) is a variable-length vector of node sets. It returns
a vector of node sets (R1, . . . , Rk) of the same size as ~X such that Ri is the set of nodes
reachable from any node in Xi by following step:

Ri = {y | y reachable in t from some x ∈ Xi by following step}.

In particular, process-step operates as follows. Assume that the input step is of the form
α::τ [e1] . . . [em] were α is the axis, τ is the node test, and e1,. . . , em are the predicates.
process-step first computes in line 2 the set S of pairs 〈x, Sx〉 such that x ∈ X1 ∪ · · · ∪Xk

and y is both (1) reachable from x by axis α and (2) satisfies node test τ . (We will see how
to compute S efficiently in Section 5). Note that, although a node x may occur in multiple
of the sets Xi (1 ≤ i ≤ k), the axis and test are only evaluated once per node x.

In lines 7-14, process-step removes form S those pairs 〈x, y〉 that do not satisfy the
predicates. Since each predicate is a boolean expression (see Figure 1), process-step eval-
uates each predicate by recursively calling eval-boolexp on a vector of contexts ~c. This
vector contains, for every 〈x, y〉 ∈ S, a context 〈y, p, s〉 such that:

• s is the size of the nodeset Sx = {z | 〈x, z〉 ∈ S} that resulted from evaluating the axis
and test starting from x.

• p is the position of y in this nodeset Sx if we were to sort it in document order (if α is
a forward axis) or reverse document order (if α is a backward axis).

In particular, p and s are computed in line 9, where assume to have function idx(α, y, Sx)
that computes the correct position by sorting Sx as required by the axis α. This can be done
in O(N logN) time using known sorting techniques, where N = |Sx|.

8

Algorithm 3: process-step(α::τ [e1] . . . [em], t, ~X)
Input: a location step α::τ [e1] . . . [em] with axis α, node test τ and (variable-length)

predicates e1, . . . , en; a tree t; and a variable-length vector of node sets
~X = (X1, . . . , Xk);

Result: a vector of node sets (R1, . . . , Rk) of the same length as ~X such that Ri is the
set of all nodes that can be reached by the step starting from a node in Xi

begin1

Compute2

S := {〈x, y〉 | x ∈ X1 ∪ · · · ∪Xk, y reachable from x by α, y satisfies test τ}
for i := 1 to m do /* process the predicates from left to right */3

foreach x in X1 ∪ · · · ∪Xk do Compute Sx := {z | 〈x, z〉 ∈ S}4

Initialize context vector ~c to the empty vector5

Initialize j := 06

foreach 〈x, y〉 in S do7

j := j + 18

Add context 〈y, idx(α, y, Sx), |Sx|〉 to ~c9

Set j〈x,y〉 := j;10

end11

Let (b1, . . . , bl) := eval-boolexp(ei, t,~c)12

Remove from S all 〈x, y〉 for which bj〈x,y〉 = false13

end14

for i := 1 to k do15

Compute Ri := {y | 〈x, y〉 ∈ S, x ∈ Xi}16

end17

return (R1, . . . , Rk)18

end19

Example 4. To illustrate the operation of process-step, assume that step is the location
step child :: ∗ [position() = 2] and that t is the following tree.

an0

bn1

cn3

a
n6

d
n7

cn4

b n2

d n5

Assume further that we call process-step on (step, t, ~X) where ~X = ({n1, n2}, {n2}).
So, k = 2. Then:

• In line 2 we compute S = {〈n1, n3〉, 〈n1, n4〉, 〈n2, n5〉}. Note that although n2 occurs
both in the first set of ~X and the second set, we only we only process it once.

9

• The contexts that we compute for each pair in S is as follows:

〈n1, n3〉 → 〈n3, 1, 2〉
〈n1, n4〉 → 〈n4, 2, 2〉
〈n2, n5〉 → 〈n5, 1, 1〉

• So, when we call eval-boolexp in line 12 to evaluate the predicate position() = 2, ~c =
(〈n3, 1, 2〉, 〈n4, 2, 2〉, 〈n5, 1, 1〉). On this input, eval-boolexp(defined in Section 4.2)
will return the vector (false, true, false). This indicates that when we evaluate the entire
step from node n1 the candidate node n3 should not be returned, while candidate
n4 should be returned. Likewise, when we evaluate the entire step from node n2 the
candidate node n5 should not be returned.

• S is then is updated to 〈n1, n4〉 in line 13. Hence, the result computed in line 16 and
returned in line 18 is ({n4}, ∅).

Exercise 1. Assume that step is the location step ancestor :: ∗ [position() = 3] and that t
is the tree from Example 4. Describe the evaluation of process-step on (step, t, ~X) where
~X = ({n6, n5}, {n7}). Phrase your answer in the same way as was done in Example 4. Does
process-step generate contexts for eval-boolexp with the same context node, but different
context position and/or size?

4.2 Evaluating the other expressions

eval-numexp, eval-strexp, and eval-boolexpshown in Algorithms 4, 5 and 6 all operate
by a analysing the form of its input numeric expression and performing the corresponding
action for each context in their input. They make calls to each other when necessary. The
pseudocode should be self-explanatory.

4.3 Complexity

To analyze the total running time of evaluating a XPath expression, we introduce the following
definition.

Definition 4. Define size(e) to be the total length of XPath expression e, when written down
as a string.

Example 5. To illustrate, the seqexpexpression e = child::a[position()=1]/descendant::b has
size(e) = 37.

Note that we always have #t ≤ size(t) and #e ≤ size(e) (when e is a location path).
The following theorem shows that eval-seqexp runs in polynomial time in both size(e) and
size(t).

Theorem 2. Let e be a sequence expression, let t be an XML tree, and let ~c = (〈x, p, s〉)
consist of a single context. Then eval-seqexp(e, t,~c) runs in time O(size(t)4 · size(e)2).

Readers interested in the proof of this theorem are referred to [3]. (It is not required for
passing the exam.) It should be stressed again that the exponential time behavior of naive
is avoided by evaluating the steps and predicates for the necessary contexts together instead
of one-by-one.

10

Algorithm 4: eval-numexp(e, t, ~X)
Input: a numexp e, XML tree t, and a variable-length of contexts ~c;
Result: a vector of numbers (n1, . . . , nk) of the same length as ~c such that ni is the

result of evaluating e on the i-th context in ~c on t
begin1

Let ~c = (〈x1, p1, s1〉, 〈x2, p2, s2〉, . . . , 〈xk, pk, sk〉)2

if e is position() then3

return (p1, . . . , pk)4

else if e is last() then5

return (s1, . . . , sk)6

else if e is count(e′) then /* e′ is a seqexp */7

Let (X1, . . . , Xk) := eval-seqexp(e′, t,~c)8

return (|X1|, . . . , |Xk|)9

else if e is number() then10

return (to num(strval(t, x1)), . . . , to num(strval(t, xk)))11

else if e is a numeric literal n then12

return (n, . . . , n) /* k times */13

else if e is e1 op e2 with op ∈ {+, -, *, div} then14

(n1, . . . , nk) := eval-numexp(e1, t,~c)15

(m1, . . . ,mk) := eval-numexp(e2, t,~c)16

return (n1 op m1, . . . , nk op mk)17

end18

end19

Exercise 2. To see how eval-seqexp differs from naive, reconsider in particular the family
of location paths {Q1, Q2, . . . } defined in the proof of Proposition 1.

1. First transform Qi to be a valid expression in our fragment.

2. Then describe (in global terms) the evaluation of eval-seqexp on (Q1, t,~c) when t is
the tree in Example 4 and ~c is the vector (〈n0, 1, 1〉) of length one. In particular why
don’t we get the exponential-time behavior of naive?

(This exercise will be corrected in the exercise session on XML Schemas.)

5 Evaluating axes and node tests

To complete the definition of process-step, it remains to show how to efficiently compute,
given a set of nodes X, all nodes that are reachable from X by an axis α and that satisfy
a test τ . (This is necessary for line 2 of process-step). This section is provided for
illustration purposes only. It is not required material for the exam

5.1 Evaluating axes

Remember from Section 2 that given a node x, we only have the operations firstchild(x, t),
nextsib(x, t), parentnode(x, t), and prevsib(x, t) to compute the nodes that are immediate
neighbors of x. We hence need a way to compute the axes child, descendant, etc.

11

Algorithm 5: eval-strexp(e, t,~c)
Input: a strexp e, XML tree t, and variable-length vector of contexts ~c;
Result: a vector of strings (s1, . . . , sk) of the same length as ~c such that si is the

result of evaluating e on the i-th context in ~c on t
begin1

Let ~c = (〈x1, p1, s1〉, 〈x2, p2, s2〉, . . . , 〈xk, pk, sk〉)2

if e is string () then3

return (strval(t, x1), . . . , strval(t, x2));4

else if e is name () then5

return (name(t, x1), . . . ,name(t, x2))6

else if e is string(e′) then /* e′ is a seqexp */7

Let (X1, . . . , Xk) := eval-seqexp(e′, t,~c)8

for i := 1 to k do9

if Xi is a singleton set {yi} then10

si := strval(t, yi)11

else raise error12

end13

return (s1, . . . , sk)14

else if e is name(e′) then /* e′ is a seqexp */15

Let (X1, . . . , Xk) := eval-seqexp(e′, t,~c)16

for i := 1 to k do17

if Xi is a singleton set {yi} then18

si := name(t, yi)19

else raise error20

end21

return (s1, . . . , sk)22

else if e is a string literal s then23

return (s, . . . , s) /* k times */24

end25

end26

Without loss of generality, we extend the operations firstchild, nextsib, parentnode, and
prevsib to work on sets of nodes:

firstchild(X, t) := {firstchild(x, t) | x ∈ X}
parentnode(X, t) := {parentnode(x, t) | x ∈ X}

nextsib(X, t) := {nextsib(x, t) | x ∈ X}
prevsib(X, t) := {prevsib(x, t) | x ∈ X}

Since firstchild(x, t), parentnode(x, t), nextsib(x, t), and prevsib(x, t) all run in constant time,
we can compute firstchild(X, t), nextsib(X, t), parentnode(X, t), and prevsib(X, t) in linear
time O(|X|) simply by iterating over X and calling the corresponding node operation.

process-axis, shown in Algorithm 7, then takes as input an axis α, a tree t, and a set of
nodes X, and computes the set {y | y reachable from some x ∈ X by following the axis α}.
It uses the auxiliary function close(Ops, t,X) where Ops ⊆ {firstchild,nextsib, parentnode,

12

Algorithm 6: eval-boolexp(e, t,~c)
Input: a boolexp e, XML tree t, and variable-length vector of contexts ~c;
Result: a vector of booleans (b1, . . . , bk) of the same length as ~c such that bi is the

result of evaluating e on the i-th context in ~c on t
begin1

Let ~c = (〈x1, p1, s1〉, 〈x2, p2, s2〉, . . . , 〈xk, pk, sk〉)2

if e is true() then3

return (true, . . . , true)4

else if e is false() then5

return (false, . . . , false)6

else if e is e1 op e2 with op ∈ {and, or} then7

Let (b1, . . . , bk) := eval-boolexp(e1, t,~c)8

Let (b′1, . . . , b
′
k) := eval-boolexp(e2, t,~c)9

return (b1 op b′1, . . . , bk op b′k)10

else if e is not(e1) then11

Let (b1, . . . , bk) := eval-boolexp(e1, t,~c)12

return (not(b1), . . . ,not(bk))13

else if e is fn:empty(e′) then /* e′ is a seqexp */14

Let (X1, . . . , Xk) := eval-seqexp(e′, t,~c)15

return (empty?(X1), . . . , empty?(Xn))16

else if e is e1 = e2 then17

if e1 and e2 are both strexp then18

Let (s1, . . . , sk) := eval-strexp(e1, t,~c)19

Let (s′1, . . . , s
′
k) := eval-strexp(e2, t,~c)20

return (streq(s1, s′1), . . . , streq(sk, s
′
k))21

else /* e1 and e2 are both numexp */22

Let (n1, . . . , nk) := eval-numexp(e1, t,~c)23

Let (n′1, . . . , n
′
k) := eval-numexp(e2, t,~c)24

return (numeq(n1, n
′
1), . . . ,numeq(nk, n

′
k))25

end26

end27

prevsib} is a set of operations, as shown in Algorithm 8. close computes the closure of X
by the operations in Ops, which is the smallest set Y such that:

1. X ⊆ Y ;

2. for each y ∈ Y and each op ∈ Ops, also op(t, y) ∈ Y

For instance, the closure of the set {x} by {parentnode} yields the set of all ancestors of {x}.
Moreover, the closure of {x} by {firstchild,nextsib} yields the set of all descendants of x.

Proposition 3. close(Ops, t,X) can be evaluated in O(#t) time.

Proof. Represent the set Z of nodes that we have already processed as an array of bits, one bit
for each node in t; the bits set to true represent the nodes in Z, the bits set to false represent
the nodes not in Z. Membership in Z can then be decided in constant time (we assume that

13

Algorithm 7: process-axis(α, t,~c)
Input: an axis α; a tree t; and a nodeset X;
Result: the set of nodes {y | y reachable from some x ∈ X by following the axis α}
begin1

Initialize result Y := ∅2

if α is self then set Y := X3

else if α is child or attribute then set Y := close({nextsib}, t,firstchild(X, t)))4

else if α is parent then set Y := parentnode(X, t))5

else if α is descendant then set Y := close({firstchild,nextsib}, t,firstchild(X, t))6

else if α is ancestor then set Y := close(parentnode, t, parentnode(X, t))7

else if α is descendant-or-self then set Y := X ∪ process-axis(descendant, t,X)8

else if α is ancestor-or-self then set Y := X ∪ process-axis(ancestor, t,X)9

else if α is following then10

set Y := eval-axis(ancestor-or-self, t,X)11

set Y := nextsib(Y, t)12

set Y := close(nextsib, t, Y)13

set Y := eval-axis(descendant-or-self, t, Y)14

else if α is preceding then15

set Y := eval-axis(ancestor-or-self, t,X)16

set Y := prevsib(Y, t)17

set Y := close(prevsib, t, Y)18

set Y := eval-axis(descendant-or-self, t, Y)19

else if α is following-sibling then set Y := close(nextsib, t,nextsib(Y, t))20

else /* α is preceding-sibling */21

set Y := close(prevsib, t, prevsib(Y, t))22

/* Now filter from Y the nodes of the correct kind */
if α is attribute then23

remove from Y all nodes that are text or element nodes24

else25

remove from Y all nodes that are attribute nodes26

end27

end28

array accesses take constant time). Now observe that, since we take care to process each node
at most once, the while loop in line 4 is executed at most as many times as there are nodes
in t (i.e., at most #t times). Each invocation of the body of the while loop requires us to

• pop the queue, which takes constant time;

• set the bit flag for y in Z to true, which takes constant time;

• execute all operators in Ops on the current node y. There are at most 4 such oper-
ators (namely firstchild,nextsib, parentnode, prevsib), each of which can be executed in
constant time according to Section 2. Hence, this also takes constant time;

• check whether op(t, y) is already in Z. As explained above, this takes constant time;

14

Algorithm 8: close(Ops, t,X)
Input: a set of operations Ops ⊆ {firstchild,nextsib, parentnode, prevsib}; a tree t; and

a nodeset X;
Result: the closure of X by Ops
begin1

Initialize result set Y := X2

Initialize set of prossessed nodes Z := ∅3

Initialize a queue Q and add all X to Q4

/* Q contains all nodes that we have not processed yet */
while Q is not empty do5

Pop a node y from Q6

Add y to Z7

foreach op in Ops do8

if op(t, y) 6∈ Z then9

Add op(t, y) to Y10

Push op(t, y) on Q11

end12

end13

end14

return Y15

end16

• possibly add op(t, y) to Q and Y , which takes constant time if (1) we represent Q as a
linked list and (2) we also represent Y as an array of bits.

In conclusion, lines 6-13 take constant time and are executed at most #t times. Hence, close
runs in time O(#t).

Proposition 4. process-axis(axis, t,X) runs in time O(#t). In other words: process-axis
runs in linear time.

Proof. A careful inspection of process-axis reveals that for each axiswe only make a constant
number of calls of the form close(Ops, t, Z) and op(Z, t). (Indeed, although some axes
recursively call process-axiswith another axis, this recursion always ends immediately.)
Each close(Ops, t, Z) runs in time O(#t) by Proposition 3. Moreover, we have already
observed that each op(Z, t) runs in time O(|Z|), and hence, since Z is always a subset of the
nodes in t (i.e., |Z| ≤ #t), also in time O(#t). In conclusion, we execute a constant number
of calls, each which runs in O(#t) time. Lines 23-27 can be executed by iterating over all
elements in Y and dropping those elements that are not of the correct type. (Recall from
Section 2 that we can determine the type of an element in constant time.) Since Y is a subset
of the nodes in t, this can hence be done in O(#t) steps. As such, the total evaluation runs
in O(#t) time, as claimed.

5.2 Evaluating tests

Once we have computed the set of all nodes Y reachable from the set of nodes X by axis
α, we can iterate over Y and using the operations name, is elemnode, etc. from Section 2

15

to retain only those nodes that satisfy a given node test τ . Since Y is a subset of the nodes
in t (hence |Y | ≤ #t) and since name, is elemnode etc all take time at most O(size(t)), the
total time needed to compute the nodes in Y that satisfy τ is O(size(t)2). Combined with
Proposition 4 we obtain:

Corollary 5. The set S in line 2 of Algorithm process-stepcan be computed in time
O(size(t)2)

References

[1] Anders Berglund, Scott Boag, Don Chamberlin Mary F. Fernndez, Michael Kay, Jonathan
Robie, and Jrme Simon. Xml path language (xpath) 2.0. Technical report, World Wide
Web Consortium, 2007. http://www.w3.org/TR/xpath20/.

[2] James Clark and Steve DeRose. Xml path language (xpath) version 1.0. Technical report,
World Wide Web Consortium, 1999. http://www.w3.org/TR/xpath/.

[3] Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient algorithms for processing
xpath queries. ACM Transactions on Database Systems, 30(2):444–491, 2005.

16

