
BIGWS-* WEB SERVICES

INFOH509 XML & Web Technologies

Lecture 11

SERVICES

Two competing technology stacks

• Big Web Services (WS-*)
– Various (complex) protocols on top of HTTP

(SOAP, UDDI, WSDL, WS-Addressing, …)
– Is mostly used to implement RPC-style services, but

can be used to implement any of the three
– Lots of standards! Primarily meant to create web

services that involve more than 2 peers.

• RESTful Web Services
– Use ONLY HTTP and standard media types
– Restricted to Resource-style services
– Conceptually simpler, but mainly restricted to web

services that are limited to two endpoints

Two competing technology stacks

• Big Web Services (WS-*)
– Various (complex) protocols on top of HTTP

(SOAP, UDDI, WSDL, WS-Addressing, …)
– Is mostly used to implement RPC-style services, but

can be used to implement any of the three
– Lots of standards! Primarily meant to create web

services that involve more than 2 peers.

• RESTful Web Services
– Use ONLY HTTP and standard media types
– Restricted to Resource-style services
– Conceptually simpler, but mainly restricted to web

services that are limited to two endpoints

Previous
lecture

This lecture

WS-* Technology Stack

WS-* Message, Description & Discovery

• While SOAP & WSDL are frequently used, UDDI has never
caught on.

Service Requester
(Client)

Service Provider
(Server)

Service Registry

Service descriptionService descriptionService description

Service description

Service

PUBLISH

BIND

FIND

UDDI

SOAP

WSDL

SOAP
Part I

The history of SOAP

• Originally, SOAP was conceived as a minimalistic
infrastructure to perform remote procedure calls
(RPC) over the Web:

– SOAP messages use XML as a format to exchange data
between systems.

– SOAP messages can be sent over HTTP (but also other
protocols like SMTP) as a transport protocol. (This avoids
system heterogeneity & firewall issues.)

• Currently, SOAP is no longer limited to RPC.

The history of SOAP (cont.)

• Originally proposed by Microsoft (then: the Object
Access Protocol).

• Version 1.0 standardized by the W3C in 1999

• Currently at version 1.2

What is SOAP?
• SOAP = a messaging framework (much like HTTP)

• The SOAP specification covers the following four main areas:
– Message format: A format for one-way communication describing

how a message can be packed into an XML document.
– Processing model: A set of rules that must be followed when

processing a SOAP message and a simple classification of the entities
involved in processing a SOAP message. Describes what parts of the
messages should be read by whom and how to react in case of failure.

– Extensibility model: How the basic message constructs can be
extended with application-specific constructs

– Protocol binding framework: A description of how SOAP messages
can be transported using different protocols (e.g., HTTP, SMTP, …).

– A set of conventions on how to turn an RPC call into a SOAP message
and back. (Since version 1.1. SOAP is not restricted to the RPC
programming model).

What is SOAP?
• SOAP = a messaging framework (much like HTTP)

• The SOAP specification covers the following four main areas:
– Message format: A format for one-way communication describing

how a message can be packed into an XML document.
– Processing model: A set of rules that must be followed when

processing a SOAP message and a simple classification of the entities
involved in processing a SOAP message. Describes what parts of the
messages should be read by whom and how to react in case of failure.

– Extensibility model: How the basic message constructs can be
extended with application-specific constructs

– Protocol binding framework: A description of how SOAP messages
can be transported using different protocols (e.g., HTTP, SMTP, …).

– A set of conventions on how to turn an RPC call into a SOAP message
and back. (Since version 1.1. SOAP is not restricted to the RPC
programming model).

The SOAP message structure

• SOAP Message
= envelope in XML format

• Two parts:

– Headers (optional)
“The stickers”
Contains meta data (security,
transaction data, …)

– Body
“Application data”

• SOAP only specifies the
structure of the message, not
the semantics of header/body

Envelope

HEADER

Header block

Header block

…

HEADER BLOCKBody block

BODY

…
Body block

An example SOAP message

<?xml version='1.0' ?>

<env:Envelope xmlns:env="http://www.w3.org/2002/06/soap-envelope" >

<env:Header>
<t:transactionID

xmlns:t="http://intermediary.example.com/procurement"
env:role="http://www.w3.org/2002/06/soap-envelope/role/next"
env:mustUnderstand="true" >
57539

</t:transactionID>
</env:Header>

<env:Body>
<m:orderGoods

env:encodingStyle="http://www.w3.org/2002/06/soap-encoding"
xmlns:m="http://example.com/procurement">

<m:productItem>
<name>ACME Softener</name>

</m:productItem>
<m:quantity>

35
</m:quantity>

</m:orderGoods>
</env:Body>

</env:Envelope>

Header

Body

Blocks

Envelope

The SOAP header
• The header is intended as a generic place holder for information

that is not necessarily application dependent (the application may
not even be aware that a header was attached to the message).

• Typical uses of the header are: coordination information, identifiers
(e.g., for transactions), security information (e.g., certificates)

• SOAP provides mechanisms to specify who should deal with
headers and what to do with them. For this purpose it includes:
– Role attribute: who should process that particular header block.
– Boolean mustUnderstand attribute: indicates whether it is mandatory

to process the header. If a header is directed at a node (as indicated by
the actor attribute), the mustUnderstand attribute determines
whether it is mandatory to do so.

– SOAP 1.2 adds a relay attribute (forward header if not processed)

The SOAP body
• The SOAP body is the area of the SOAP message, where the application

specific XML data (payload) being exchanged in the message is placed.

• The <Body> element must be present and is an immediate child of the
envelope. It may contain a number of child elements, called body entries,
but it may also be empty. The <Body> element contains either of the
following:

– Application-specific data is the information that is exchanged with a Web
service. The SOAP <Body> is where the method call information and its related
arguments are encoded. It is where the response to a method call is placed,
and where error information can be stored.

– A fault message is used only when an error occurs.

• A SOAP message may carry either application-specific data or a fault, but
not both.

What is SOAP?
• SOAP = a messaging framework (much like HTTP)

• The SOAP specification covers the following four main areas:
– Message format: A format for one-way communication describing

how a message can be packed into an XML document.
– Processing model: A set of rules that must be followed when

processing a SOAP message and a simple classification of the entities
involved in processing a SOAP message. Describes what parts of the
messages should be read by whom and how to react in case of failure.

– Extensibility model: How the basic message constructs can be
extended with application-specific constructs

– Protocol binding framework: A description of how SOAP messages
can be transported using different protocols (e.g., HTTP, SMTP, …).

– A set of conventions on how to turn an RPC call into a SOAP message
and back. (Since version 1.1. SOAP is not restricted to the RPC
programming model).

The SOAP message path

• A SOAP message can pass through multiple hops on the way from
the initial sender to the ultimate receiver

• The entities involved in transporting the message are called SOAP
nodes

• SOAP Intermediaries can manipulate and forward the message

• Every SOAP node assumes a certain role which influences how the
message is processed at the node

Initial
sender

Ultimate
receiver

Intermediary Intermediary Intermediary

SOAP Intermediaries

• SOAP headers have been designed
in anticipation of participation of
other SOAP processing nodes –
called SOAP intermediaries – along
a message's path from an initial
SOAP sender to an ultimate SOAP
receiver.

• A SOAP message travels along the
message path from a sender to a
receiver.

• All SOAP messages start with an
initial sender, which creates the
SOAP message, and end with an
ultimate receiver.

Message Processing Model
• For each message received, every SOAP node on the message path must

process the message as follows
– Decide in which roles to act (standard roles: next or ultimateReceiver, or

other application-defined roles).
These roles may also depend on the contents of the message.

– Identify the mandatory header blocks targeted at the node (matching role,
mustUnderstand=true)

– If a mandatory header block is not understood by the node, a fault must be
generated. The message must not be processed further.

• Process the mandatory header blocks and, in case of the ultimate receiver,
the body. Other header blocks targeted at the node may be processed.
The order of processing is not significant.

• SOAP intermediaries will finally forward the message
– Processed header blocks may be removed depending on the specification for

the block.
– Header blocks which were targeted at the intermediary but not processed are

relayed only if the the relay attribute is set to true.

• Active SOAP intermediaries may also change a message in ways not
described here (e.g., encrypt the message).

Example of a header with routing

<?xml version="1.0" encoding="UTF-8"?>

<env:Envelope xmlns:env=“http://www.w3.org/2003/05/soap-envelope”>

<env:Header>

<m:order xmlns:m="http://www.plastics_supply.com/purchase-order"

env:role="http://www.w3.org/2003/05/soap-envelope/role/next"

env:mustUnderstand="true">

<m:order-no >uuid:0411a2daa</m:order-no>

<m:date>2004-11-8</m:date>

</m:order>

<n:customer xmlns:n="http://www.supply.com/customers"

env:role="http://www.w3.org/2003/05/soap-envelope/role/next"

env:mustUnderstand="true">

<n:name> Marvin Sanders </n:name>

</n:customer >

</env:Header>

<env:Body>

<-- Payload element goes here -->

</env:Body>

</env:Envelope>

What is SOAP?
• SOAP = a messaging framework (much like HTTP)

• The SOAP specification covers the following four main areas:
– Message format: A format for one-way communication describing

how a message can be packed into an XML document.
– Processing model: A set of rules that must be followed when

processing a SOAP message and a simple classification of the entities
involved in processing a SOAP message. Describes what parts of the
messages should be read by whom and how to react in case of failure.

– Extensibility model: How the basic message constructs can be
extended with application-specific constructs

– Protocol binding framework: A description of how SOAP messages
can be transported using different protocols (e.g., HTTP, SMTP, …).

– A set of conventions on how to turn an RPC call into a SOAP message
and back. (Since version 1.1. SOAP is not restricted to the RPC
programming model).

• Client sends message to a remote server and blocks while
waiting for response

• Request message identifies the procedure to be executed and its
arguments

• Server decodes message, maps message arguments directly to
input parameters, executes procedure, and sends (serialized)
results back to client

RPC Style (1/2)

Client Service

Procedure name
AND

Procedure arguments

Procedure results

Request

Response

Procedure

• Pros:

– Very easy to implement (lots of frameworks that automate the
process, e.g. AX-WS framework for Java)

• Cons:

– Usually inflexible and fragile: tight coupling between client and
service, if procedure needs to change (e.g., number of arguments),
all clients need to be rewritten.

– Usually restricted to synchronous communication (client blocks
while waiting for response)

RPC Style (2/2)

RPC style SOAP services
• In a remote procedure call (RPC)-style Web service clients express their

request as a method call with a set of arguments, which returns a
response containing a return value.

SOAP envelope

SOAP body

Method name

orderGoods

Input parameter 1

product item

Input parameter 2

quantity

SOAP envelope

SOAP body

Method return

Return value

order id

RPC style SOAP services (cont.)
<env:Envelope

xmlns:env=“http://www.w3.org/2003/05/soap-envelope”
xmlns:m="http://www.plastics_supply.com/product-prices">

<env:Header>
<tx:Transaction-id xmlns:t=”http://www.transaction.com/transactions”

env:mustUnderstand=“true”>
512

</tx:Transaction-id>
</env:Header>
<env:Body>

<m:GetProductPrice>
<product-id> 450R6OP </product-id >

</m:GetProductPrice >
</env:Body>

</env:Envelope>

<env:Envelope xmlns:env=“http://www.w3.org/2003/05/soap-envelope”
xmlns:m="http://www.plastics_supply.com/product-prices">

<env:Header>
<!-- Optional context information -->

</env:Header>
<env:Body>

<m:GetProductPriceResponse>
<product-price> 134.32 </product-price>

</m:GetProductPriceResponse>
</env:Body>

</env:Envelope>

Example
Request

Example
Response

• In a message-based API, messages are not derived from the
signatures of remote procedures.

• Instead, messages may carry information on specific topics, tasks
to execute, and events.

• The server selects the correct procedure to execute based on
the message content

Message-based style

Client Service

Topic, Task, or Event ID
AND

Structured msg content

Standardized content

Request

Response

Procedure

Procedure

Procedure

• Pros:

– Looser coupling between clients and servers

– Support for asynchronous communication [necessary on web-scale
networks]

• Cons:

– Messages must be standardized somehow. This is easy if
communication is within the same organization, but more difficult
when many parties are involved.

Message-based Style (2/2)

Message-style SOAP Services

• In the document-style of messaging, the SOAP <Body> contains an
XML document fragment. The <Body> element reflects no explicit
XML structure.

• The SOAP run-time environment accepts the SOAP <Body> element
as it stands and hands it over to the application it is destined for
unchanged. There may or may not be a response associated with
this message.

SOAP envelope

SOAP body

PurchaseOrder

document

-product item

-quantity

SOAP envelope

SOAP body

Acknowledgement

document

-order id

Message-style SOAP Services (cont.)
<env:Envelope xmlns:env=“http://www.w3.org/2003/05/soap-envelope”>

<env:Header>

<tx:Transaction-id xmlns:t=”http://www.transaction.com/transactions”

env:mustUnderstand=“true”>

512

</tx:Transaction-id>

</env:Header>

<env:Body>

<po:PurchaseOrder oderDate=”2004-12-02”

xmlns:po="http://www.plastics_supply.com/POs">

<po:from>

<po:accountName> RightPlastics </po:accountName>

<po:accountNumber> PSC-0343-02 </po:accountNumber>

</po:from>

<po:to>

<po:supplierName> Plastic Supplies Inc. </po:supplierName>

<po:supplierAddress> Yara Valley Melbourne </po:supplierAddress>

</po:to>

<po:product>

<po:product-name> injection molder </po:product-name>

<po:product-model> G-100T </po:product-model>

<po:quantity> 2 </po:quantity>

</po:product>

</po:PurchaseOrder >

</env:Body>

</env:Envelope>

SOAP Fault Element

• SOAP provides a model for handling faults arise.

• It distinguishes between the conditions that result in a fault, and
the ability to signal that fault to the originator of the faulty
message or another node. The SOAP <Body> is the place where
fault information is placed.
<env:Envelope xmlns:env=“http://www.w3.org/2003/05/soap-envelope”

xmlns:m="http://www.plastics_supply.com/product-prices">

<env:Header>

<tx:Transaction-id xmlns:t=”http://www.transaction.com/transactions”

env:mustUnderstand='1'>

512

</tx:Transaction-id>

</env:Header>

<env:Body>

<env:Fault>

<env:Code>

<env:Value>env:Sender</env:Value>

<env:Subcode> <env:Value> m:InvalidPurchaseOrder </env:Value> </env:Subcode>

</env:Code>

<env:Reason>

<env:Text xml:lang="en-UK"> Specified product did not exist </env:Text>

</env:Reason>

<env:Detail> arbitrary XML here </env:Detail>

</env:Fault>

</env:Body>

</env:Envelope>

What is SOAP?
• SOAP = a messaging framework (much like HTTP)

• The SOAP specification covers the following four main areas:
– Message format: A format for one-way communication describing

how a message can be packed into an XML document.
– Processing model: A set of rules that must be followed when

processing a SOAP message and a simple classification of the entities
involved in processing a SOAP message. Describes what parts of the
messages should be read by whom and how to react in case of failure.

– Extensibility model: How the basic message constructs can be
extended with application-specific constructs

– Protocol binding framework: A description of how SOAP messages
can be transported using different protocols (e.g., HTTP, SMTP, …).

– A set of conventions on how to turn an RPC call into a SOAP message
and back. (Since version 1.1. SOAP is not restricted to the RPC
programming model).

SOAP Protocol Binding Framework

• SOAP messages can be transferred using any protocol,

• A binding of SOAP to a transport protocol is a description of how a
SOAP message is to be sent using that transport protocol.

• A binding specifies how response and request messages are
correlated.

• The SOAP binding framework expresses guidelines for specifying a
binding to a particular protocol

SOAP HTTP Binding
• SOAP Messages are typically

transferred using HTTP.

• The binding to HTTP defined in the
SOAP specification

• SOAP can use GET or POST. With GET,
the request is not a SOAP message but
the response is a SOAP message, with
POST both request and response are
SOAP messages (in version 1.2, version
1.1 mainly considers the use of POST).

• SOAP uses the same error and status
codes as those used in HTTP so that
HTTP responses can be directly
interpreted by a SOAP module.

SOAP envelope

SOAP header

Headers

SOAP body

Input parameter 1

Input parameter 2

Name of procedure

HTTP POST

SOAP over HTTP Example
POST /order/billing HTTP/1.1

Host: billing.eserver.com

Content-Type: application/soap+xml; charset=utf-8

Content-Length: 12354

<?xml version="1.0" encoding="utf-8"?>

<env:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Body>

<order xmlns="http://orders.com/">

<clientID>1892AxF1</clientID>

<itemID>456D1</itemID>

</order>

</env:Body>

</env:Envelope>

SOAP over HTTP Example

SOAP over HTTP Example

HTTP/1.1 200 OK

Content-Type: application/soap+xml; charset=utf-8

Content-Length: length

<?xml version="1.0" encoding="utf-8"?>

<env:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Body>

<orderCreated xmlns="http://orders.com/"/>

</env:Body>

</env:Envelope>

WSDL:
WEB SERVICE DESCRIPTION LANGUAGE

Part II

Service Description

• Any service that you provide, others will have to program and use.

• The purpose of a service = abstract from system & programming
language heterogeneity
– For instance, neither the service requestor nor the provider should be aware of each

other’s technical infrastructure, programming language, or distributed object framework
(if any).

• A Service description is a machine understandable document that

– describes the operations of a web service,

– describes how the web service should be accessed (transport protocol,
access point),

– describes what the content of the messages that are exchanged is

It hence reduces the amount of required common understanding and custom
programming and integration.

WSDL

• WSDL = Web Service Description Language

• A WSDL document is an XML document that specifies the
details of the complete interfaces exposed by web services:

– what a service does, i.e., the operations the service provides,

– where it resides, i.e., details of the protocol-specific address
(e.g., its URI)

– how to invoke it, i.e., details of the data formats (e.g., XML) and
protocols (e.g., SOAP over HTTP) necessary to access the service’s
operations.

WSDL History

• Evolution of the standard:
– WSDL 1.0 (first release) – 2001

– WSDL 1.1. – 2003

– WSDL 2.0 (current version) – 2007

• Originally, WSDL was primarily meant to describe SOAP web
services; with WSDL 2.0 it is also possible to describe REST
web services.

WSDL History

• Evolution of the standard:
– WSDL 1.0 (first release) – 2001

– WSDL 1.1. – 2003

– WSDL 2.0 (current version) – 2007

• Originally, WSDL was primarily meant to describe SOAP web
services; with WSDL 2.0 it is also possible to describe REST
web services.

CAUTION:
What follows is an overview of WSDL 2.0, which is a significant (non-compatible)
change with earlier WSDL versions!

WSDL document structure

• The compontents of a WSDL file parallel those of an interface
in a programming language

public interface ReservationInterface {

Result checkAvailability(BookingDesiderata bd)

throws InvalidDataException;

Result book(BookingDesiderata bd)

throws InvalidDataException,

NotAvailableException;

}

WSDL document structure

• The compontents of a WSDL file parallel those of an interface
in a programming language

public interface ReservationInterface {

Result checkAvailability(BookingDesiderata bd)

throws InvalidDataException;

Result book(BookingDesiderata bd)

throws InvalidDataException,

NotAvailableException;

}

interface

WSDL document structure

• The compontents of a WSDL file parallel those of an interface
in a programming language

public interface ReservationInterface {

Result checkAvailability(BookingDesiderata bd)

throws InvalidDataException;

Result book(BookingDesiderata bd)

throws InvalidDataException,

NotAvailableException;

}

interface operations

WSDL document structure

• The compontents of a WSDL file parallel those of an interface
in a programming language

public interface ReservationInterface {

Result checkAvailability(BookingDesiderata bd)

throws InvalidDataException;

Result book(BookingDesiderata bd)

throws InvalidDataException,

NotAvailableException;

}

interface operations

types

WSDL document structure

• The compontents of a WSDL file parallel those of an interface
in a programming language

public interface ReservationInterface {

Result checkAvailability(BookingDesiderata bd)

throws InvalidDataException;

Result book(BookingDesiderata bd)

throws InvalidDataException,

NotAvailableException;

}

interface operations

types types (fault)

WSDL document structure

• The <wsdl:types> element defines the « types » of the messages that
are to be exchanged.

• By default, WSDL assumes that the messages will be in XML, and it uses
XML Schema to describe the exact structure of the XML that needs to be
exchanged.

<wsdl:description xmlns:wsdl="http://www.w3.org/ns/wsdl">

<wsdl:types> … </wsdl:types>

<wsdl:interface> … <wsdl:interface>

<wsdl:binding> … </wsdl:binding>

<wsdl:service> … </wsdl:service>

</wsdl:description>

WSDL document structure

• The <wsdl:types> element defines the « types » of the messages that
are to be exchanged.

• By default, WSDL assumes that the messages will be in XML, and it uses
XML Schema to describe the exact structure of the XML that needs to be
exchanged.

<wsdl:description xmlns:wsdl="http://www.w3.org/ns/wsdl">

<wsdl:types> … </wsdl:types>

<wsdl:interface> … <wsdl:interface>

<wsdl:binding> … </wsdl:binding>

<wsdl:service> … </wsdl:service>

</wsdl:description>

Note
In principle, WSDL allows other schema languages or type systems (one could
imagine, an other language to describe the structure of JSON content to be
exchanged), but this seems to be not widely implemented.

Defining message types
<?xml version="1.0" encoding="utf-8" ?>

<description xmlns="http://www.w3.org/ns/wsdl"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"

… >

...

<types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://greath.example.com/2004/schemas/resSvc">

<xs:element name="bookingDesiderata" type="tBookingDesiderata"/>

<xs:complexType name="tBookingDesiderata">

<xs:sequence>

<xs:element name="checkInDate" type="xs:date"/>

<xs:element name="checkOutDate" type="xs:date"/>

<xs:element name="roomType" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:element name="checkAvailabilityResult" type="xs:double"/>

<xs:element name="invalidDataError" type="xs:string"/>

</xs:schema>

</types>

. . .

</description>

WSDL document structure

• The <wsdl:interface> element defines the « interfaces » provided
by the web service (as collections of operations).

• For each operation, it specifies the kind of message exchange pattern
(MEP). Popular MEPS are: request + response, request-only, response-
only, …

<wsdl:description xmlns:wsdl="http://www.w3.org/ns/wsdl">

<wsdl:types> … </wsdl:types>

<wsdl:interface> … <wsdl:interface>

<wsdl:binding> … </wsdl:binding>

<wsdl:service> … </wsdl:service>

</wsdl:description>

Defining interfaces
<?xml version="1.0" encoding="utf-8" ?>

<description xmlns="http://www.w3.org/ns/wsdl"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"

xmlns:wsdlx="http://www.w3.org/ns/wsdl-extensions">

<types> … </types>

<interface name = "reservationInterface" >

<fault name = "invalidDataFault" element = "ghns:invalidDataError"/>

<operation name="opCheckAvailability"

pattern="http://www.w3.org/ns/wsdl/in-out"

style="http://www.w3.org/ns/wsdl/style/iri"

wsdlx:safe = "true">

<input messageLabel="In" element="ghns:bookingDesiderata " />

<output messageLabel="Out" element="ghns:checkAvailabilityResult" />

<outfault ref="tns:invalidDataFault" messageLabel="Out"/>

</operation>

</interface>

…

</description>

Defining interfaces
<?xml version="1.0" encoding="utf-8" ?>

<description xmlns="http://www.w3.org/ns/wsdl"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"

xmlns:wsdlx="http://www.w3.org/ns/wsdl-extensions">

<types> … </types>

<interface name = "reservationInterface" >

<fault name = "invalidDataFault" element = "ghns:invalidDataError"/>

<operation name="opCheckAvailability"

pattern="http://www.w3.org/ns/wsdl/in-out"

style="http://www.w3.org/ns/wsdl/style/iri"

wsdlx:safe = "true">

<input messageLabel="In" element="ghns:bookingDesiderata " />

<output messageLabel="Out" element="ghns:checkAvailabilityResult" />

<outfault ref="tns:invalidDataFault" messageLabel="Out"/>

</operation>

</interface>

…

</description>

Request+response MEP

Defining interfaces
<?xml version="1.0" encoding="utf-8" ?>

<description xmlns="http://www.w3.org/ns/wsdl"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"

xmlns:wsdlx="http://www.w3.org/ns/wsdl-extensions">

<types> … </types>

<interface name = "reservationInterface" >

<fault name = "invalidDataFault" element = "ghns:invalidDataError"/>

<operation name="opCheckAvailability"

pattern="http://www.w3.org/ns/wsdl/in-out"

style="http://www.w3.org/ns/wsdl/style/iri"

wsdlx:safe = "true">

<input messageLabel="In" element="ghns:bookingDesiderata " />

<output messageLabel="Out" element="ghns:checkAvailabilityResult" />

<outfault ref="tns:invalidDataFault" messageLabel="Out"/>

</operation>

</interface>

…

</description>

Call is “safe”: does not induce client
obligation (like buying something)

Defining interfaces
<?xml version="1.0" encoding="utf-8" ?>

<description xmlns="http://www.w3.org/ns/wsdl"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"

xmlns:wsdlx="http://www.w3.org/ns/wsdl-extensions">

<types> … </types>

<interface name = "reservationInterface" >

<fault name = "invalidDataFault" element = "ghns:invalidDataError"/>

<operation name="opCheckAvailability"

pattern="http://www.w3.org/ns/wsdl/in-out"

style="http://www.w3.org/ns/wsdl/style/iri"

wsdlx:safe = "true">

<input messageLabel="In" element="ghns:bookingDesiderata " />

<output messageLabel="Out" element="ghns:checkAvailabilityResult" />

<outfault ref="tns:invalidDataFault" messageLabel="Out"/>

</operation>

</interface>

…

</description>

Message type to send for operation call
(element defined in types)

Defining interfaces
<?xml version="1.0" encoding="utf-8" ?>

<description xmlns="http://www.w3.org/ns/wsdl"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"

xmlns:wsdlx="http://www.w3.org/ns/wsdl-extensions">

<types> … </types>

<interface name = "reservationInterface" >

<fault name = "invalidDataFault" element = "ghns:invalidDataError"/>

<operation name="opCheckAvailability"

pattern="http://www.w3.org/ns/wsdl/in-out"

style="http://www.w3.org/ns/wsdl/style/iri"

wsdlx:safe = "true">

<input messageLabel="In" element="ghns:bookingDesiderata " />

<output messageLabel="Out" element="ghns:checkAvailabilityResult" />

<outfault ref="tns:invalidDataFault" messageLabel="Out"/>

</operation>

</interface>

…

</description>

Message type to send for operation call

WSDL document structure

• The <wsdl:binding> element defines how the messages should be
transmitted, i.e., what transport protocol should be used to access a given
interface. (E.g. SOAP, plain HTTP, …)

• It is possible to give multiple bindings for a single interface. (E.g. support
both SOAP and some other binding.)

<wsdl:description xmlns:wsdl="http://www.w3.org/ns/wsdl">

<wsdl:types> … </wsdl:types>

<wsdl:interface> … <wsdl:interface>

<wsdl:binding> … </wsdl:binding>

<wsdl:service> … </wsdl:service>

</wsdl:description>

Defining bindings
<?xml version="1.0" encoding="utf-8" ?>

<description xmlns="http://www.w3.org/ns/wsdl"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"

xmlns:wsoap= "http://www.w3.org/ns/wsdl/soap"

xmlns:soap="http://www.w3.org/2003/05/soap-envelope">

…

<types> … </types>

<interface name="reservationInterface"> … </interface>

<binding name="reservationSOAPBinding"

interface="tns:reservationInterface"

type="http://www.w3.org/ns/wsdl/soap"

wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">

<operation ref="tns:opCheckAvailability"

wsoap:mep="http://www.w3.org/2003/05/soap/mep/soap-response"/>

<fault ref="tns:invalidDataFault"

wsoap:code="soap:Sender"/>

</binding>

…

</description>

Defining bindings
<?xml version="1.0" encoding="utf-8" ?>

<description xmlns="http://www.w3.org/ns/wsdl"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"

xmlns:wsoap= "http://www.w3.org/ns/wsdl/soap"

xmlns:soap="http://www.w3.org/2003/05/soap-envelope">

…

<types> … </types>

<interface name="reservationInterface"> … </interface>

<binding name="reservationSOAPBinding"

interface="tns:reservationInterface"

type="http://www.w3.org/ns/wsdl/soap"

wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">

<operation ref="tns:opCheckAvailability"

wsoap:mep="http://www.w3.org/2003/05/soap/mep/soap-response"/>

<fault ref="tns:invalidDataFault"

wsoap:code="soap:Sender"/>

</binding>

…

</description>

Expose the tns:reservationInterface
defined earlier over SOAP, using the SOAP-

over-HTTP transport protocol

Defining bindings
<?xml version="1.0" encoding="utf-8" ?>

<description xmlns="http://www.w3.org/ns/wsdl"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"

xmlns:wsoap= "http://www.w3.org/ns/wsdl/soap"

xmlns:soap="http://www.w3.org/2003/05/soap-envelope">

…

<types> … </types>

<interface name="reservationInterface"> … </interface>

<binding name="reservationSOAPBinding"

interface="tns:reservationInterface"

type="http://www.w3.org/ns/wsdl/soap"

wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">

<operation ref="tns:opCheckAvailability"

wsoap:mep="http://www.w3.org/2003/05/soap/mep/soap-response"/>

<fault ref="tns:invalidDataFault"

wsoap:code="soap:Sender"/>

</binding>

…

</description>

Specify that the opCheckAvailability in this
interface should be called using HTTP GET

Defining bindings
<?xml version="1.0" encoding="utf-8" ?>

<description xmlns="http://www.w3.org/ns/wsdl"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"

xmlns:wsoap= "http://www.w3.org/ns/wsdl/soap"

xmlns:soap="http://www.w3.org/2003/05/soap-envelope">

…

<types> … </types>

<interface name="reservationInterface"> … </interface>

<binding name="reservationSOAPBinding"

interface="tns:reservationInterface"

type="http://www.w3.org/ns/wsdl/soap"

wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">

<operation ref="tns:opCheckAvailability"

wsoap:mep="http://www.w3.org/2003/05/soap/mep/soap-response"/>

<fault ref="tns:invalidDataFault"

wsoap:code="soap:Sender"/>

</binding>

…

</description>

If a fault element is sent, specify that the
SOAP error code should be set to “sender”

WSDL document structure

• The <wsdl:service> element defines where the service can be
accessed (its endpoint).

• Again, the same binding can be made accessible at multiple places
(through multiple endpoint elements)

<wsdl:description xmlns:wsdl="http://www.w3.org/ns/wsdl">

<wsdl:types> … </wsdl:types>

<wsdl:interface> … <wsdl:interface>

<wsdl:binding> … </wsdl:binding>

<wsdl:service> … </wsdl:service>

</wsdl:description>

Defining services
<?xml version="1.0" encoding="utf-8" ?>

<description

xmlns="http://www.w3.org/ns/wsdl"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"

xmlns:wsoap= "http://www.w3.org/ns/wsdl/soap"

xmlns:soap="http://www.w3.org/2003/05/soap-envelope">

…

<types> … </types>

<interface name="reservationInterface" > … </interface>

<binding name="reservationSOAPBinding"

interface="tns:reservationInterface" …>

…

</binding>

<service name="reservationService"

interface="tns:reservationInterface">

<endpoint name="reservationEndpoint"

binding="tns:reservationSOAPBinding"

address ="http://greath.example.com/2004/reservation"/>

</service>

</description>

Defining services
<?xml version="1.0" encoding="utf-8" ?>

<description

xmlns="http://www.w3.org/ns/wsdl"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"

xmlns:wsoap= "http://www.w3.org/ns/wsdl/soap"

xmlns:soap="http://www.w3.org/2003/05/soap-envelope">

…

<types> … </types>

<interface name="reservationInterface" > … </interface>

<binding name="reservationSOAPBinding"

interface="tns:reservationInterface" …>

…

</binding>

<service name="reservationService"

interface="tns:reservationInterface">

<endpoint name="reservationEndpoint"

binding="tns:reservationSOAPBinding"

address ="http://greath.example.com/2004/reservation"/>

</service>

</description>

Expose the tns:reservationSOAPBinding
binding at this URI

RESTful WSDL

• With WSDL 2.0 it is also possible to describe RESTful web services.

<?xml version="1.0" encoding="utf-8" ?>

<description xmlns="http://www.w3.org/ns/wsdl"

xmlns:whttp="http://www.w3.org/ns/wsdl/http" >

…

<binding name="reservationHTTPBinding"

interface="tns:reservationInterface"

type="http://www.w3.org/ns/wsdl/http"

whttp:methodDefault="GET">

<operation ref="tns:opCheckAvailability"

whttp:location="{bookingDesiderata}" />

</binding>

<service name="reservationService"

interface="tns:reservationInterface">

<!-- HTTP 1.1 GET End Point -->

<endpoint name="reservationEndpoint"

binding="tns:reservationHTTPBinding"

address="http://greath.example.com/2004/checkAvailability/"/>

</service>

…

</description>

RESTful WSDL

• With WSDL 2.0 it is also possible to describe RESTful web services.

<?xml version="1.0" encoding="utf-8" ?>

<description xmlns="http://www.w3.org/ns/wsdl"

xmlns:whttp="http://www.w3.org/ns/wsdl/http" >

…

<binding name="reservationHTTPBinding"

interface="tns:reservationInterface"

type="http://www.w3.org/ns/wsdl/http"

whttp:methodDefault="GET">

<operation ref="tns:opCheckAvailability"

whttp:location="{bookingDesiderata}" />

</binding>

<service name="reservationService"

interface="tns:reservationInterface">

<!-- HTTP 1.1 GET End Point -->

<endpoint name="reservationEndpoint"

binding="tns:reservationHTTPBinding"

address="http://greath.example.com/2004/checkAvailability/"/>

</service>

…

</description>

Support the operations of reservationInterface
by the HTTP transport protocol, using GET as the

method

RESTful WSDL

• With WSDL 2.0 it is also possible to describe RESTful web services.

<?xml version="1.0" encoding="utf-8" ?>

<description xmlns="http://www.w3.org/ns/wsdl"

xmlns:whttp="http://www.w3.org/ns/wsdl/http" >

…

<binding name="reservationHTTPBinding"

interface="tns:reservationInterface"

type="http://www.w3.org/ns/wsdl/http"

whttp:methodDefault="GET">

<operation ref="tns:opCheckAvailability"

whttp:location="{bookingDesiderata}" />

</binding>

<service name="reservationService"

interface="tns:reservationInterface">

<!-- HTTP 1.1 GET End Point -->

<endpoint name="reservationEndpoint"

binding="tns:reservationHTTPBinding"

address="http://greath.example.com/2004/checkAvailability/"/>

</service>

…

</description>

Support the operations of reservationInterface
by the HTTP transport protocol, using GET as the

method

The check availability operation can be called by
appending the bookingDesiderata in

application/x-www-form-urlencoded form to
the endpoint URL

RESTful WSDL

• With WSDL 2.0 it is also possible to describe RESTful web services.

<?xml version="1.0" encoding="utf-8" ?>

<description xmlns="http://www.w3.org/ns/wsdl"

xmlns:whttp="http://www.w3.org/ns/wsdl/http" >

…

<binding name="reservationHTTPBinding"

interface="tns:reservationInterface"

type="http://www.w3.org/ns/wsdl/http"

whttp:methodDefault="GET">

<operation ref="tns:opCheckAvailability"

whttp:location="{bookingDesiderata}" />

</binding>

<service name="reservationService"

interface="tns:reservationInterface">

<!-- HTTP 1.1 GET End Point -->

<endpoint name="reservationEndpoint"

binding="tns:reservationHTTPBinding"

address="http://greath.example.com/2004/checkAvailability/"/>

</service>

…

</description>

Support the operations of reservationInterface
by the HTTP transport protocol, using GET as the

method

The check availability operation can be called by
appending the bookingDesiderata in

application/x-www-form-urlencoded form to
the endpoint URL

This gives, e.g.,
http://greath.example.com/2004/checkAvailability/5-5-5?checkOutDate=6-6-5&roomType=foo.

Phew …

• That seems complicated and a lot of work. Why bother?

• Automated tooling support! (E.g. Java -> WSDL, WSDL -> Java)

WSDL 1.1 versus 2.0
• WSDL 1.1 is still used a lot in

practice (and most Java tools
do not support 2.0)

• WSDL 1.1 has an extra
message element. And it uses
portType instead of
interface and port
instead of endpoint.

References

• M. P. Papazoglou, Web Services: Principles and Technology
2nd edition, Prentice Hall

• World Wide Web Consortium, SOAP Version 1.2 Part 0: Primer
(Second Edition) http://www.w3.org/TR/soap12-part0/

• World Wide Web Consortium, Web Services Description
Language (WSDL) Version 2.0 Part 0: Primer
http://www.w3.org/TR/wsdl20-primer

http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/wsdl20-primer

