
INFO-H509: XML & Web Technologies
Semantic Web Exercises

SOLUTIONS

Lecturer: Stijn Vansummeren
Assistant: Michael Waumans

2015–2016

1 RDF

Exercise 1.1

1. See the included files for the graph drawings.

2. See the included files for the graph drawings.

3. See the included files for the graph drawings.

4. The triples, written in the turtle syntax for reasons of readability, are the following:

@prefix ulb: <http://code.ulb.ac.be/example/terms/> .
@prefix infoh509: <http://code.ulb.ac.be/example/courses/infoh509/> .
@prefix catalogue: <http://code.ulb.ac.be/example/catalogue/> .
@prefix staff: <http://code.ulb.ac.be/example/staff#> .
@prefix infoh509media: <http://cs.ulb.ac.be/public/_media/teaching/infoh509/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ev: <http://purl.org/rss/1.0/modules/event/>

infoh509:lecture2 ev:location "UA4.218" .
infoh509:lecture2 ev:startDate "2009-02-12T10:00:00"^^xs:dateTime .
infoh509:lecture2 ev:endDate "2009-02-12T12:00:00"^^xs:dateTime .
infoh509:lecture2 rdf:type ulb:Lecture .
infoh509:lecture2 ulb:teaching_material infoh509media:2-xpath.pdf .
infoh509media:2-xpath.pdf dc:title "Cours 2: XPath" .
infoh509media:2-xpath.pdf dc:creator staff:svansumm .

Exercise 1.2

The file catalog.rdf is modified as follows. The course INFO-H-200 is added:

<rdf:Description rdf:about="infoh200">
<dc:title>Object Oriented Programming</dc:title>
<ulb:lecturer rdf:resource="&staff;ezimanyi" />
<ulb:assistant rdf:resource="&staff;boverhae" />
<ulb:prerequisite rdf:resoucre="&ulb;infoh100"/>

</rdf:Description>

1

And the prerequisite is added to the course INFO-H-415:

<rdf:Description rdf:about="infoh415">
...
<ulb:prerequisite rdf:resoucre="&ulb;infoh303"/>

</rdf:Description>

Exercice 1.3

@prefix myconcepts: <http://www.example.org/johndoe/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix catalogue: <http://code.ulb.ac.be/example/catalogue/> .

myconcepts:me a foaf:Person .
myconcepts:me foaf:name "John Doe" .
myconcepts:me foaf:mbox "jd@gmail.com .
myconcepts:me myconcepts:has_course catalogue:infoh509 .

2 RDF Schema

Exercise 2.1

The following needs to be added to the file inference.ttl to state that all personnel members (ulb:Faculty)
are people (foaf:Person).

ulb:Faculty rdfs:subClassOf foaf:Person .

Exercise 2.2

ulb:prerequisite rdfs:range ulb:Course .
ulb:prerequisite rdfs:domain ulb:Course .

Supplementary exercise: In a similar vain, still using rdfs:range and rdfs:domain, add rules that
describe the properties lecturer and assistant in more detail.

ulb:lecturer rdfs:range ulb:Faculty .
ulb:lecturer rdfs:domain ulb:Course .
ulb:assistant rdfs:range ulb:Faculty .
ulb:assistant rdfs:domain ulb:Course .

Exercice 2.3

ulb:workHomepage rdfs:subPropertyOf foaf:homepage .

Note that this property is of type rdf:Property, but also of type rdfs:Resource. Recall that RDFS
comes equipped with a number of standard “axioms” that state, among others, that the domain and range of
subPropertyOf are rdf:Property and that , rdf:Property is a subclass of rdfs:Resource.

In the file staff.rdf, the homepage properties can then be replaced by workHomePage as follows.

<ulb:Professor rdf:ID="svansumm">
...
<ulb:workHomepage

rdf:resource="http://code.ulb.ac.be/code.people.php?id=992"/>
</ulb:Professor>

<ulb:Professor rdf:ID="ezimanyi">
...
<ulb:workHomepage rdf:resource="http://cs.ulb.ac.be/members/esteban/" />

</ulb:Professor>

3 OWL

Exercise 3.1

Recall that OWL DL defines the following property characteristics.

1. owl:TransitiveProperty

2. owl:SymmetricProperty

3. owl:FunctionalProperty

4. owl:InverseFunctionalProperty

For each of the following properties, list which of these property characteristics could apply.

1. The prerequisite of a course (ulb:prerequisite)

2. The student number of a student

3. Birthdate

4. owl:sameAs

5. owl:inverseOf

Supplementary exercise: Complete the description of ulb:prerequisite in the file inference.ttl.
Verify the effect using the inferencetool.jar utility.

Transitive Symmetric Functional InverseFunctional
Prerequisite of a course O

Student number O O
Birthdate O
owl:sameAs O O
owl:inverseOf O

Transitive If we need to have followed course c1 in order to be able to follow course c2 and similarly, if we
need to follow course c2 in order to be able to follow course c3, then it stands to reason that we need to follow
c1 before we can follow c3. Analogously, if a is identical to b and b is identical to c, then a is identical to c.
prerequisite and sameAs are hence transitive.

Symmetric If a is identical to b, then clearly b is identical to a. Similarly, if a is the inverse of b, then b is
the inverse of a. sameAs et inverseOf are hence symmetric.

Functional A person has exactly one birthdate. Moreover, a person has at most one student id number.
These properties are hence functional.

Functionally inverse A student id number is never attributed to more than one person. As such, it is
functionally inverse.

Note Note, however, that, since this property links an individual to a literal data item it is a owl:DataObjectProperty.
Therefore, if we specify that it is functionally inverse, we get an ontolgy that is in OWL Full, and not OWL
DL. It is hence possible that we will not be able to automatically reason with it.

Supplementary exercise:
The property prerequisite is defined to be transitive as follows:

ulb:prerequisite a owl:TransitiveProperty .

Exercise 3.2

ulb:teaches owl:inverseOf ulb:lecturer .
ulb:teaches rdfs:domain ulb:Faculty .
ulb:teaches rdfs:range ulb:Course .

Exercise 3.3

staff:fpicalau owl:sameAs <http://my.opera.com/fpicalausa/xml/foaf#me> .

Exercise 3.4

@prefix terms: <http://code.ulb.ac.be/example/terms/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

terms:PizzaTopping a owl:Class .

terms:Vegetable a owl:Class ;
rdfs:subClassOf terms:PizzaTopping .

terms:Pizza a owl:Class ;
owl:disjointWith terms:PizzaTopping .

terms:aubergine a terms:Vegetable .

terms:hasTopping a owl:ObjectProperty ;
rdfs:domain terms:Pizza ;
rdfs:range terms:PizzaTopping .

terms:noMeatPizza a owl:Class ;
rdfs:subClassOf terms:Pizza .

terms:noFishPizza a owl:Class ;
rdfs:subClassOf terms:Pizza .

terms:VegPizza a owl:Class ;
owl:intersectionOf (terms:noMeatPizza terms:noFishPizza) .

terms:hasTopping rdfs:subPropertyOf terms:hasIngredient .

terms:boring a terms:noMeatPizza .
terms:boring a terms:noFishPizza .

• Add an individual to both the class PizzaTopping and Pizza. Run the inference tool. What do you
get? What should you do to remedy this?

Answer Since we have declare PizzaTopping and Pizza to be disjoint, the document has become
inconsistent (i.e., it does not have any model). We should remove the individual from one of the two
classes to regain consistency.

• Add an individual to both the class NoMeatPizza and NoFishPizza. What do you expect to get?

Answer: Since we have declared the class VegPizza to consist of those elements which are in the class
NoMeatPizza and in the class NoFishPizza, the tool correctly infers that the individual belongs to the
class VegPizza.

Exercise 3.5

Continuing Exercise 3.4, use OWL DL to model the following sentences.

1. Every pizza has tomato as a topping.

terms:Pizza rdfs:subClassOf [
a owl:Restriction;
owl:onProperty terms:hasTopping;
owl:hasValue terms:tomato

] .

2. Every pizza in the class PizzaMargarita has exactly tomato and cheese as topping. We actually need
two declarations:

terms:PizzaMargarita rdfs:subClassOf [
a owl:Restriction;
owl:onProperty terms:hasTopping;
owl:allValuesFrom [

a owl:Class;
owl:oneOf (terms:tomato terms:cheese)

]
] .

terms:PizzaMargarita rdfs:subClassOf [
a owl:Class ;
owl:intersectionOf

([a owl:Restriction; owl:onProperty terms:hasTopping; owl:hasValue terms:tomato]
[a owl:Restriction; owl:onProperty terms:hasTopping; owl:hasValue terms:cheese])

] .

The first specifies that all values in the range of hasTopping have to be either terms:tomato or terms:cheese.
The second specifies that hasTopping should exist with these values.

Note that the infertools.jar file does not reason with owl:OneOf. As such, the tool will not be able to
conclude from the following triples that the ontology has become inconsistent (because hasTopping has
a value that is distinct from tomato or cheese). There are more powerfull tools out there (like, pellet
http://clarkparsia.com/pellet/download/pellet-2.3.1 that allow to draw such conclusions).

terms:pm a terms:PizzaMargarita .
terms:pm terms:hasTopping terms:ex1 .
terms:ex1 owl:differentFrom terms:tomato, terms:cheese .

4 SPARQL

Exercise 4.1

Write SPARQL queries for the following queries. (All queries should be run with files catalog.rdf, staff.rdf,
and infoh509.ttl.)

1. Retrieve the URIs of all the courses.

PREFIX ulb: <http://code.ulb.ac.be/example/terms/>
SELECT ?course
WHERE {

?course a ulb:Course .
}

2. Retrieve, for each course, its title and the name of the lecturer.

PREFIX ulb: <http://code.ulb.ac.be/example/terms/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?title ?name
WHERE {

?course a ulb:Course .
?course dc:title ?title .
?course ulb:lecturer ?lecturer .
?lecturer foaf:name ?name .

}

3. The name of all Professors who teach a course such that (s)he also teaches a prerequisite for that course.

PREFIX ulb: <http://code.ulb.ac.be/example/terms/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {

?course a ulb:Course .
?course ulb:lecturer ?lecturer .
?course ulb:prerequisite ?pre .
?pre ulb:lecturer ?lecturer .
?lecturer foaf:name ?name .

}

4. All persons (foaf:Person) and their personal homepage, should this be available (i.e., retrieve just the
person if no homepage is available).

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?homepage
WHERE {

?person a foaf:Person .
?person foaf:name ?name .

OPTIONAL {
?person foaf:homepage ?homepage

}
}

5. The title of all courses that have been organized in UA4.218.

PREFIX ulb: <http://code.ulb.ac.be/example/terms/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX ev: <http://purl.org/rss/1.0/modules/event/>
SELECT DISTINCT ?title
WHERE {

?course a ulb:Course .
?course dc:title ?title .
?course ulb:schedule ?schedule .
?schedule ?test ?item .
?item ev:location "UA4.218" .

}

6. Supplementary exercise: All persons who know someone who know M.Vansummeren.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX staff: <http://code.ulb.ac.be/example/staff#>
SELECT DISTINCT ?name
WHERE {

?p2 foaf:knows ?p1 .
staff:svansumm foaf:knows ?p1 .
?p2 foaf:name ?name .
FILTER(!sameTerm(?p2, staff:svansumm))

}

The filter !sameTerm expresses that the person p2 (who knows someone who know prof. Vansummeren)
isn’t prof. Vansummeren himself.

5 RDFS Formal Semantics

Exercise 5.1

To make the solution really simple, set IR = IP{a} and IEXT = {〈a, a〉}. Furthermore, IS maps everything to a

and LV = IL = ∅.

Exercise 5.2

An example of simple entailment is

ex:vegetableThaiCurry ex:thaiDisBasedOn _:id1 .

An example of an RDF-entailed triple that is not simply entailed is

ex:thaiDishBasedOn rdf:type rdf:Property .

An example of an RDFS-entailed triple that is not RDF entailed is

ex:vegetableThaiCurry rdf:type ex:Thai .

Exercise 5.3

• For the first triple we reason as follows:

From ulb:Lecturer rdfs:subClassOf ulb:Professor.
and ulb:Professor rdfs:subClassOf ulb:Faculty .
we can deduce using rule rdfs11 that ulb:Lecturer rdf:subClassOf ulb:Faculty .

• For the second triple we first need to derive another triple

1. From ulb:svsummer ulb:teaches course:webinf .
and ulb:teaches rdfs:domain ulb:Lecturer .
we can deduce using rule rdfs2 that ulb:svsummer rdf:type ulb:Lecturer .

2. From ulb:Lecturer rdf:subClassOf ulb:Faculty .
and ulb:svsummer rdf:type ulb:Lecturer .
we can deduce using rule rdfs9 that ulb:svsummer rdf:type ulb:Faculty .

Exercise 5.4

See the file solutions/formalsem/sol5.4.pdf pages 379-381.

