
info-h-509 xml technologies

Lecture 8 OWL: Web Ontology Language
.

Stijn Vansummeren
April 2, 2015

lecture outline.

1. Our story so far

2. Web Ontology Language—OWL

3. Reasoning with OWL

1

...Part I: Our story so far

our story so far ….

• Natural language
• No structure
• Difficult to process
automatically

3

our story far ….

Recent past – no structure Current/Future
structured by RDF

(subject, predicate, object)

b:genome b:field b:molecular-bio .
b:DNA b:encode b:genes .
b:DNA b:encode b:non-coding-seq .
b:genome b:include b:non-coding-seq .
b:genome b:include b:gene .
b:genome b:related-to b:rhizome .

..

• RDF asserts knowledge (statements) about entities (resources)
• By convention is clear what the subject, predicate, and object are
• Easier to process automatically, but a computer still does not know their meaning …
• How do we add some semantics to the statements?

4

what do you mean: semantics?.

Input

..

@prefix prod: <http://www.example.org/products/> .
@prefix terms: <http://www.example.org/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
prod:cam1 rdf:type terms:digital-camera .
prod:cam1 terms:price 150 .
prod:nb1 rdf:type terms:netbook .
prod:nb1 terms:price 300 .
prod:book1 rdf:type terms:book .
prod:book1 terms:price 2.50 .

How do we find all products that are digital devices?

5

what do you mean: semantics?.

Input

..

@prefix prod: <http://www.example.org/products/> .
@prefix terms: <http://www.example.org/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
prod:cam1 rdf:type terms:digital-camera .
prod:cam1 terms:price 150 .
prod:nb1 rdf:type terms:netbook .
prod:nb1 terms:price 300 .
prod:book1 rdf:type terms:book .
prod:book1 terms:price 2.50 .

How do we find all products that are digital devices?
... Hmm, digital cameras are digital devices.

select all x such that
x, rdf:type, terms:digital-camera .

5

what do you mean: semantics?.

Input

..

@prefix prod: <http://www.example.org/products/> .
@prefix terms: <http://www.example.org/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
prod:cam1 rdf:type terms:digital-camera .
prod:cam1 terms:price 150 .
prod:nb1 rdf:type terms:netbook .
prod:nb1 terms:price 300 .
prod:book1 rdf:type terms:book .
prod:book1 terms:price 2.50 .

How do we find all products that are digital devices?
... Hmm, digital cameras are digital devices.

... so are netbooks
.

select all x such that
x, rdf:type, terms:digital-camera .

OR
x, rdf:type, terms:netbook .

5

what do you mean: semantics?.

Input

..

@prefix prod: <http://www.example.org/products/> .
@prefix terms: <http://www.example.org/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
prod:cam1 rdf:type terms:digital-camera .
prod:cam1 terms:price 150 .
prod:nb1 rdf:type terms:netbook .
prod:nb1 terms:price 300 .
prod:book1 rdf:type terms:book .
prod:book1 terms:price 2.50 .

..

• The computer has no “knowledge of the world” stating that cameras and netbooks are
digital devices

• So we have to manually encode this “knowledge of the world” in the query
• This solution is inadequate: error-prone and difficult to maintain
• It would be better if we could tell the computer our “knowledge of the world” and let
him do the reasoning!

5

reasoning by means of inference: the general idea.

..
I am a man
John is a man
Jane is a woman

.

Explicitly Asserted Knowledge

. Every man is human
Every woman is human

.

Knowledge About the World
(Ontology)

.

I am a man
John is a man
Jane is a woman
I am human
John is human
Jane is human

.

Enriched Knowledge

.

Inference

6

reasoning by means of inference: the general idea.

..
I am a man
John is a man
Jane is a woman

.

Explicitly Asserted Knowledge

. Every man is human
Every woman is human

.

Knowledge About the World
(Ontology)

.

I am a man
John is a man
Jane is a woman
I am human
John is human
Jane is human

.

Enriched Knowledge

.

Inference

6

reasoning by means of inference: the general idea.

..
I am a man
John is a man
Jane is a woman

.

Explicitly Asserted Knowledge

. Every man is human
Every woman is human

.

Knowledge About the World
(Ontology)

.

I am a man
John is a man
Jane is a woman
I am human
John is human
Jane is human

.

Enriched Knowledge

.

Inference

6

towards a smarter web.

“Knowledge about the world” for our example:

..

• Every camera is a digital device
• Every netbook is a digital device
• Every computer is a digital device
• Every book is human-readable

Such knowledge is set-based (also called class-based)
• The set of cameras is a subset of the set of digital devices
• The set of netbooks is a subset of the set of digital devices
• The set of books is a subset of the set of human-readable objects

..Ontologies provide formal specifications of the classes of objects that inhabit “the
world”, the relationships between individual and classes, and their properties.

.

Ontologies

7

knowledge representation on the semantic web (2005 vision).

8

..

.

data exchange/simple reasoning

.

(previous lecture)

.advanced reasoning .

(this lecture)

knowledge representation on the semantic web (2005 vision).

8

...

data exchange/simple reasoning

.

(previous lecture)

.advanced reasoning .

(this lecture)

knowledge representation on the semantic web (2005 vision).

8

...

data exchange/simple reasoning

.

(previous lecture)

.advanced reasoning .

(this lecture)

recall from last lecture.

• RDF = data model: make assertions about resources using triples
• RDF Schema is a standard vocabulary for expressing simple ontologies

1. Classes, Properties
2. type, subClassOf, subPropertyOf
3. range, domain
4. a number of axiomatic triples describing meta-information about RDFS.

Example

..

ex:vegetableThaiCurry ex:thaiDishBasedOn ex:coconutMilk .
ex:sebastian rdf:type ex:AllergicToNuts .
ex:sebastian ex:eats ex:vegetableThaiCurry .

ex:AllergicToNuts rdfs:subClassOf ex:Pitiable .
ex:thaiDishBasedOn rdfs:domain ex:Thai .
ex:thaiDishBasedOn rdfs:range ex:Nutty .
ex:thaiDishBasedOn rdfs:subPropertyOf ex:hasIngredient .
ex:hasIngredient rdf:type rdfs:containerMembershipProperty .

9

some strange things in rdf schema.

The RDFS meta model has some strange axioms.
• rdfs:Resource is the superclass of everything. But, it is itself an instance of its

subclass rdfs:Class.
• rdfs:Class is an instance of itself

..It is known from logic research that allowing classes to be themselves classes (known as
non-wellfoundedness) causes problems when you add more expressive features.

10

some strange things in rdf schema.

The RDFS meta model has some strange axioms.
• rdfs:Resource is the superclass of everything. But, it is itself an instance of its

subclass rdfs:Class.
• rdfs:Class is an instance of itself

..It is known from logic research that allowing classes to be themselves classes (known as
non-wellfoundedness) causes problems when you add more expressive features.

10

limitations of rdf schema.

..

RDF Schema allows us to represent some ontological knowledge:
• Typed hierarchies using classes and subclasses, properties and subproperties
• Domain and range restrictions
• Describing instances of classes (through subclasses and rdf:type)

Sometimes we want more:
• Local scope of properties Using rdfs:range and rdfs:domain we can’t state that

cows only eat plants while other animals may eat meat too.
• Disjointness of classes. We can’t state, for example, that terms:male and
terms:female do not have any members in common.

• Special characteristics of properties. Sometimes it is convenient to be able to say that a
property is transitive (like “greater than”), unique (like “father of”), or the inverse of
another property (like “father of” and “child of”).

• Cardinality restrictions like “a person has exactly 2 parents”

11

owl: ontology web language.

..The Ontology Web Language (OWL) allows us to talk about such things (among others)

There is always a trade-off between expressiveness
and efficient reasoning support:
• The more expressive a language …
• The more inefficient the inferincing becomes …
• …it may even become undecidable!

12

owl: ontology web language.

..The Ontology Web Language (OWL) allows us to talk about such things (among others)

There is always a trade-off between expressiveness
and efficient reasoning support:
• The more expressive a language …
• The more inefficient the inferincing becomes …
• …it may even become undecidable!

12

...Part II: Web Ontology Language—OWL

owl: web ontology language.

OWL = a Vocabulary like RDF Schema.
• OWL extends the RDFS vocabulary, and adds axioms to express more complex relations

between classes (like disjointness, cardinality restrictions, …) and properties (datatype
ranges, functional properties, etc).

• It uses the same data model as RDF schema (namely: RDF)

OWL versions
• OWL version 1.0 was standardized as a recommendation in 2004.
• OWL version 2.0 (second edition) proposes a backwards-compatible update to OWL 1.0. It

features several extensions to OWL version 1.0
• We will focus mostly on the OWL 1.0 features in this lecture.

14

owl: web ontology language.

OWL has a number of syntaxes.
• Every OWL-compliant tool must support the

RDF/XML based syntax; others are optional
(but sometimes more readable).

• As such, OWL ontologies are usually written
in RDF/XML.

• Therefore, the book/handouts also use
RDF/XML.

• RDF/XML is very verbose, however, and we
will therefore use a Turtle syntax in these
slides. (This is of course equivalent.)

15

things to remember about turtle.

..

Turtle has some convenient abbreviations:
• Blank nodes can be described by nesting Turtle statements in []
• Collections can be described by resources between parenthesis (…)

Example:

..

@prefix staff: <http://www.example.org/staff id/> .
@prefix : <http://www.example.org/terms/> .

staff:85740 :address _:addr
_:addr :city ”Bedford”̂ x̂sd:string ;

:street ”1501 Grant Avenue” ;
:state ”Massachusetts” ;
:postalcode ”0713” .

staff:85740 a :employee .

16

things to remember about turtle.

..

Turtle has some convenient abbreviations:
• Blank nodes can be described by nesting Turtle statements in []
• Collections can be described by resources between parenthesis (…)

Example:

..

@prefix staff: <http://www.example.org/staff id/> .
@prefix : <http://www.example.org/terms/> .

staff:85740 :address [:city ”Bedford”̂ x̂sd:string ;
:street ”1501 Grant Avenue” ;
:state ”Massachusetts” ;
:postalcode ”0713”] .

staff:85740 a :employee .

16

things to remember about turtle.

..

Turtle has some convenient abbreviations:
• Blank nodes can be described by nesting Turtle statements in []
• Collections can be described by resources between parenthesis (…)

Example:

..

@prefix courses: <http://ulb.be/courses/> .
@prefix terms: <http://ulb.be/terms/> .
@prefix : <http://ulb.be/students/> .

courses:509 terms:students _:a .
_:a rdf:first :amy .
_:a rdf:rest _:b .
_:b rdf:first :mohamed .
_:b rdf:rest _:c .
_:b rdf:first :john .
_:b rdf:rest rdf:nil .

16

things to remember about turtle.

..

Turtle has some convenient abbreviations:
• Blank nodes can be described by nesting Turtle statements in []
• Collections can be described by resources between parenthesis (…)

Example:

..

@prefix courses: <http://ulb.be/courses/> .
@prefix terms: <http://ulb.be/terms/> .
@prefix : <http://ulb.be/students/> .

courses:509 terms:students (:amy :mohamed :john) .

16

owl syntactic structure.

..

• An OWL document (in Turtle, or in RDF/XML) typically starts with declaring namespaces for the rdf,
rdfs, and owl prefixes.

• The default namespace is often re-defined to hold the terms of the vocabulary that is being
described by the OWL document.

..

OWL document header:

@prefix : <http://www.example.org>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
@prefix owl: <http://www.w3.org/2002/07/owl#>

OWL declarations

17

classes, roles, and individuals.

..

• As in RDF and RDF Schema, the basic building
blocks of OWL are classes, properties, and
individuals.

• In OWL, properties are also called roles or
slots.

• OWL has its own term to declare classes:
owl:Class (which is distinct from
rdfs:Class)

• Individuals are declared with rdf:type, as in
RDF.

• OWL supports distinct kinds of properties.
• owl:ObjectProperty defines abstract

properties (abstract roles), that connect
individuals with individuals.

• owl:DataTypeProperty defines concrete
properties (concrete roles), that connect
individuals with data values (i.e., with elements
of datatypes).

• rdf:type, rdfs:domain, rdfs:range,
rdfs:subClassOf, rdfs:subPropertyOf
are used as before

Example

..

:Professor rdf:type owl:Class .
:Person rdf:type owl:Class .
:Organization rdf:type owl:Class .

:John rdf:type owl:Professor .

:affiliation rdf:type owl:ObjectProperty ;
rdfs:domain :Person ;
rdfs:range :Organization .

:firstName rdf:type owl:DataTypeProperty;
rdfs:domain :Person;
rdfs:range xsd:string.

:rudi :affiliation :aifb, :ontoprise;
:firstName ”Rudi”̂ x̂sd:string .

Valid deductions:

..

:rudi rdf:type :Person
:aifb rdf:type :Organization
:ontoprise rdf:type :Organization

18

classes, roles, and individuals.

..

• As in RDF and RDF Schema, the basic building
blocks of OWL are classes, properties, and
individuals.

• In OWL, properties are also called roles or
slots.

• OWL has its own term to declare classes:
owl:Class (which is distinct from
rdfs:Class)

• Individuals are declared with rdf:type, as in
RDF.

• OWL supports distinct kinds of properties.
• owl:ObjectProperty defines abstract

properties (abstract roles), that connect
individuals with individuals.

• owl:DataTypeProperty defines concrete
properties (concrete roles), that connect
individuals with data values (i.e., with elements
of datatypes).

• rdf:type, rdfs:domain, rdfs:range,
rdfs:subClassOf, rdfs:subPropertyOf
are used as before

Example

..

:Professor rdf:type owl:Class .
:Person rdf:type owl:Class .
:Organization rdf:type owl:Class .

:John rdf:type owl:Professor .

:affiliation rdf:type owl:ObjectProperty ;
rdfs:domain :Person ;
rdfs:range :Organization .

:firstName rdf:type owl:DataTypeProperty;
rdfs:domain :Person;
rdfs:range xsd:string.

:rudi :affiliation :aifb, :ontoprise;
:firstName ”Rudi”̂ x̂sd:string .

Valid deductions:

..

:rudi rdf:type :Person
:aifb rdf:type :Organization
:ontoprise rdf:type :Organization

18

classes, roles, and individuals.

..

• As in RDF and RDF Schema, the basic building
blocks of OWL are classes, properties, and
individuals.

• In OWL, properties are also called roles or
slots.

• OWL has its own term to declare classes:
owl:Class (which is distinct from
rdfs:Class)

• Individuals are declared with rdf:type, as in
RDF.

• OWL supports distinct kinds of properties.
• owl:ObjectProperty defines abstract

properties (abstract roles), that connect
individuals with individuals.

• owl:DataTypeProperty defines concrete
properties (concrete roles), that connect
individuals with data values (i.e., with elements
of datatypes).

• rdf:type, rdfs:domain, rdfs:range,
rdfs:subClassOf, rdfs:subPropertyOf
are used as before

Example

..

:Professor rdf:type owl:Class .
:Person rdf:type owl:Class .
:Organization rdf:type owl:Class .

:John rdf:type owl:Professor .

:affiliation rdf:type owl:ObjectProperty ;
rdfs:domain :Person ;
rdfs:range :Organization .

:firstName rdf:type owl:DataTypeProperty;
rdfs:domain :Person;
rdfs:range xsd:string.

:rudi :affiliation :aifb, :ontoprise;
:firstName ”Rudi”̂ x̂sd:string .

Valid deductions:

..

:rudi rdf:type :Person
:aifb rdf:type :Organization
:ontoprise rdf:type :Organization

18

classes, roles, and individuals.

..

• As in RDF and RDF Schema, the basic building
blocks of OWL are classes, properties, and
individuals.

• In OWL, properties are also called roles or
slots.

• OWL has its own term to declare classes:
owl:Class (which is distinct from
rdfs:Class)

• Individuals are declared with rdf:type, as in
RDF.

• OWL supports distinct kinds of properties.
• owl:ObjectProperty defines abstract

properties (abstract roles), that connect
individuals with individuals.

• owl:DataTypeProperty defines concrete
properties (concrete roles), that connect
individuals with data values (i.e., with elements
of datatypes).

• rdf:type, rdfs:domain, rdfs:range,
rdfs:subClassOf, rdfs:subPropertyOf
are used as before

Example

..

:Professor rdf:type owl:Class .
:Person rdf:type owl:Class .
:Organization rdf:type owl:Class .

:John rdf:type owl:Professor .

:affiliation rdf:type owl:ObjectProperty ;

rdfs:domain :Person ;
rdfs:range :Organization .

:firstName rdf:type owl:DataTypeProperty;

rdfs:domain :Person;
rdfs:range xsd:string.

:rudi :affiliation :aifb, :ontoprise;
:firstName ”Rudi”̂ x̂sd:string .

Valid deductions:

..

:rudi rdf:type :Person
:aifb rdf:type :Organization
:ontoprise rdf:type :Organization

18

classes, roles, and individuals.

..

• As in RDF and RDF Schema, the basic building
blocks of OWL are classes, properties, and
individuals.

• In OWL, properties are also called roles or
slots.

• OWL has its own term to declare classes:
owl:Class (which is distinct from
rdfs:Class)

• Individuals are declared with rdf:type, as in
RDF.

• OWL supports distinct kinds of properties.
• owl:ObjectProperty defines abstract

properties (abstract roles), that connect
individuals with individuals.

• owl:DataTypeProperty defines concrete
properties (concrete roles), that connect
individuals with data values (i.e., with elements
of datatypes).

• rdf:type, rdfs:domain, rdfs:range,
rdfs:subClassOf, rdfs:subPropertyOf
are used as before

Example

..

:Professor rdf:type owl:Class .
:Person rdf:type owl:Class .
:Organization rdf:type owl:Class .

:John rdf:type owl:Professor .

:affiliation rdf:type owl:ObjectProperty ;
rdfs:domain :Person ;
rdfs:range :Organization .

:firstName rdf:type owl:DataTypeProperty;
rdfs:domain :Person;
rdfs:range xsd:string.

:rudi :affiliation :aifb, :ontoprise;
:firstName ”Rudi”̂ x̂sd:string .

Valid deductions:

..

:rudi rdf:type :Person
:aifb rdf:type :Organization
:ontoprise rdf:type :Organization

18

classes, roles, and individuals.

..

• As in RDF and RDF Schema, the basic building
blocks of OWL are classes, properties, and
individuals.

• In OWL, properties are also called roles or
slots.

• OWL has its own term to declare classes:
owl:Class (which is distinct from
rdfs:Class)

• Individuals are declared with rdf:type, as in
RDF.

• OWL supports distinct kinds of properties.
• owl:ObjectProperty defines abstract

properties (abstract roles), that connect
individuals with individuals.

• owl:DataTypeProperty defines concrete
properties (concrete roles), that connect
individuals with data values (i.e., with elements
of datatypes).

• rdf:type, rdfs:domain, rdfs:range,
rdfs:subClassOf, rdfs:subPropertyOf
are used as before

Example

..

:Professor rdf:type owl:Class .
:Person rdf:type owl:Class .
:Organization rdf:type owl:Class .

:John rdf:type owl:Professor .

:affiliation rdf:type owl:ObjectProperty ;
rdfs:domain :Person ;
rdfs:range :Organization .

:firstName rdf:type owl:DataTypeProperty;
rdfs:domain :Person;
rdfs:range xsd:string.

:rudi :affiliation :aifb, :ontoprise;
:firstName ”Rudi”̂ x̂sd:string .

Valid deductions:

..

:rudi rdf:type :Person
:aifb rdf:type :Organization
:ontoprise rdf:type :Organization

18

classes and roles: relationship with rdfs...

rdfs:Resource

.

rdfs:Class

.

owl:Class

.

rdfs:Property

.

owl:DataTypeProperty

.

owl:ObjectProperty

19

concrete properties: supported datatypes.

..

• The range of owl:DataTypeProperty can in principle refer to any of the XML
Schema built-in simple types.

• Tools are not required to support all of these datatypes, however (and typically
support only a few).

Type sample values
xsd:string any Unicode string
xsd:boolean true, false, 1, 0
xsd:decimal 3.1415
xsd:float 6.02214199E23
xsd:double 42E970
xsd:dateTime 2004-09-26T16:29:00-05:00
xsd:time 16:29:00-05:00
xsd:date 2004-09-26
xsd:hexBinary 48656c6c6f0a
xsd:base64Binary SGVsbG8K
xsd:anyURI http://www.brics.dk/ixwt/
xsd:QName rcp:recipe, recipe
...

20

notation.

..

In what follows:
• We range over arbitrary URIs by P, R and S (i.e., anything admissible for the predicate

position of a triple)
• u, v, w, C, D, and E refer to arbitrary URIs or blank node IDs by (i.e., anything admissible

for the subject position of a triple)
• x and y can be used for arbitrary URIs, blank node IDs or literals

21

property characteristics: inverses.

..• P owl:inverseOf R is used to specify that property P is the inverse of property R
(and vice versa)

..
If P owl:inverseOf R .
And u P v .
Then add v R u .

If P owl:inverseOf R .
And u R v .
Then add v P u .

.Deduction Rule .
:fatherOf owl:inverseOf :childOf .
:Jake :fatherOf :John .

. Example

22

property characteristics: inverses.

..• P owl:inverseOf R is used to specify that property P is the inverse of property R
(and vice versa)

..
If P owl:inverseOf R .
And u P v .
Then add v R u .

If P owl:inverseOf R .
And u R v .
Then add v P u .

.Deduction Rule .
:fatherOf owl:inverseOf :childOf .
:Jake :fatherOf :John .
:John :childOf :Jake .

. Example

22

property characteristics: symmetry.

..• P rdf:type owl:SymmetricProperty is used to specify that property P is a
symmetric property

..
If P rdf:type owl:SymmetricProperty .
And u P v .
Then addv P u .

.Deduction Rule .

:marriedTo rdf:type owl:SymmetricProperty .
:Jake :marriedTo :Eve .

.

Example

23

property characteristics: symmetry.

..• P rdf:type owl:SymmetricProperty is used to specify that property P is a
symmetric property

..
If P rdf:type owl:SymmetricProperty .
And u P v .
Then addv P u .

.Deduction Rule .

:marriedTo rdf:type owl:SymmetricProperty .
:Jake :marriedTo :Eve .
:Eve :marriedTo :Jake .

.

Example

23

property characteristics: transitivity.

..• P rdf:type owl:TransitiveProperty is used to specify that property P is a
Transitive property

..
If P rdf:type owl:TransitiveProperty .
And u P v .
And v P w .
Then addu P w .

.Deduction Rule .

:ancestor rdf:type owl:TransitiveProperty .
:Jake :ancestor :John .
:Jill :ancestor :Jake .

.

Example

24

property characteristics: transitivity.

..• P rdf:type owl:TransitiveProperty is used to specify that property P is a
Transitive property

..
If P rdf:type owl:TransitiveProperty .
And u P v .
And v P w .
Then addu P w .

.Deduction Rule .

:ancestor rdf:type owl:TransitiveProperty .
:Jake :ancestor :John .
:Jill :ancestor :Jake .
:Jill :ancestor :John .

.

Example

24

asserting equivalence of classes.

..
• It is always possible that we have used a specific URI to identify a particular concept

while someone else has used a different URI for the same concept
• v owl:equivalentClass w is used to specify that every member of class v is a

member of class w, and vice versa

..
owl:equivalentClass rdf:type owl:SymmetricProperty .
owl:equivalentClass rdf:type owl:TransitiveProperty .
owl:equivalentClass rdfs:subPropertyOf rdfs:subClassOf .

.Semantics is given by .

:Man owl:equivalentClass :Homme .
:Jake rdf:type :Man .

.

Example

25

asserting equivalence of classes.

..
• It is always possible that we have used a specific URI to identify a particular concept

while someone else has used a different URI for the same concept
• v owl:equivalentClass w is used to specify that every member of class v is a

member of class w, and vice versa

..
owl:equivalentClass rdf:type owl:SymmetricProperty .
owl:equivalentClass rdf:type owl:TransitiveProperty .
owl:equivalentClass rdfs:subPropertyOf rdfs:subClassOf .

.Semantics is given by .

:Man owl:equivalentClass :Homme .
:Jake rdf:type :Man .
:Homme owl:equivalentclass :Man .
:Man rdfs:subClassOf :Homme .
:Homme rdfs:subClassOf :Man .
:Jake rdf:type :Homme .

.

Example

25

asserting equivalence of properties.

..

• It is always possible that we have used a specific URI to identify a particular concept
while someone else has used a different URI for the same concept

• P owl:equivalentProperty R is used to specify that properties P and R are
equivalent

..
owl:equivalentProperty rdf:type owl:SymmetricProperty .
owl:equivalentProperty rdf:type owl:TransitiveProperty .
owl:equivalentProperty rdfs:subPropertyOf rdfs:subPropertyOf .

.Semantics is given by .

:fatherOf owl:equivalentProperty :père .
:Jake :père :John .

26

asserting equivalence of properties.

..

• It is always possible that we have used a specific URI to identify a particular concept
while someone else has used a different URI for the same concept

• P owl:equivalentProperty R is used to specify that properties P and R are
equivalent

..
owl:equivalentProperty rdf:type owl:SymmetricProperty .
owl:equivalentProperty rdf:type owl:TransitiveProperty .
owl:equivalentProperty rdfs:subPropertyOf rdfs:subPropertyOf .

.Semantics is given by .

:fatherOf owl:equivalentProperty :père .
:Jake :père :John .
:père owl:equivalentProperty :fatherOf .
:père rdfs:subPropertyOf :fatherOf .
:fatherOf rdfs:subPropertyOf :père .
:Jake :fatherOf :John .

26

asserting equivalence of individuals.

..
• It is always possible that we have used a specific URI to identify a particular concept

while someone else has used a different URI for the same concept
• v owl:sameAs w is used to specify that v and w are the same individuals

..
owl:sameAs rdf:type owl:SymmetricProperty .

If u owl:sameAs v .
And u P x .
Then addv P x .

If u owl:sameAs v .
And w P u .
Then addw P v .

.Semantics is given by

27

more property characteristics: functionality.

..• P rdf:type owl:FunctionalProperty is used to specify that P can only take one
object for a particular subject

..
If P rdf:type owl:FunctionalProperty .
And u P v .
And u P w .
Then addv owl:sameAs w .

.Inference Rule: .

:hasFather rdf:type owl:FunctionalProperty .
:John :hasFather :Jake .
:John :hasFather ex:Jake-J .

.

Example

28

more property characteristics: functionality.

..• P rdf:type owl:FunctionalProperty is used to specify that P can only take one
object for a particular subject

..
If P rdf:type owl:FunctionalProperty .
And u P v .
And u P w .
Then addv owl:sameAs w .

.Inference Rule: .

:hasFather rdf:type owl:FunctionalProperty .
:John :hasFather :Jake .
:John :hasFather ex:Jake-J .
:Jake owl:sameAs ex:Jake-J .

.

Example

28

more property characteristics: inverse functionality.

..• P rdf:type owl:InverseFunctionalProperty is used to specify that P can only
take one subject for a particular object

..
If P rdf:type owl:InverseFunctionalProperty .
And v P u .
And w P u .
Then addv owl:sameAs w .

.Inference Rule:

29

boolean class constructors: intersection (1/2).

..• C owl:intersectionOf (D1…Dk) is used to indicate that u is an instance of class C
if, and only if, it is simultaneously an instance of all classes D1,…, Dk

..
If C owl:intersectionOf (D1 …Dk) .
And u rdf:type C .
Then addu rdf:type Di . (for every 1 ≤ i ≤ k)

If C owl:intersectionOf (D1 …Dk) .
And u rdf:type Di . (for every 1 ≤ i ≤ k)
Then addu rdf:type C .

.Inference Rule: .

:MaleProfessor rdf:type owl:Class ;
owl:intersectionOf (:Professor :Male) .

:John rdf:type :MaleProfessor .

:John rdf:type :Professor ;
rdf:type :Male .

.

Example

30

boolean class constructors: intersection (1/2).

..• C owl:intersectionOf (D1…Dk) is used to indicate that u is an instance of class C
if, and only if, it is simultaneously an instance of all classes D1,…, Dk

..
If C owl:intersectionOf (D1 …Dk) .
And u rdf:type C .
Then addu rdf:type Di . (for every 1 ≤ i ≤ k)

If C owl:intersectionOf (D1 …Dk) .
And u rdf:type Di . (for every 1 ≤ i ≤ k)
Then addu rdf:type C .

.Inference Rule: .

:MaleProfessor rdf:type owl:Class ;
owl:intersectionOf (:Professor :Male) .

:John rdf:type :MaleProfessor .
:John rdf:type :Professor ;

rdf:type :Male .

.

Example

30

boolean class constructors: intersection (1/2).

..• C owl:intersectionOf (D1…Dk) is used to indicate that u is an instance of class C
if, and only if, it is simultaneously an instance of all classes D1,…, Dk

..
If C owl:intersectionOf (D1 …Dk) .
And u rdf:type C .
Then addu rdf:type Di . (for every 1 ≤ i ≤ k)

If C owl:intersectionOf (D1 …Dk) .
And u rdf:type Di . (for every 1 ≤ i ≤ k)
Then addu rdf:type C .

.Inference Rule: .

:MaleProfessor rdf:type owl:Class ;
owl:intersectionOf (:Professor :Male) .

:John rdf:type :Male ;
rdf:type :Professor .

:John rdf:type :MaleProfessor .

.

Another Example

30

boolean class constructors: intersection (1/2).

..• C owl:intersectionOf (D1…Dk) is used to indicate that u is an instance of class C
if, and only if, it is simultaneously an instance of all classes D1,…, Dk

..
If C owl:intersectionOf (D1 …Dk) .
And u rdf:type C .
Then addu rdf:type Di . (for every 1 ≤ i ≤ k)

If C owl:intersectionOf (D1 …Dk) .
And u rdf:type Di . (for every 1 ≤ i ≤ k)
Then addu rdf:type C .

.Inference Rule: .

:MaleProfessor rdf:type owl:Class ;
owl:intersectionOf (:Professor :Male) .

:John rdf:type :Male ;
rdf:type :Professor .

:John rdf:type :MaleProfessor .

.

Another Example

30

boolean class constructors: intersection (2/2).

..

• C owl:intersectionOf (D1…Dk) is used to indicate that u is an instance of C if, and
only if, it is simultaneously an instance of all classes D1 ,…, Dk

• owl:intersectionOf is often used together with blank nodes and
rdfs:subClassOf to make this an “if” instead of an “if and only if”

..

:MaleProfessor rdf:type owl:Class ;
rdfs:subClassOf
[owl:intersectionOf (:Person :Male)] .

:John rdf:type :Person ;
rdf:type :Male .

.

Example

.

All :MaleProfessor are :Male and :Person. Not all :Male :Per-
sons are ::MaleProfessor, however. Hence, we cannot infer :John
rdf:type :MaleProfessor

31

boolean class constructors: complementof.

..• C owl:complementOf D is used to indicate that u is an instance of C if, and only if, it
is not an instance of D.

..
owl:complementOf rdf:type owl:SymmetricProperty .

If C owl:complementOf D .
And u rdf:type C .
Then it cannot hold that u rdf:type D .

.Semantics given by: .

:Male owl:complementOf :Female .
:tweety rdf:type :Penguin .

:Furniturerdfs:subClassOf [owl:complementOf :Female] .
:desk rdf:type :Furniture .
:desk rdf:type [owl:complementOf :Female].
:desk rdf:type :Male .

.

Be careful with complementOf! Example.

.

Here, we cannot conclude
that :tweety is Male, nor
that it is Female

32

boolean class constructors: complementof.

..• C owl:complementOf D is used to indicate that u is an instance of C if, and only if, it
is not an instance of D.

..
owl:complementOf rdf:type owl:SymmetricProperty .

If C owl:complementOf D .
And u rdf:type C .
Then it cannot hold that u rdf:type D .

.Semantics given by: .

:Male owl:complementOf :Female .
:tweety rdf:type :Penguin .

:Furniturerdfs:subClassOf [owl:complementOf :Female] .
:desk rdf:type :Furniture .
:desk rdf:type [owl:complementOf :Female].
:desk rdf:type :Male .

.

Be careful with complementOf! Example.

.

Here, we cannot conclude
that :tweety is Male, nor
that it is Female

32

boolean class constructors: complementof.

..• C owl:complementOf D is used to indicate that u is an instance of C if, and only if, it
is not an instance of D.

..
owl:complementOf rdf:type owl:SymmetricProperty .

If C owl:complementOf D .
And u rdf:type C .
Then it cannot hold that u rdf:type D .

.Semantics given by: .

:Male owl:complementOf :Female .
:tweety rdf:type :Penguin .

:Furniturerdfs:subClassOf [owl:complementOf :Female] .
:desk rdf:type :Furniture .
:desk rdf:type [owl:complementOf :Female].
:desk rdf:type :Male .

.

Be careful with complementOf! Example.

.

Here, we cannot conclude
that :tweety is Male, nor
that it is Female

32

boolean class constructors: complementof.

..• C owl:complementOf D is used to indicate that u is an instance of C if, and only if, it
is not an instance of D.

..
owl:complementOf rdf:type owl:SymmetricProperty .

If C owl:complementOf D .
And u rdf:type C .
Then it cannot hold that u rdf:type D .

.Semantics given by: .

:Male owl:complementOf :Female .
:tweety rdf:type :Penguin .
:Furniturerdfs:subClassOf [owl:complementOf :Female] .
:desk rdf:type :Furniture .

:desk rdf:type [owl:complementOf :Female].
:desk rdf:type :Male .

.

Be careful with complementOf! Example.

.

Here, we cannot conclude
that :tweety is Male, nor
that it is Female

32

boolean class constructors: complementof.

..• C owl:complementOf D is used to indicate that u is an instance of C if, and only if, it
is not an instance of D.

..
owl:complementOf rdf:type owl:SymmetricProperty .

If C owl:complementOf D .
And u rdf:type C .
Then it cannot hold that u rdf:type D .

.Semantics given by: .

:Male owl:complementOf :Female .
:tweety rdf:type :Penguin .
:Furniturerdfs:subClassOf [owl:complementOf :Female] .
:desk rdf:type :Furniture .
:desk rdf:type [owl:complementOf :Female].

:desk rdf:type :Male .

.

Be careful with complementOf! Example.

.

Here, we cannot conclude
that :tweety is Male, nor
that it is Female

32

boolean class constructors: complementof.

..• C owl:complementOf D is used to indicate that u is an instance of C if, and only if, it
is not an instance of D.

..
owl:complementOf rdf:type owl:SymmetricProperty .

If C owl:complementOf D .
And u rdf:type C .
Then it cannot hold that u rdf:type D .

.Semantics given by: .

:Male owl:complementOf :Female .
:tweety rdf:type :Penguin .
:Furniturerdfs:subClassOf [owl:complementOf :Female] .
:desk rdf:type :Furniture .
:desk rdf:type [owl:complementOf :Female].
:desk rdf:type :Male .

.

Be careful with complementOf! Example.

.

Here, we cannot conclude
that :tweety is Male, nor
that it is Female

32

class disjointness.

..• C owl:disjointWith D is used to indicate that no instance of C is an instance of D,
and vice versa.

..
C rdfs:subClassOf [owl:complementOf D]
D rdfs:subClassOf [owl:complementOf C]

.It is an abbreviation of:

33

boolean class constructors: unionof.

..• C owl:unionOf (D1 . . .Dk) is used to indicate that u is an instance of C if, and only if,
it is an instance of at least one the classes D1, . . . ,Dk .

..
If C owl:unionOf (D1 …Dk) .
And u rdf:type Di . (for some 1 ≤ i ≤ k)
Then addu rdf:type C .

If C owl:unionOf (D1 …Dk) .
And u rdf:type [owl:complementOf Dj] . for every j ̸= i
Then addu rdf:type Di .

.Semantics given by: .

:Person owl:unionOf (:Male :Female) .
:john rdf:type :Person .
:john rdf:type [owl:complementOf :Female] .

:john rdf:type :Male .

.

Example

34

boolean class constructors: unionof.

..• C owl:unionOf (D1 . . .Dk) is used to indicate that u is an instance of C if, and only if,
it is an instance of at least one the classes D1, . . . ,Dk .

..
If C owl:unionOf (D1 …Dk) .
And u rdf:type Di . (for some 1 ≤ i ≤ k)
Then addu rdf:type C .

If C owl:unionOf (D1 …Dk) .
And u rdf:type [owl:complementOf Dj] . for every j ̸= i
Then addu rdf:type Di .

.Semantics given by: .

:Person owl:unionOf (:Male :Female) .
:john rdf:type :Person .
:john rdf:type [owl:complementOf :Female] .
:john rdf:type :Male .

.

Example

34

closed classes: one of.

..• C owl:oneOf (v1 . . . vk) is used to indicate that the only individuals of class C are
v1, . . . , vk.

35

owl builtin classes.

..
• There are two predefined classes in OWL: owl:Thing and owl:Nothing
• owl:Thing is the most general class, it has every individual as an instance
• owl:Nothing is the empty class, it does not have any instances

36

asserting classes disjoint and individuals distinct.

..

• Unlike most other knowledge representation languages, OWL does not assume the
Unique Name Assumption (UNA): distinct resources need not represent distinct things.

• As already seen, equivalence between classes can be specified by
owl:equivalentClass; equivalence between properties by
owl:equivalentProperty; and between individuals by owl:sameAs.

• Individuals can be declared distinct by means of owl:differentFrom
• Classes can be declared disjoint by means of owl:disjointWith.

37

property restrictions: introduction.

..

• By means of rdfs:domain and rdfs:range we can only specify that the domain
and range should hold globally for a property

• OWL allows us to make local restriction on properties (e.g. cows eat plants while other
animals may also eat meat) by means of so-called property restrictions

• OWL distinguishes between the following two:
◦ Value constraints (owl:someValuesFrom, owl:allValuesFrom, owl:hasValue)
◦ Cardinality constraints (owl:minCardinality, owl:maxCardinality)

Property restrictions define (anonymous) classes and have the general syntax:

.._:1 rdf:type owl:Restriction;
owl:onProperty P;
value constr D .

.._:1 rdf:type owl:Restriction;
owl:onProperty P;
cardinal constr ” i”̂ x̂sd:nonNegativeInteger .

38

property restrictions: allvaluesfrom.

..• [rdf:type owl:Restriction; owl:onProperty P; owl:allValuesFrom D] denotes the
class consisting of all individuals u for which the range of property P is class D.

..
If u rdf:type[rdf:type owl:Restriction;

owl:onProperty P;
owl:allValuesFrom D] .

And u P v .
Then add v rdf:type D

If for all v s.t. u P v .
it holds that v rdf:type D .
Then add u rdf:type[rdf:type owl:Restriction;

owl:onProperty P;
owl:allValuesFrom D] .

.Inference Rule:

.

:OnlyDaughters rdf:type owl:Class ;
rdfs:subclassOf [rdf:type owl:Restriction;

owl:onProperty :hasChild;
owl:allValuesFrom :Female] .

:john rdf:type :OnlyDaughters ;
:hasChild :mary .

:jane :hasChild :john .

:mary rdf:type :Female .

.

Example:

39

property restrictions: allvaluesfrom.

..• [rdf:type owl:Restriction; owl:onProperty P; owl:allValuesFrom D] denotes the
class consisting of all individuals u for which the range of property P is class D.

..
If u rdf:type[rdf:type owl:Restriction;

owl:onProperty P;
owl:allValuesFrom D] .

And u P v .
Then add v rdf:type D

If for all v s.t. u P v .
it holds that v rdf:type D .
Then add u rdf:type[rdf:type owl:Restriction;

owl:onProperty P;
owl:allValuesFrom D] .

.Inference Rule: .

:OnlyDaughters rdf:type owl:Class ;
rdfs:subclassOf [rdf:type owl:Restriction;

owl:onProperty :hasChild;
owl:allValuesFrom :Female] .

:john rdf:type :OnlyDaughters ;
:hasChild :mary .

:jane :hasChild :john .

:mary rdf:type :Female .

.

Example:

39

property restrictions: allvaluesfrom.

..• [rdf:type owl:Restriction; owl:onProperty P; owl:allValuesFrom D] denotes the
class consisting of all individuals u for which the range of property P is class D.

..
If u rdf:type[rdf:type owl:Restriction;

owl:onProperty P;
owl:allValuesFrom D] .

And u P v .
Then add v rdf:type D

If for all v s.t. u P v .
it holds that v rdf:type D .
Then add u rdf:type[rdf:type owl:Restriction;

owl:onProperty P;
owl:allValuesFrom D] .

.Inference Rule: .

:OnlyDaughters rdf:type owl:Class ;
rdfs:subclassOf [rdf:type owl:Restriction;

owl:onProperty :hasChild;
owl:allValuesFrom :Female] .

:john rdf:type :OnlyDaughters ;
:hasChild :mary .

:jane :hasChild :john .
:mary rdf:type :Female .

.

Example:

39

property restrictions: somevaluesfrom.

..
• [rdf:type owl:Restriction; owl:onProperty P; owl:someValuesFrom D] denotes the

class consisting of all individuals u that have at least one occurrence of property P whose range is
class D.

..
If u P v .
And v rdf:type D .
Then add u rdf:type[rdf:type owl:Restriction;

owl:onProperty P;
owl:someValuesFrom D] .

If u rdf:type[rdf:type owl:Restriction;
owl:onProperty P;
owl:someValuesFrom D] .

There has to exist some u P v .
with v rdf:type D

.Inference Rule:

.
:Mother rdf:type owl:Class ;

owl:intersectionOf (:Person :Female
[rdf:type owl:Restriction;
owl:onProperty :hasChild;
owl:someValuesFrom :Person]

) .
:jane rdf:type :Female, :Person ;

:hasChild :john .
:john rdf:type :Person .

:jane rdf:type :Mother .

.Example: a class for all Mothers

40

property restrictions: somevaluesfrom.

..
• [rdf:type owl:Restriction; owl:onProperty P; owl:someValuesFrom D] denotes the

class consisting of all individuals u that have at least one occurrence of property P whose range is
class D.

.

.
If u P v .
And v rdf:type D .
Then add u rdf:type[rdf:type owl:Restriction;

owl:onProperty P;
owl:someValuesFrom D] .

If u rdf:type[rdf:type owl:Restriction;
owl:onProperty P;
owl:someValuesFrom D] .

There has to exist some u P v .
with v rdf:type D

.Inference Rule:

.
:Mother rdf:type owl:Class ;

owl:intersectionOf (:Person :Female
[rdf:type owl:Restriction;
owl:onProperty :hasChild;
owl:someValuesFrom :Person]

) .
:jane rdf:type :Female, :Person ;

:hasChild :john .
:john rdf:type :Person .

:jane rdf:type :Mother .

.Example: a class for all Mothers

40

property restrictions: somevaluesfrom.

..
• [rdf:type owl:Restriction; owl:onProperty P; owl:someValuesFrom D] denotes the

class consisting of all individuals u that have at least one occurrence of property P whose range is
class D.

.

.
If u P v .
And v rdf:type D .
Then add u rdf:type[rdf:type owl:Restriction;

owl:onProperty P;
owl:someValuesFrom D] .

If u rdf:type[rdf:type owl:Restriction;
owl:onProperty P;
owl:someValuesFrom D] .

There has to exist some u P v .
with v rdf:type D

.Inference Rule:

.
:Mother rdf:type owl:Class ;

owl:intersectionOf (:Person :Female
[rdf:type owl:Restriction;
owl:onProperty :hasChild;
owl:someValuesFrom :Person]

) .
:jane rdf:type :Female, :Person ;

:hasChild :john .
:john rdf:type :Person .
:jane rdf:type :Mother .

.Example: a class for all Mothers

40

property restrictions: hasvalue.

..• [rdf:type owl:Restriction; owl:onProperty P; owl:hasValue v] is a particular form of
owl:someValuesFrom. It denotes the class consisting of all individuals u for which u P v holds.

..
If u P v .
Then add u rdf:type[rdf:type owl:Restriction;

owl:onProperty P;
owl:hasValue v] .

If u rdf:type[rdf:type owl:Restriction;
owl:onProperty P;
owl:hasValue D] .

Then add u P v .

.Inference Rule:

.
:MarysChildren rdf:type owl:Class ;

owl:intersectionOf (:Person
[rdf:type owl:Restriction;
owl:onProperty :hasParent;
owl:hasValue :mary]

) .
:john rdf:type :Person .
:john :hasParent :mary .

:john rdf:type :MarysChildren .

.Example: a class for all of Mary’s children

41

property restrictions: hasvalue.

..• [rdf:type owl:Restriction; owl:onProperty P; owl:hasValue v] is a particular form of
owl:someValuesFrom. It denotes the class consisting of all individuals u for which u P v holds.

.

.
If u P v .
Then add u rdf:type[rdf:type owl:Restriction;

owl:onProperty P;
owl:hasValue v] .

If u rdf:type[rdf:type owl:Restriction;
owl:onProperty P;
owl:hasValue D] .

Then add u P v .

.Inference Rule:

.
:MarysChildren rdf:type owl:Class ;

owl:intersectionOf (:Person
[rdf:type owl:Restriction;
owl:onProperty :hasParent;
owl:hasValue :mary]

) .
:john rdf:type :Person .
:john :hasParent :mary .

:john rdf:type :MarysChildren .

.Example: a class for all of Mary’s children

41

property restrictions: hasvalue.

..• [rdf:type owl:Restriction; owl:onProperty P; owl:hasValue v] is a particular form of
owl:someValuesFrom. It denotes the class consisting of all individuals u for which u P v holds.

.

.
If u P v .
Then add u rdf:type[rdf:type owl:Restriction;

owl:onProperty P;
owl:hasValue v] .

If u rdf:type[rdf:type owl:Restriction;
owl:onProperty P;
owl:hasValue D] .

Then add u P v .

.Inference Rule:

.
:MarysChildren rdf:type owl:Class ;

owl:intersectionOf (:Person
[rdf:type owl:Restriction;
owl:onProperty :hasParent;
owl:hasValue :mary]

) .
:john rdf:type :Person .
:john :hasParent :mary .
:john rdf:type :MarysChildren .

.Example: a class for all of Mary’s children

41

cardinality restrictions: mincardinality.

..
• [rdf:type owl:Restriction; owl:onProperty P; owl:minCardinality

”i”̂ x̂sd:nonNegativeInteger] is used to denotes the class consisting of all individuals u for
which there are at least i distinct individuals v1, v2, . . . , vi such that u P v1, v2, . . . , vi .

.

.
:Person rdf:type owl:Class ;

owl:subClassOf [rdf:type owl:Restriction;
owl:onProperty :hasParent;
owl:minCardinality ”2”̂ x̂sd:nonNegativeInteger].

.Example: every person has at least two parents

42

cardinality restrictions: mincardinality.

..
• [rdf:type owl:Restriction; owl:onProperty P; owl:minCardinality

”i”̂ x̂sd:nonNegativeInteger] is used to denotes the class consisting of all individuals u for
which there are at least i distinct individuals v1, v2, . . . , vi such that u P v1, v2, . . . , vi .

..
:Person rdf:type owl:Class ;

owl:subClassOf [rdf:type owl:Restriction;
owl:onProperty :hasParent;
owl:minCardinality ”2”̂ x̂sd:nonNegativeInteger].

.Example: every person has at least two parents

42

cardinality restrictions: maxcardinality.

..
• [rdf:type owl:Restriction; owl:onProperty P; owl:maxCardinality

”i”̂ x̂sd:nonNegativeInteger] is used to denotes the class consisting of all individuals u for
which there are at most i distinct individuals v1 , v2, . . . , vi such that u P v1, v2, . . . , vi .

.

.
:Person rdf:type owl:Class ;

owl:subClassOf [rdf:type owl:Restriction;
owl:onProperty :hasParent;
owl:maxCardinality ”2”̂ x̂sd:nonNegativeInteger].

.Example: every person has at most two parents

43

cardinality restrictions: maxcardinality.

..
• [rdf:type owl:Restriction; owl:onProperty P; owl:maxCardinality

”i”̂ x̂sd:nonNegativeInteger] is used to denotes the class consisting of all individuals u for
which there are at most i distinct individuals v1 , v2, . . . , vi such that u P v1, v2, . . . , vi .

..
:Person rdf:type owl:Class ;

owl:subClassOf [rdf:type owl:Restriction;
owl:onProperty :hasParent;
owl:maxCardinality ”2”̂ x̂sd:nonNegativeInteger].

.Example: every person has at most two parents

43

cardinality restrictions: maxcardinality.

..
• [rdf:type owl:Restriction; owl:onProperty P; owl:cardinality

”i”̂ x̂sd:nonNegativeInteger] is used to denotes the class consisting of all individuals u for
which there are at exactly i distinct individuals v1 , v2, . . . , vi such that u P v1, v2, . . . , vi .

44

consistency of an owl document/graph with owl.

..

• An OWL document is consistent (also called satisfiable) if it does not contain any
contradictions

• An OWL document is class consistent if none of its classes is equivalent to
owl:Nothing

Example of an inconsistent document:

..

:Male rdf:type owl:Class .
:Female rdf:type owl:Class .
:Male owl:disjointWith :Female .
:john rdf:type :Male .
:john rdf:type :Female .

45

consistency of an owl document/graph with owl.

..

• An OWL document is consistent (also called satisfiable) if it does not contain any
contradictions

• An OWL document is class consistent if none of its classes is equivalent to
owl:Nothing

Example of a consistent but class inconsistent document:

..

:Book rdf:type owl:Class .
:Publication rdf:type owl:Class .
:Book rdfs:subClassOf :Publication ;

owl:disjointWith :Publication .

45

...Part III: Reasoning with OWL

typical reasoning tasks.

• Checking consistency (also called satisfiability).
• Checking class consistency
• Computing all relationships between classes in documents.
• Computing all instances of a given class.

..

• If the OWL vocabulary is carelessly mingled with the RDF Schema vocabulary, then all
of these task are undecidable: no algorithm exists that does these tasks and is
guaranteed to terminate.

• As such, the OWL 1.0 standard defines several OWL dialects, including dialects for
which these tasks are decidable:
◦ OWL Full
◦ OWL DL
◦ OWL Lite

47

typical reasoning tasks.

• Checking consistency (also called satisfiability).
• Checking class consistency
• Computing all relationships between classes in documents.
• Computing all instances of a given class.

..

• If the OWL vocabulary is carelessly mingled with the RDF Schema vocabulary, then all
of these task are undecidable: no algorithm exists that does these tasks and is
guaranteed to terminate.

• As such, the OWL 1.0 standard defines several OWL dialects, including dialects for
which these tasks are decidable:
◦ OWL Full
◦ OWL DL
◦ OWL Lite

47

owl version 1.0 full.

OWL version 1 Full
• Allows all of the OWL vocabulary
• Allows the combination of these vocabulary terms in arbitrary ways with RDF and RDF

schema (including rdfs:Class, rdfs:Resource, rdfs:Property)
• OWL Full is fully upward-compatible with RDF, both syntactically and semantically
• OWL Full is so powerful that it is undecidable

◦ Hence, there is no complete or efficient reasoning support
◦ Undecidability due, among other reasons, to the fact the we allow classes to be

members of themselves.

48

owl version 1.0 dl.

OWL version 1 DL
• OWL 1 DL = OWL Description Logic
• A sublanguage of OWL Full that restricts how OWL constructors can be used.
(See next slide)

• It corresponds to a well-studied description logic
• Description logics are well-known knowledge representation formalisms. They
are fragments of first order logic with decidable and often efficient reasoning
support.

• As such, OWL 1 DL permits efficient reasoning support
• But we lose full compatibility with RDF and RDF Schema

◦ Every legal OWL DL document is a legal RDF document
◦ But not every legal RDF document is a legal OWL DL document.

49

owl version 1.0 dl (2/2).

OWL version 1 DL conditions
• The only terms from RDF and RDFS that can be used are rdf:type, rdfs:domain,
rdfs:range, rdfs:subClassOf, rdfs:subPropertyOf (in particular, rdfs:Class
and rdfs:Property cannot be used).

• Type separation and declaration: an OWL DL document must treat classes, abstract
properties, concrete properties, and datatypes as disjoint things. Furthermore, classes
and properties must be declared explicitly.
The following is hence not allowed (on classes we should only use subClassOf and the
like)

..
:Book rdf:type owl:Class .
:Book :germanName ”Buch” .
:Book :frenchName ”Livre” .

• Restricted use of concrete roles: owl:inverseOf, owl:TransitiveProperty,
owl:InverseFunctionalProperty, and owl:SymmetricProperty must not be
used for concrete properties.

• Restricted use of abstract properties: cardinality restrictions via owl:cardinality,
owl:minCardinality, owl:maxCardinality must not be used with transitive
properties, inverses of transitive properties, or superproperties of transitive properties.
(To obtain decidability.)

50

owl version 1.0 dl (2/2).

OWL version 1 DL conditions
• The only terms from RDF and RDFS that can be used are rdf:type, rdfs:domain,
rdfs:range, rdfs:subClassOf, rdfs:subPropertyOf (in particular, rdfs:Class
and rdfs:Property cannot be used).

• Type separation and declaration: an OWL DL document must treat classes, abstract
properties, concrete properties, and datatypes as disjoint things. Furthermore, classes
and properties must be declared explicitly.
The following is hence not allowed (on classes we should only use subClassOf and the
like)

..
:Book rdf:type owl:Class .
:Book :germanName ”Buch” .
:Book :frenchName ”Livre” .

• Restricted use of concrete roles: owl:inverseOf, owl:TransitiveProperty,
owl:InverseFunctionalProperty, and owl:SymmetricProperty must not be
used for concrete properties.

• Restricted use of abstract properties: cardinality restrictions via owl:cardinality,
owl:minCardinality, owl:maxCardinality must not be used with transitive
properties, inverses of transitive properties, or superproperties of transitive properties.
(To obtain decidability.)

50

owl version 1.0 dl (2/2).

OWL version 1 DL conditions
• The only terms from RDF and RDFS that can be used are rdf:type, rdfs:domain,
rdfs:range, rdfs:subClassOf, rdfs:subPropertyOf (in particular, rdfs:Class
and rdfs:Property cannot be used).

• Type separation and declaration: an OWL DL document must treat classes, abstract
properties, concrete properties, and datatypes as disjoint things. Furthermore, classes
and properties must be declared explicitly.
The following is hence not allowed (on classes we should only use subClassOf and the
like)

..
:Book rdf:type owl:Class .
:Book :germanName ”Buch” .
:Book :frenchName ”Livre” .

• Restricted use of concrete roles: owl:inverseOf, owl:TransitiveProperty,
owl:InverseFunctionalProperty, and owl:SymmetricProperty must not be
used for concrete properties.

• Restricted use of abstract properties: cardinality restrictions via owl:cardinality,
owl:minCardinality, owl:maxCardinality must not be used with transitive
properties, inverses of transitive properties, or superproperties of transitive properties.
(To obtain decidability.)

50

owl version 1.0 dl (2/2).

OWL version 1 DL conditions
• The only terms from RDF and RDFS that can be used are rdf:type, rdfs:domain,
rdfs:range, rdfs:subClassOf, rdfs:subPropertyOf (in particular, rdfs:Class
and rdfs:Property cannot be used).

• Type separation and declaration: an OWL DL document must treat classes, abstract
properties, concrete properties, and datatypes as disjoint things. Furthermore, classes
and properties must be declared explicitly.
The following is hence not allowed (on classes we should only use subClassOf and the
like)

..
:Book rdf:type owl:Class .
:Book :germanName ”Buch” .
:Book :frenchName ”Livre” .

• Restricted use of concrete roles: owl:inverseOf, owl:TransitiveProperty,
owl:InverseFunctionalProperty, and owl:SymmetricProperty must not be
used for concrete properties.

• Restricted use of abstract properties: cardinality restrictions via owl:cardinality,
owl:minCardinality, owl:maxCardinality must not be used with transitive
properties, inverses of transitive properties, or superproperties of transitive properties.
(To obtain decidability.)

50

owl version 1.0 lite.

OWL version 1 Lite
• Restricts OWL 1 DL further to a subset of the language constructors. (E.g., no disjointness

statements, cardinality statements, …)
• Designed to be easier

◦ to understand, for users (ontology builders)
◦ implement, for tool builders

• The disadvantage is its restricted expressivity

• And actually, it proved as difficult to implement as OWL DL.

51

owl version 1.0 lite.

OWL version 1 Lite
• Restricts OWL 1 DL further to a subset of the language constructors. (E.g., no disjointness

statements, cardinality statements, …)
• Designed to be easier

◦ to understand, for users (ontology builders)
◦ implement, for tool builders

• The disadvantage is its restricted expressivity
• And actually, it proved as difficult to implement as OWL DL.

51

owl version 2.0 dialects.

..

In OWL 2, there are only two dialects
• OWL Full: all features, but reasoning is undecidable
• OWL DLa : expressive, but not entirely compatible with RDF Schema; efficient reasoning

support

aDL=Description Logic

• OWL 1 DL is a strict subset of OWL 2 DL
• OWL Lite was dropped as a dialect in OWL 2 because it proved to be as hard to implement

as OWL 1 DL (yet it is significantly less expressive).

52

owl version 2 profiles.

..OWL 2 introduces three new fragments of OWL 2 DL, called profiles

• Full OWL 2 DL has requires exponential time for most reasoning tasks.
• OWL 2 EL is designed for applications where very large ontologies are needed, and where

expressive power can be traded for performance guarantees.
Reasoning complexity: polynomial time in the size of the OWL ontology.

• OWL 2 QL is designed for applications where relatively lightweight ontologies are used to
organize large numbers of individuals and where it is useful or necessary to access the
data directly via relational queries (e.g., SQL).
Reasoning complexity: polynomial time in the size of the OWL ontology.

• OWL 2 RL is designed for applications where relatively lightweight ontologies are used to
organize large numbers of individuals and where it is useful or necessary to operate
directly on data in the form of RDF triples.
Reasoning complexity: polynomial time in the size of the OWL ontology.

53

owl version 2.0 extra features.

..

• OWL version 1.0 was standardized as a recommendation in 2004.
• OWL version 2.0 (second edition) proposes a backwards-compatible update to OWL 1.0.

It features several extensions to OWL version 1.0
◦ keys;
◦ property chains;
◦ richer datatypes, data ranges;
◦ qualified cardinality restrictions;
◦ asymmetric, reflexive, and disjoint properties; and
◦ enhanced annotation capabilities

See book/handouts!

54

examples of owl ontologies (1/3).

..
FOAF: Friend of a Friend
• vocabulary to link people and information using the Web

FOAF is a project devoted to linking people and information using the Web. Regardless of
whether information is in people’s heads, in physical or digital documents, or in the form of factual
data, it can be linked. FOAF integrates three kinds of network: social networks of human
collaboration, friendship and association; representational networks that describe a simplified view
of a cartoon universe in factual terms, and information networks that use Web-based linking to
share independently published descriptions of this inter-connected world. FOAF does not compete
with socially-oriented Web sites; rather it provides an approach in which different sites can tell
different parts of the larger story, and by which users can retain some control over their
information in a non-proprietary format.

55

examples of owl ontologies (2/3).

..

GoodRelations: a vocabulary for e-commerce
• a lightweight ontology for annotating offerings and other aspects of e-commerce on

the Web.
• GoodRelations is the only OWL DL ontology officially supported by both Google and

Yahoo.

• It provides a standard vocabulary for expressing things like that a particular Web site
describes an offer to sell cellphones of a certain make and model at a certain price, that
a pianohouse offers maintenance for pianos that weigh less than 150 kg, or that a car
rental company leases out cars of a certain make and model from a particular set of
branches across the country.

• Also, most if not all commercial and functional details of e-commerce scenarios can be
expressed, e.g. eligible countries, payment and delivery options, quantity discounts,
opening hours, etc.

56

examples of owl ontologies (3/3).

..

SNOMED CT
• an ontology of medical terms.
• used in clinical documentation and reporting
• standard ontology for patient records etc. in Belgium

More specifically, the following sample computer applications use SNOMED CT:
• Electronic Health Record Systems

• Computerized Provider Order Entry CPOE such as E-Prescribing or Laboratory Order Entry

• Catalogues of clinical services; e.g., for Diagnostic Imaging procedures

• Knowledge databases used in clinical decision support systems (CDSS)

• Remote Intensive Care Unit Monitoring

• Laboratory Reporting

• Emergency Room Charting

• Cancer Reporting

• Genetic Databases

57

references.

• P. Hitzler, M. Krötzsch, S. Rudolph. Foundations of Semantic Web technologies.
Chapter 4.

• D. Allemang, J. Hendler. Semantic Web for the Working Ontologist.. Chapter 9-11.

58

