
Web Information Systems

Using & developping SOAP services

Lecturer: Stijn Vansummeren

2013�2014

Important comments:

• Skeleton code for all of the exercises below is available on the course website. Download this code before

beginning the exercises, extract it, and import it into Eclipse as follows:

� Choose File > Import > General > Existing Projects Into Workspace

� Select the folder containing all skeletons as the "root folder" - Eclipse will recognize all projects in

this folder (be sure to check the �import recursive� option). Click "Finish" to import them.

• This set of exercises is best solved in small groups (2-3 students)

Part I: Consuming SOAP Services

In this �rst part, we will investigate how to call existing SOAP services from within Java using the Java API

for XML Web Services (jax-ws for short) API.

In particular, we will use the wsimport tool1 to translate wsdl service de�nitions into corresponding java

code.

Exercise 1.1

In this �rst exercise, we will use the DailyXmlFact service available at

http://www.xmlme.com/WSDailyXml.asmx?WSDL.

1. Open the wsdl �le (e.g. by opening the url http://www.xmlme.com/WSDailyXml.asmx?WSDL in a web

browser). What Service does it de�ne? Which Ports? Which Messages? Which Input/Output Types?

2. Using the wsimport tool, generate the caller code for the given service.

The general syntax to do this is:

wsimport -d <class-directory> \

-s <java-directory> \

-p <package> \

http://www.xmlme.com/WSDailyXml.asmx?WSDL

Here, <class-directory> is the folder where compiled versions of the generated classes will be put;

<java-directory> is the folder where the generated classes are to be put, and <package> is the package to

which the generated classes should be put. (It is recommended to take <package>= com.xmlme.dailyxml.)

Note that the <class-directory> and <java-directory> folders must exist prior to execution of this

command otherwise you will get an error!

1http://docs.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html

1

http://www.xmlme.com/WSDailyXml.asmx?WSDL
http://www.xmlme.com/WSDailyXml.asmx?WSDL
http://docs.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html


3. Now compare your responses to question (1) with the generated code. What class is generated to represent

the service? What classes to generate the ports? What classes to represent the Input/Ouptut types?

4. Next, we are going to write a program that uses the generated caller code to retrieve the daily fact.

The general way to do this is as follow. Given a Service class that is generated by the wsimport.

Service myService = new Service();

System.out.println(

myService

.getPort()

.method("arg1", "arg2"));

Here you will need to replace getPort() and method by the correct port and method generated by

wsimport.

5. Run your program. What do you get?

6. To get more insight into the messages that are exchanged between your client program and the server, we

are going to use the SOAP debugger that is provided in exercise template. To enable this debugger, you

need to add the analogue of the following code.

Service myService = new Service();

MyHandlerResolver<SOAPMessageContext> myHandler = new MyHandlerResolver<SOAPMessageContext>();

myHandler.registerHandler(new SOAPDebugger());

myService.setHandlerResolver(myHandler);

(The MyHandlerResolver class will ensure that the SOAP debugger is called.) Like before you should

replace Service with the corresponding class name generated by the wsimport tool.

7. Now run the program again. What are the messages that are exchanged between the client and the

service?

Part II: Designing SOAP Services

In the �rst part, we used existing SOAP services. We now design and implement new SOAP services, again

using the Java API for XML Web Services (jax-ws for short) API. The framework that we will use to actually

implement this API is called Apache CXF. It implements JAX-WS (SOAP) and provides automatic serialization

to XML through JAXB. Services can be created Java-�rst or WSDL-�rst. A copy of Apache CXF is provided

in the lib directory of the corresponding code skeleton (called RandomExercise).

Exercise 1.2

We will �rst implement a service that provides random quotes, and random numbers to its clients.

• The Random interface provides a description of the service. JAX-WS uses Java annotations to declare that

instances of an interface will be a SOAP-Based web service. Look at the Random interface how easily this

is done. (Which annotation should you use?)

• The Random interface will be used by both the service clients and the service server. The clients simply

employ the CXF framework, point it to the HTTP address where the server should run, and ask the

framework to return it an implementation of the Random interface. All calls to this implementation will

be forwarded to the implementation that actually runs on the server. Have a look at the ServiceClient

class to see how a client is typically constructed.



Figure 1: Stopping the server

• In contrast to the clients, which only need the Random interface to connect to a server, the actual server

itself needs to provide an implementation of the Random interface to respond to the web service calls. An

empty implementation of the Random interface, called RandomImpl is provided in the code skeleton. Have

a look at the ServiceServer class to see how a server is typically set up. This class contains one TODO:

you need to register the RandomImpl with the server, so that it can use it to respond to web service calls.

• Finally, you need to write the corresponding implementation of the service. The utility class Quotes

already contain a few quotes. You can use the ServiceClient to test your implementation.

Important:

� When testing, be sure to �rst run the ServiceServer by right-clicking on the ServiceServer.java

�le in Eclipse and choosing �Run as�>�Java Application�. Note that the server keeps running until

you terminate it. You can terminate it by clicking on the red button in the Console. (See Figure 1.

� Next start the client by right-clicking on the ServiceClient.java �le in Eclipse and choosing �Run

as�>�Java Application�.

� If both client and server are active, you can switch between the two consoles as indicated in Figure 1.

Exercise 1.3

In the following exercises, we will implement a SOAP-based contact manager service. In this �rst part, you

will de�ne an interface that describes the service. To help you in this task consider the following scenarios and

identify the methods that will be called.

• A new contact is created for �Scott Montgomery�, with the email address scott.montgomery@starfleet.gxy.

• The �USS Enterprise� group is rechristened �USS Enterprise-A�.

• �Matt Decker� is removed from the address book.

• The email address �kahless@klingon-empire.gxy� is changed to �kahless-the-unforgettable@klingon-empire.gxy�.

• �hiraku.sulu@star�eet.gxy� is removed from the �USS Enterprise� group and added to the �USS Excelsior�

group.

• The list of all contacts is retrieved.

• The list of all contacts pertaining to the �Star�eet� group is retrieved.

Exercise 1.4

The SOAPContactManagerExercise contains skeleton code that has the necessary support for JAX-WS and,

similarly to exercise 1.2, contains code to instantiate the web service server and its clients. (Note that you will

need to complete the server and client code). The skeleton also implements a simple model for the address book



and the address book groups. (This model simulates a database, and it speci�es how instances of the model

can be serialized.)

In this exercise, you are asked to:

• complete the ContactService interface (in the be.ac.ulb.code.wit.service package) to correspond to

the part of your service de�nition from Exercise 1.3. (Note that this interface only deals with contacts,

not with contact groups.).

• Next, you should complete the corresponding implementation ContactServiceImpl to provide an actual

implementation for your contact manager service without support for contact groups.

• Register the implementation with the server in the ServiceServer class.

• Test the implemented methods by completing the client skeleton code in the ServiceClient class.

Exercise 1.5

Supplemental: Add support for contact groups management to your service by completing the GroupService

interface and corresponding GroupServiceImpl implementation. (Be sure to also register them with the server

and client.)


