
Web Information Systems
OWL: Web Ontology Language

Stijn Vansummeren

April 4, 2014

Outline

1. Our story so far

2. Web Ontology Language—OWL

3. Reasoning with OWL

2 / 105

Part I: Our story so far

Our story so far . . .

• Natural language

• No structure

• Difficult to process
automatically

4 / 105

Our story far . . .

Recent past – no structure Current/Future
structured by RDF

(subject, predicate, object)

b:genome b:field b:molecular-bio .
b:DNA b:encode b:genes .
b:DNA b:encode b:non-coding-seq .
b:genome b:include b:non-coding-seq .
b:genome b:include b:gene .
b:genome b:related-to b:rhizome .

• RDF asserts knowledge (statements) about entities (resources)

• By convention is clear what the subject, predicate, and object are

• Easier to process automatically, but a computer still does not know their
meaning . . .

• How do we add some semantics to the statements?
5 / 105

What do you mean: Semantics?

Input

@prefix prod: <http://www.example.org/products/> .

@prefix terms: <http://www.example.org/terms/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

prod:cam1 rdf:type terms:digital-camera .

prod:cam1 terms:price 150 .

prod:nb1 rdf:type terms:netbook .

prod:nb1 terms:price 300 .

prod:book1 rdf:type terms:book .

prod:book1 terms:price 2.50 .

How do we find all products that are digital devices?

6 / 105

What do you mean: Semantics?

Input

@prefix prod: <http://www.example.org/products/> .

@prefix terms: <http://www.example.org/terms/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

prod:cam1 rdf:type terms:digital-camera .

prod:cam1 terms:price 150 .

prod:nb1 rdf:type terms:netbook .

prod:nb1 terms:price 300 .

prod:book1 rdf:type terms:book .

prod:book1 terms:price 2.50 .

How do we find all products that are digital devices?

Hmm, digital cameras are digital devices

select all x such that
x, rdf:type, terms:digital-camera .

7 / 105

What do you mean: Semantics?

Input

@prefix prod: <http://www.example.org/products/> .

@prefix terms: <http://www.example.org/terms/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

prod:cam1 rdf:type terms:digital-camera .

prod:cam1 terms:price 150 .

prod:nb1 rdf:type terms:netbook .

prod:nb1 terms:price 300 .

prod:book1 rdf:type terms:book .

prod:book1 terms:price 2.50 .

How do we find all products that are digital devices?

Hmm, digital cameras are digital devices
... so are netbooks

select all x such that
x, rdf:type, terms:digital-camera .

OR
x, rdf:type, terms:netbook .

8 / 105

What do you mean: Semantics?

Input

@prefix prod: <http://www.example.org/products/> .

@prefix terms: <http://www.example.org/terms/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

prod:cam1 rdf:type terms:digital-camera .

prod:cam1 terms:price 150 .

prod:nb1 rdf:type terms:netbook .

prod:nb1 terms:price 300 .

prod:book1 rdf:type terms:book .

prod:book1 terms:price 2.50 .

• The computer has no “knowledge of the world” stating that cameras and
netbooks are digital devices

• So we have to manually encode this “knowledge of the world” in the query

• This solution is inadequate: error-prone and difficult to maintain

• It would be better if we could tell the computer our “knowledge of the
world” and let him do the reasoning!

9 / 105

Reasoning by means of Inference: the General Idea

I am a man
John is a man
Jane is a woman

Explicitly Asserted Knowledge

Every man is human
Every woman is human

Knowledge About the World
(Ontology)

I am a man
John is a man
Jane is a woman
I am human
John is human
Jane is human

Enriched Knowledge

Inference

10 / 105

Reasoning by means of Inference: the General Idea

I am a man
John is a man
Jane is a woman

Explicitly Asserted Knowledge

Every man is human
Every woman is human

Knowledge About the World
(Ontology)

I am a man
John is a man
Jane is a woman
I am human
John is human
Jane is human

Enriched Knowledge

Inference

11 / 105

Reasoning by means of Inference: the General Idea

I am a man
John is a man
Jane is a woman

Explicitly Asserted Knowledge

Every man is human
Every woman is human

Knowledge About the World
(Ontology)

I am a man
John is a man
Jane is a woman
I am human
John is human
Jane is human

Enriched Knowledge

Inference

12 / 105

Towards a Smarter Web

“Knowledge about the world” for our example:

• Every camera is a digital device

• Every netbook is a digital device

• Every computer is a digital device

• Every book is human-readable

Such knowledge is set-based (also called class-based)

• The set of cameras is a subset of the set of digital devices

• The set of netbooks is a subset of the set of digital devices

• The set of books is a subset of the set of human-readable objects

Ontologies provide formal specifications of the classes of objects that inhabit
“the world”, the relationships between individual and classes, and their proper-
ties.

Ontologies

13 / 105

Knowledge Representation on the Semantic Web
(2005 vision)

14 / 105

data exchange/simple reasoning
(previous lecture)

advanced reasoning
(this lecture)

Knowledge Representation on the Semantic Web
(2005 vision)

15 / 105

data exchange/simple reasoning
(previous lecture)

advanced reasoning
(this lecture)

Knowledge Representation on the Semantic Web
(2005 vision)

16 / 105

data exchange/simple reasoning
(previous lecture)

advanced reasoning
(this lecture)

Recall from last lecture

• RDF = data model: make assertions about resources using triples

• RDF Schema is a standard vocabulary for expressing simple ontologies

1. Classes, Properties
2. type, subClassOf, subPropertyOf
3. range, domain
4. a number of axiomatic triples describing meta-information about RDFS.

Example
ex:vegetableThaiCurry ex:thaiDishBasedOn ex:coconutMilk .
ex:sebastian rdf:type ex:AllergicToNuts .
ex:sebastian ex:eats ex:vegetableThaiCurry .

ex:AllergicToNuts rdfs:subClassOf ex:Pitiable .
ex:thaiDishBasedOn rdfs:domain ex:Thai .
ex:thaiDishBasedOn rdfs:range ex:Nutty .
ex:thaiDishBasedOn rdfs:subPropertyOf ex:hasIngredient .
ex:hasIngredient rdf:type rdfs:containerMembershipProperty .

17 / 105

Some strange things in RDF Schema

The RDFS meta model has some strange axioms.

• rdfs:Resource is the superclass of everything. But, it is itself an instance of
its subclass rdfs:Class.

• rdfs:Class is an instance of itself

It is known from logic research that allowing classes to be themselves classes
(known as non-wellfoundedness) causes problems when you add more expres-
sive features.

18 / 105

Some strange things in RDF Schema

The RDFS meta model has some strange axioms.

• rdfs:Resource is the superclass of everything. But, it is itself an instance of
its subclass rdfs:Class.

• rdfs:Class is an instance of itself

It is known from logic research that allowing classes to be themselves classes
(known as non-wellfoundedness) causes problems when you add more expres-
sive features.

19 / 105

Limitations of RDF Schema

RDF Schema allows us to represent some ontological knowledge:

• Typed hierarchies using classes and subclasses, properties and subproperties

• Domain and range restrictions

• Describing instances of classes (through subclasses and rdf:type)

Sometimes we want more:

• Local scope of properties Using rdfs:range and rdfs:domain we can’t state
that cows only eat plants while other animals may eat meat too.

• Disjointness of classes. We can’t state, for example, that terms:male and
terms:female do not have any members in common.

• Special characteristics of properties. Sometimes it is convenient to be able to
say that a property is transitive (like “greater than”), unique (like “father
of”), or the inverse of another property (like “father of” and “child of”).

• Cardinality restrictions like “a person has exactly 2 parents”

20 / 105

OWL: Ontology Web Language

The Ontology Web Language (OWL) allows us to talk about such things
(among others)

There is always a trade-off between
expressiveness and efficient reasoning support:

• The more expressive a language . . .

• The more inefficient the inferincing becomes . . .

• . . . it may even become undecidable!

21 / 105

OWL: Ontology Web Language

The Ontology Web Language (OWL) allows us to talk about such things
(among others)

There is always a trade-off between
expressiveness and efficient reasoning support:

• The more expressive a language . . .

• The more inefficient the inferincing becomes . . .

• . . . it may even become undecidable!

22 / 105

Part II: Web Ontology Language—OWL

OWL: Web Ontology Language

OWL = a Vocabulary like RDF Schema.

• OWL extends the RDFS vocabulary, and adds axioms to express more complex
relations between classes (like disjointness, cardinality restrictions, . . .) and
properties (datatype ranges, functional properties, etc).

• It uses the same data model as RDF schema (namely: RDF)

OWL versions

• OWL version 1.0 was standardized as a recommendation in 2004.

• OWL version 2.0 (second edition) proposes a backwards-compatible update to
OWL 1.0. It features several extensions to OWL version 1.0

• We will focus mostly on the OWL 1.0 features in this lecture.

24 / 105

OWL: Web Ontology Language

OWL has a number of syntaxes.

• Every OWL-compliant tool must
support the RDF/XML based syntax;
others are optional (but sometimes more
readable).

• As such, OWL ontologies are usually
written in RDF/XML.

• Therefore, the book/handouts also use
RDF/XML.

• RDF/XML is very verbose, however, and
we will therefore use a Turtle syntax in
these slides. (This is of course
equivalent.)

25 / 105

Things to Remember About Turtle

Turtle has some convenient abbreviations:

• Blank nodes can be described by nesting Turtle statements in []

• Collections can be described by resources between parenthesis (. . .)

Example:

@prefix staff: <http://www.example.org/staff id/> .
@prefix : <http://www.example.org/terms/> .

staff:85740 :address :addr
:addr :city "Bedford"̂ x̂sd:string ;

:street "1501 Grant Avenue" ;
:state "Massachusetts" ;
:postalcode "0713" .

staff:85740 a :employee .

26 / 105

Things to Remember About Turtle

Turtle has some convenient abbreviations:

• Blank nodes can be described by nesting Turtle statements in []

• Collections can be described by resources between parenthesis (. . .)

Example:

@prefix staff: <http://www.example.org/staff id/> .
@prefix : <http://www.example.org/terms/> .

staff:85740 :address [:city "Bedford"̂ x̂sd:string ;
:street "1501 Grant Avenue" ;
:state "Massachusetts" ;
:postalcode "0713"] .

staff:85740 a :employee .

27 / 105

Things to Remember About Turtle

Turtle has some convenient abbreviations:

• Blank nodes can be described by nesting Turtle statements in []

• Collections can be described by resources between parenthesis (. . .)

Example:

@prefix courses: <http://ulb.be/courses/> .
@prefix terms: <http://ulb.be/terms/> .
@prefix : <http://ulb.be/students/> .

courses:509 terms:students :a .
:a rdf:first :amy .
:a rdf:rest :b .
:b rdf:first :mohamed .
:b rdf:rest :c .
:b rdf:first :john .
:b rdf:rest rdf:nil .

28 / 105

Things to Remember About Turtle

Turtle has some convenient abbreviations:

• Blank nodes can be described by nesting Turtle statements in []

• Collections can be described by resources between parenthesis (. . .)

Example:

@prefix courses: <http://ulb.be/courses/> .
@prefix terms: <http://ulb.be/terms/> .
@prefix : <http://ulb.be/students/> .

courses:509 terms:students (:amy :mohamed :john) .

29 / 105

OWL syntactic structure

• An OWL document (in Turtle, or in RDF/XML) typically starts with declaring
namespaces for the rdf, rdfs, and owl prefixes.

• The default namespace is often re-defined to hold the terms of the vocabulary that is
being described by the OWL document.

OWL document header:

@prefix : <http://www.example.org>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
@prefix owl: <http://www.w3.org/2002/07/owl#>

OWL declarations

30 / 105

Classes, Roles, and Individuals

• As in RDF and RDF Schema, the basic
building blocks of OWL are classes,
properties, and individuals.

• In OWL, properties are also called roles
or slots.

• OWL has its own term to declare
classes: owl:Class (which is distinct
from rdfs:Class)

• Individuals are declared with rdf:type,
as in RDF.

• OWL supports distinct kinds of
properties.

• owl:ObjectProperty defines abstract
properties (abstract roles), that connect
individuals with individuals.

• owl:DataTypeProperty defines concrete
properties (concrete roles), that connect
individuals with data values (i.e., with
elements of datatypes).

• rdf:type, rdfs:domain, rdfs:range,
rdfs:subClassOf, rdfs:subPropertyOf
are used as before

Example

:Professor rdf:type owl:Class .
:Person rdf:type owl:Class .
:Organization rdf:type owl:Class .

:John rdf:type owl:Professor .

:affiliation rdf:type owl:ObjectProperty ;
rdfs:domain :Person ;
rdfs:range :Organization .

:firstName rdf:type owl:DataTypeProperty;
rdfs:domain :Person;
rdfs:range xsd:string.

:rudi :affiliation :aifb, :ontoprise;
:firstName "Rudi"̂ x̂sd:string .

Valid deductions:

:rudi rdf:type :Person
:aifb rdf:type :Organization
:ontoprise rdf:type :Organization

31 / 105

Classes, Roles, and Individuals

• As in RDF and RDF Schema, the basic
building blocks of OWL are classes,
properties, and individuals.

• In OWL, properties are also called roles
or slots.

• OWL has its own term to declare
classes: owl:Class (which is distinct
from rdfs:Class)

• Individuals are declared with rdf:type,
as in RDF.

• OWL supports distinct kinds of
properties.

• owl:ObjectProperty defines abstract
properties (abstract roles), that connect
individuals with individuals.

• owl:DataTypeProperty defines concrete
properties (concrete roles), that connect
individuals with data values (i.e., with
elements of datatypes).

• rdf:type, rdfs:domain, rdfs:range,
rdfs:subClassOf, rdfs:subPropertyOf
are used as before

Example

:Professor rdf:type owl:Class .
:Person rdf:type owl:Class .
:Organization rdf:type owl:Class .

:John rdf:type owl:Professor .

:affiliation rdf:type owl:ObjectProperty ;
rdfs:domain :Person ;
rdfs:range :Organization .

:firstName rdf:type owl:DataTypeProperty;
rdfs:domain :Person;
rdfs:range xsd:string.

:rudi :affiliation :aifb, :ontoprise;
:firstName "Rudi"̂ x̂sd:string .

Valid deductions:

:rudi rdf:type :Person
:aifb rdf:type :Organization
:ontoprise rdf:type :Organization

32 / 105

Classes, Roles, and Individuals

• As in RDF and RDF Schema, the basic
building blocks of OWL are classes,
properties, and individuals.

• In OWL, properties are also called roles
or slots.

• OWL has its own term to declare
classes: owl:Class (which is distinct
from rdfs:Class)

• Individuals are declared with rdf:type,
as in RDF.

• OWL supports distinct kinds of
properties.

• owl:ObjectProperty defines abstract
properties (abstract roles), that connect
individuals with individuals.

• owl:DataTypeProperty defines concrete
properties (concrete roles), that connect
individuals with data values (i.e., with
elements of datatypes).

• rdf:type, rdfs:domain, rdfs:range,
rdfs:subClassOf, rdfs:subPropertyOf
are used as before

Example

:Professor rdf:type owl:Class .
:Person rdf:type owl:Class .
:Organization rdf:type owl:Class .

:John rdf:type owl:Professor .

:affiliation rdf:type owl:ObjectProperty ;
rdfs:domain :Person ;
rdfs:range :Organization .

:firstName rdf:type owl:DataTypeProperty;
rdfs:domain :Person;
rdfs:range xsd:string.

:rudi :affiliation :aifb, :ontoprise;
:firstName "Rudi"̂ x̂sd:string .

Valid deductions:

:rudi rdf:type :Person
:aifb rdf:type :Organization
:ontoprise rdf:type :Organization

33 / 105

Classes, Roles, and Individuals

• As in RDF and RDF Schema, the basic
building blocks of OWL are classes,
properties, and individuals.

• In OWL, properties are also called roles
or slots.

• OWL has its own term to declare
classes: owl:Class (which is distinct
from rdfs:Class)

• Individuals are declared with rdf:type,
as in RDF.

• OWL supports distinct kinds of
properties.

• owl:ObjectProperty defines abstract
properties (abstract roles), that connect
individuals with individuals.

• owl:DataTypeProperty defines concrete
properties (concrete roles), that connect
individuals with data values (i.e., with
elements of datatypes).

• rdf:type, rdfs:domain, rdfs:range,
rdfs:subClassOf, rdfs:subPropertyOf
are used as before

Example

:Professor rdf:type owl:Class .
:Person rdf:type owl:Class .
:Organization rdf:type owl:Class .

:John rdf:type owl:Professor .

:affiliation rdf:type owl:ObjectProperty ;

rdfs:domain :Person ;
rdfs:range :Organization .

:firstName rdf:type owl:DataTypeProperty;

rdfs:domain :Person;
rdfs:range xsd:string.

:rudi :affiliation :aifb, :ontoprise;
:firstName "Rudi"̂ x̂sd:string .

Valid deductions:

:rudi rdf:type :Person
:aifb rdf:type :Organization
:ontoprise rdf:type :Organization

34 / 105

Classes, Roles, and Individuals

• As in RDF and RDF Schema, the basic
building blocks of OWL are classes,
properties, and individuals.

• In OWL, properties are also called roles
or slots.

• OWL has its own term to declare
classes: owl:Class (which is distinct
from rdfs:Class)

• Individuals are declared with rdf:type,
as in RDF.

• OWL supports distinct kinds of
properties.

• owl:ObjectProperty defines abstract
properties (abstract roles), that connect
individuals with individuals.

• owl:DataTypeProperty defines concrete
properties (concrete roles), that connect
individuals with data values (i.e., with
elements of datatypes).

• rdf:type, rdfs:domain, rdfs:range,
rdfs:subClassOf, rdfs:subPropertyOf
are used as before

Example

:Professor rdf:type owl:Class .
:Person rdf:type owl:Class .
:Organization rdf:type owl:Class .

:John rdf:type owl:Professor .

:affiliation rdf:type owl:ObjectProperty ;
rdfs:domain :Person ;
rdfs:range :Organization .

:firstName rdf:type owl:DataTypeProperty;
rdfs:domain :Person;
rdfs:range xsd:string.

:rudi :affiliation :aifb, :ontoprise;
:firstName "Rudi"̂ x̂sd:string .

Valid deductions:

:rudi rdf:type :Person
:aifb rdf:type :Organization
:ontoprise rdf:type :Organization

35 / 105

Classes, Roles, and Individuals

• As in RDF and RDF Schema, the basic
building blocks of OWL are classes,
properties, and individuals.

• In OWL, properties are also called roles
or slots.

• OWL has its own term to declare
classes: owl:Class (which is distinct
from rdfs:Class)

• Individuals are declared with rdf:type,
as in RDF.

• OWL supports distinct kinds of
properties.

• owl:ObjectProperty defines abstract
properties (abstract roles), that connect
individuals with individuals.

• owl:DataTypeProperty defines concrete
properties (concrete roles), that connect
individuals with data values (i.e., with
elements of datatypes).

• rdf:type, rdfs:domain, rdfs:range,
rdfs:subClassOf, rdfs:subPropertyOf
are used as before

Example

:Professor rdf:type owl:Class .
:Person rdf:type owl:Class .
:Organization rdf:type owl:Class .

:John rdf:type owl:Professor .

:affiliation rdf:type owl:ObjectProperty ;
rdfs:domain :Person ;
rdfs:range :Organization .

:firstName rdf:type owl:DataTypeProperty;
rdfs:domain :Person;
rdfs:range xsd:string.

:rudi :affiliation :aifb, :ontoprise;
:firstName "Rudi"̂ x̂sd:string .

Valid deductions:

:rudi rdf:type :Person
:aifb rdf:type :Organization
:ontoprise rdf:type :Organization

36 / 105

Classes and Roles: Relationship with RDFS

rdfs:Resource

rdfs:Class

owl:Class

rdfs:Property

owl:DataTypeProperty owl:ObjectProperty

37 / 105

Concrete properties: Supported Datatypes

• The range of owl:DataTypeProperty can in principle refer to any of the
XML Schema built-in simple types.

• Tools are not required to support all of these datatypes, however (and
typically support only a few).

Type sample values
xsd:string any Unicode string
xsd:boolean true, false, 1, 0
xsd:decimal 3.1415
xsd:float 6.02214199E23
xsd:double 42E970
xsd:dateTime 2004-09-26T16:29:00-05:00
xsd:time 16:29:00-05:00
xsd:date 2004-09-26
xsd:hexBinary 48656c6c6f0a
xsd:base64Binary SGVsbG8K
xsd:anyURI http://www.brics.dk/ixwt/
xsd:QName rcp:recipe, recipe
...

38 / 105

Notation

In what follows:

• We range over arbitrary URIs by P , R and S (i.e., anything admissible for the
predicate position of a triple)

• u, v, w, C, D, and E refer to arbitrary URIs or blank node IDs by (i.e.,
anything admissible for the subject position of a triple)

• x and y can be used for arbitrary URIs, blank node IDs or literals

39 / 105

Property Characteristics: Inverses

• P owl:inverseOf R is used to specify that property P is the inverse of
property R (and vice versa)

If P owl:inverseOf R .

And u P v .

Then add v R u .

If P owl:inverseOf R .

And u R v .

Then add v P u .

Deduction Rule

:fatherOf owl:inverseOf :childOf .
:Jake :fatherOf :John .

Example

40 / 105

Property Characteristics: Inverses

• P owl:inverseOf R is used to specify that property P is the inverse of
property R (and vice versa)

If P owl:inverseOf R .

And u P v .

Then add v R u .

If P owl:inverseOf R .

And u R v .

Then add v P u .

Deduction Rule

:fatherOf owl:inverseOf :childOf .
:Jake :fatherOf :John .
:John :childOf :Jake .

Example

41 / 105

Property Characteristics: Symmetry

• P rdf:type owl:SymmetricProperty is used to specify that property P is a
symmetric property

If P rdf:type owl:SymmetricProperty .

And u P v .

Then add v P u .

Deduction Rule

:marriedTo rdf:type owl:SymmetricProperty .
:Jake :marriedTo :Eve .

Example

42 / 105

Property Characteristics: Symmetry

• P rdf:type owl:SymmetricProperty is used to specify that property P is a
symmetric property

If P rdf:type owl:SymmetricProperty .

And u P v .

Then add v P u .

Deduction Rule

:marriedTo rdf:type owl:SymmetricProperty .
:Jake :marriedTo :Eve .
:Eve :marriedTo :Jake .

Example

43 / 105

Property Characteristics: Transitivity

• P rdf:type owl:TransitiveProperty is used to specify that property P is
a Transitive property

If P rdf:type owl:TransitiveProperty .

And u P v .

And v P w .

Then add u P w .

Deduction Rule

:ancestor rdf:type owl:TransitiveProperty .
:Jake :ancestor :John .
:Jill :ancestor :Jake .

Example

44 / 105

Property Characteristics: Transitivity

• P rdf:type owl:TransitiveProperty is used to specify that property P is
a Transitive property

If P rdf:type owl:TransitiveProperty .

And u P v .

And v P w .

Then add u P w .

Deduction Rule

:ancestor rdf:type owl:TransitiveProperty .
:Jake :ancestor :John .
:Jill :ancestor :Jake .
:Jill :ancestor :John .

Example

45 / 105

Asserting Equivalence of Classes

• It is always possible that we have used a specific URI to identify a particular
concept while someone else has used a different URI for the same concept

• v owl:equivalentClass w is used to specify that every member of class v is
a member of class w, and vice versa

owl:equivalentClass rdf:type owl:SymmetricProperty .

owl:equivalentClass rdf:type owl:TransitiveProperty .

owl:equivalentClass rdfs:subPropertyOf rdfs:subClassOf .

Semantics is given by

:Man owl:equivalentClass :Homme .
:Jake rdf:type :Man .

Example

46 / 105

Asserting Equivalence of Classes

• It is always possible that we have used a specific URI to identify a particular
concept while someone else has used a different URI for the same concept

• v owl:equivalentClass w is used to specify that every member of class v is
a member of class w, and vice versa

owl:equivalentClass rdf:type owl:SymmetricProperty .

owl:equivalentClass rdf:type owl:TransitiveProperty .

owl:equivalentClass rdfs:subPropertyOf rdfs:subClassOf .

Semantics is given by

:Man owl:equivalentClass :Homme .
:Jake rdf:type :Man .
:Homme owl:equivalentclass :Man .
:Man rdfs:subClassOf :Homme .
:Homme rdfs:subClassOf :Man .
:Jake rdf:type :Homme .

Example

47 / 105

Asserting Equivalence of Properties

• It is always possible that we have used a specific URI to identify a particular
concept while someone else has used a different URI for the same concept

• P owl:equivalentProperty R is used to specify that properties P and R
are equivalent

owl:equivalentProperty rdf:type owl:SymmetricProperty .

owl:equivalentProperty rdf:type owl:TransitiveProperty .

owl:equivalentProperty rdfs:subPropertyOf rdfs:subPropertyOf .

Semantics is given by

:fatherOf owl:equivalentProperty :père .
:Jake :père :John .

48 / 105

Asserting Equivalence of Properties

• It is always possible that we have used a specific URI to identify a particular
concept while someone else has used a different URI for the same concept

• P owl:equivalentProperty R is used to specify that properties P and R
are equivalent

owl:equivalentProperty rdf:type owl:SymmetricProperty .

owl:equivalentProperty rdf:type owl:TransitiveProperty .

owl:equivalentProperty rdfs:subPropertyOf rdfs:subPropertyOf .

Semantics is given by

:fatherOf owl:equivalentProperty :père .
:Jake :père :John .
:père owl:equivalentProperty :fatherOf .
:père rdfs:subPropertyOf :fatherOf .
:fatherOf rdfs:subPropertyOf :père .
:Jake :fatherOf :John .

49 / 105

Asserting Equivalence of Individuals

• It is always possible that we have used a specific URI to identify a particular
concept while someone else has used a different URI for the same concept

• v owl:sameAs w is used to specify that v and w are the same individuals

owl:sameAs rdf:type owl:SymmetricProperty .

If u owl:sameAs v .

And u P x .

Then add v P x .

If u owl:sameAs v .

And w P u .

Then add w P v .

Semantics is given by

50 / 105

More Property Characteristics: Functionality

• P rdf:type owl:FunctionalProperty is used to specify that P can only
take one object for a particular subject

If P rdf:type owl:FunctionalProperty .

And u P v .

And u P w .

Then add v owl:sameAs w .

Inference Rule:

:hasFather rdf:type owl:FunctionalProperty .
:John :hasFather :Jake .
:John :hasFather ex:Jake-J .

Example

51 / 105

More Property Characteristics: Functionality

• P rdf:type owl:FunctionalProperty is used to specify that P can only
take one object for a particular subject

If P rdf:type owl:FunctionalProperty .

And u P v .

And u P w .

Then add v owl:sameAs w .

Inference Rule:

:hasFather rdf:type owl:FunctionalProperty .
:John :hasFather :Jake .
:John :hasFather ex:Jake-J .
:Jake owl:sameAs ex:Jake-J .

Example

52 / 105

More Property Characteristics: Inverse Functionality

• P rdf:type owl:InverseFunctionalProperty is used to specify that P can
only take one subject for a particular object

If P rdf:type owl:InverseFunctionalProperty .

And v P u .

And w P u .

Then add v owl:sameAs w .

Inference Rule:

53 / 105

Boolean class constructors: Intersection (1/2)

• C owl:intersectionOf (D1...Dk) is used to indicate that u is an instance
of class C if, and only if, it is simultaneously an instance of all classes D1,. . . ,
Dk

If C owl:intersectionOf (D1 ...Dk) .

And u rdf:type C .

Then add u rdf:type Di . (for every 1 ≤ i ≤ k)

If C owl:intersectionOf (D1 ...Dk) .

And u rdf:type Di . (for every 1 ≤ i ≤ k)
Then add u rdf:type C .

Inference Rule:

:MaleProfessor rdf:type owl:Class ;
owl:intersectionOf (:Professor :Male) .

:John rdf:type :MaleProfessor .

:John rdf:type :Professor ;
rdf:type :Male .

Example

54 / 105

Boolean class constructors: Intersection (1/2)

• C owl:intersectionOf (D1...Dk) is used to indicate that u is an instance
of class C if, and only if, it is simultaneously an instance of all classes D1,. . . ,
Dk

If C owl:intersectionOf (D1 ...Dk) .

And u rdf:type C .

Then add u rdf:type Di . (for every 1 ≤ i ≤ k)

If C owl:intersectionOf (D1 ...Dk) .

And u rdf:type Di . (for every 1 ≤ i ≤ k)
Then add u rdf:type C .

Inference Rule:

:MaleProfessor rdf:type owl:Class ;
owl:intersectionOf (:Professor :Male) .

:John rdf:type :MaleProfessor .
:John rdf:type :Professor ;

rdf:type :Male .

Example

55 / 105

Boolean class constructors: Intersection (1/2)

• C owl:intersectionOf (D1...Dk) is used to indicate that u is an instance
of class C if, and only if, it is simultaneously an instance of all classes D1,. . . ,
Dk

If C owl:intersectionOf (D1 ...Dk) .

And u rdf:type C .

Then add u rdf:type Di . (for every 1 ≤ i ≤ k)

If C owl:intersectionOf (D1 ...Dk) .

And u rdf:type Di . (for every 1 ≤ i ≤ k)
Then add u rdf:type C .

Inference Rule:

:MaleProfessor rdf:type owl:Class ;
owl:intersectionOf (:Professor :Male) .

:John rdf:type :Male ;
rdf:type :Professor .

:John rdf:type :MaleProfessor .

Another Example

56 / 105

Boolean class constructors: Intersection (1/2)

• C owl:intersectionOf (D1...Dk) is used to indicate that u is an instance
of class C if, and only if, it is simultaneously an instance of all classes D1,. . . ,
Dk

If C owl:intersectionOf (D1 ...Dk) .

And u rdf:type C .

Then add u rdf:type Di . (for every 1 ≤ i ≤ k)

If C owl:intersectionOf (D1 ...Dk) .

And u rdf:type Di . (for every 1 ≤ i ≤ k)
Then add u rdf:type C .

Inference Rule:

:MaleProfessor rdf:type owl:Class ;
owl:intersectionOf (:Professor :Male) .

:John rdf:type :Male ;
rdf:type :Professor .

:John rdf:type :MaleProfessor .

Another Example

57 / 105

Boolean class constructors: Intersection (2/2)

• C owl:intersectionOf (D1...Dk) is used to indicate that u is an instance
of C if, and only if, it is simultaneously an instance of all classes D1,. . . , Dk

• owl:intersectionOf is often used together with blank nodes and
rdfs:subClassOf to make this an “if” instead of an “if and only if”

:MaleProfessor rdf:type owl:Class ;
rdfs:subClassOf

[owl:intersectionOf (:Person :Male)] .

:John rdf:type :Person ;
rdf:type :Male .

Example

All :MaleProfessor are :Male and :Person. Not all :Male

:Persons are ::MaleProfessor, however. Hence, we cannot

infer :John rdf:type :MaleProfessor

58 / 105

Boolean class constructors: complementOf

• C owl:complementOf D is used to indicate that u is an instance of C if, and
only if, it is not an instance of D.

owl:complementOf rdf:type owl:SymmetricProperty .

If C owl:complementOf D .

And u rdf:type C .

Then it cannot hold that u rdf:type D .

Semantics given by:

:Male owl:complementOf :Female .
:tweety rdf:type :Penguin .

:Furniture rdfs:subClassOf [owl:complementOf :Female] .
:desk rdf:type :Furniture .
:desk rdf:type [owl:complementOf :Female].
:desk rdf:type :Male .

Be careful with complementOf! Example.

Here, we cannot con-

clude that :tweety

is Male, nor that it is

Female

59 / 105

Boolean class constructors: complementOf

• C owl:complementOf D is used to indicate that u is an instance of C if, and
only if, it is not an instance of D.

owl:complementOf rdf:type owl:SymmetricProperty .

If C owl:complementOf D .

And u rdf:type C .

Then it cannot hold that u rdf:type D .

Semantics given by:

:Male owl:complementOf :Female .
:tweety rdf:type :Penguin .

:Furniture rdfs:subClassOf [owl:complementOf :Female] .
:desk rdf:type :Furniture .
:desk rdf:type [owl:complementOf :Female].
:desk rdf:type :Male .

Be careful with complementOf! Example.

Here, we cannot con-

clude that :tweety

is Male, nor that it is

Female

60 / 105

Boolean class constructors: complementOf

• C owl:complementOf D is used to indicate that u is an instance of C if, and
only if, it is not an instance of D.

owl:complementOf rdf:type owl:SymmetricProperty .

If C owl:complementOf D .

And u rdf:type C .

Then it cannot hold that u rdf:type D .

Semantics given by:

:Male owl:complementOf :Female .
:tweety rdf:type :Penguin .

:Furniture rdfs:subClassOf [owl:complementOf :Female] .
:desk rdf:type :Furniture .
:desk rdf:type [owl:complementOf :Female].
:desk rdf:type :Male .

Be careful with complementOf! Example.

Here, we cannot con-

clude that :tweety

is Male, nor that it is

Female

61 / 105

Boolean class constructors: complementOf

• C owl:complementOf D is used to indicate that u is an instance of C if, and
only if, it is not an instance of D.

owl:complementOf rdf:type owl:SymmetricProperty .

If C owl:complementOf D .

And u rdf:type C .

Then it cannot hold that u rdf:type D .

Semantics given by:

:Male owl:complementOf :Female .
:tweety rdf:type :Penguin .
:Furniture rdfs:subClassOf [owl:complementOf :Female] .
:desk rdf:type :Furniture .

:desk rdf:type [owl:complementOf :Female].
:desk rdf:type :Male .

Be careful with complementOf! Example.

Here, we cannot con-

clude that :tweety

is Male, nor that it is

Female

62 / 105

Boolean class constructors: complementOf

• C owl:complementOf D is used to indicate that u is an instance of C if, and
only if, it is not an instance of D.

owl:complementOf rdf:type owl:SymmetricProperty .

If C owl:complementOf D .

And u rdf:type C .

Then it cannot hold that u rdf:type D .

Semantics given by:

:Male owl:complementOf :Female .
:tweety rdf:type :Penguin .
:Furniture rdfs:subClassOf [owl:complementOf :Female] .
:desk rdf:type :Furniture .
:desk rdf:type [owl:complementOf :Female].

:desk rdf:type :Male .

Be careful with complementOf! Example.

Here, we cannot con-

clude that :tweety

is Male, nor that it is

Female

63 / 105

Boolean class constructors: complementOf

• C owl:complementOf D is used to indicate that u is an instance of C if, and
only if, it is not an instance of D.

owl:complementOf rdf:type owl:SymmetricProperty .

If C owl:complementOf D .

And u rdf:type C .

Then it cannot hold that u rdf:type D .

Semantics given by:

:Male owl:complementOf :Female .
:tweety rdf:type :Penguin .
:Furniture rdfs:subClassOf [owl:complementOf :Female] .
:desk rdf:type :Furniture .
:desk rdf:type [owl:complementOf :Female].
:desk rdf:type :Male .

Be careful with complementOf! Example.

Here, we cannot con-

clude that :tweety

is Male, nor that it is

Female

64 / 105

Class disjointness

• C owl:disjointWith D is used to indicate that no instance of C is an
instance of D, and vice versa.

C rdfs:subClassOf [owl:complementOf D]

D rdfs:subClassOf [owl:complementOf C]

It is an abbreviation of:

65 / 105

Boolean class constructors: unionOf

• C owl:unionOf (D1 . . . Dk) is used to indicate that u is an instance of C if,
and only if, it is an instance of at least one the classes D1, . . . , Dk.

If C owl:unionOf (D1 ...Dk) .

And u rdf:type Di . (for some 1 ≤ i ≤ k)
Then add u rdf:type C .

If C owl:unionOf (D1 ...Dk) .

And u rdf:type [owl:complementOf Dj] . for every j 6= i
Then add u rdf:type Di .

Semantics given by:

:Person owl:unionOf (:Male :Female) .
:john rdf:type :Person .
:john rdf:type [owl:complementOf :Female] .

:john rdf:type :Male .

Example

66 / 105

Boolean class constructors: unionOf

• C owl:unionOf (D1 . . . Dk) is used to indicate that u is an instance of C if,
and only if, it is an instance of at least one the classes D1, . . . , Dk.

If C owl:unionOf (D1 ...Dk) .

And u rdf:type Di . (for some 1 ≤ i ≤ k)
Then add u rdf:type C .

If C owl:unionOf (D1 ...Dk) .

And u rdf:type [owl:complementOf Dj] . for every j 6= i
Then add u rdf:type Di .

Semantics given by:

:Person owl:unionOf (:Male :Female) .
:john rdf:type :Person .
:john rdf:type [owl:complementOf :Female] .
:john rdf:type :Male .

Example

67 / 105

Closed classes: one of

• C owl:oneOf (v1 . . . vk) is used to indicate that the only individuals of class
C are v1, . . . , vk.

68 / 105

OWL builtin classes

• There are two predefined classes in OWL: owl:Thing and owl:Nothing

• owl:Thing is the most general class, it has every individual as an instance

• owl:Nothing is the empty class, it does not have any instances

69 / 105

Asserting Classes Disjoint and Individuals Distinct

• Unlike most other knowledge representation languages, OWL does not assume
the Unique Name Assumption (UNA): distinct resources need not represent
distinct things.

• As already seen, equivalence between classes can be specified by
owl:equivalentClass; equivalence between properties by
owl:equivalentProperty; and between individuals by owl:sameAs.

• Individuals can be declared distinct by means of owl:differentFrom

• Classes can be declared disjoint by means of owl:disjointWith.

70 / 105

Property restrictions: introduction

• By means of rdfs:domain and rdfs:range we can only specify that the
domain and range should hold globally for a property

• OWL allows us to make local restriction on properties (e.g. cows eat plants
while other animals may also eat meat) by means of so-called property
restrictions

• OWL distinguishes between the following two:

◦ Value constraints (owl:someValuesFrom, owl:allValuesFrom,
owl:hasValue)

◦ Cardinality constraints (owl:minCardinality, owl:maxCardinality)

Property restrictions define (anonymous) classes and have the general syntax:

:1 rdf:type owl:Restriction;
owl:onProperty P ;
value constr D .

:1 rdf:type owl:Restriction;
owl:onProperty P ;
cardinal constr ”i”̂ x̂sd:nonNegativeInteger .

71 / 105

Property restrictions: allValuesFrom

• [rdf:type owl:Restriction; owl:onProperty P; owl:allValuesFrom D]

denotes the class consisting of all individuals u for which the range of property P is
class D.

If u rdf:type [rdf:type owl:Restriction;

owl:onProperty P;

owl:allValuesFrom D] .

And u P v .

Then add v rdf:type D

If for all v s.t. u P v .

it holds that v rdf:type D .

Then add u rdf:type [rdf:type owl:Restriction;

owl:onProperty P;

owl:allValuesFrom D] .

Inference Rule:

:OnlyDaughters rdf:type owl:Class ;
rdfs:subclassOf [rdf:type owl:Restriction;

owl:onProperty :hasChild;
owl:allValuesFrom :Female] .

:john rdf:type :OnlyDaughters ;
:hasChild :mary .

:jane :hasChild :john .

:mary rdf:type :Female .

Example:

72 / 105

Property restrictions: allValuesFrom

• [rdf:type owl:Restriction; owl:onProperty P; owl:allValuesFrom D]

denotes the class consisting of all individuals u for which the range of property P is
class D.

If u rdf:type [rdf:type owl:Restriction;

owl:onProperty P;

owl:allValuesFrom D] .

And u P v .

Then add v rdf:type D

If for all v s.t. u P v .

it holds that v rdf:type D .

Then add u rdf:type [rdf:type owl:Restriction;

owl:onProperty P;

owl:allValuesFrom D] .

Inference Rule:

:OnlyDaughters rdf:type owl:Class ;
rdfs:subclassOf [rdf:type owl:Restriction;

owl:onProperty :hasChild;
owl:allValuesFrom :Female] .

:john rdf:type :OnlyDaughters ;
:hasChild :mary .

:jane :hasChild :john .

:mary rdf:type :Female .

Example:

73 / 105

Property restrictions: allValuesFrom

• [rdf:type owl:Restriction; owl:onProperty P; owl:allValuesFrom D]

denotes the class consisting of all individuals u for which the range of property P is
class D.

If u rdf:type [rdf:type owl:Restriction;

owl:onProperty P;

owl:allValuesFrom D] .

And u P v .

Then add v rdf:type D

If for all v s.t. u P v .

it holds that v rdf:type D .

Then add u rdf:type [rdf:type owl:Restriction;

owl:onProperty P;

owl:allValuesFrom D] .

Inference Rule:

:OnlyDaughters rdf:type owl:Class ;
rdfs:subclassOf [rdf:type owl:Restriction;

owl:onProperty :hasChild;
owl:allValuesFrom :Female] .

:john rdf:type :OnlyDaughters ;
:hasChild :mary .

:jane :hasChild :john .
:mary rdf:type :Female .

Example:

74 / 105

Property restrictions: someValuesFrom

• [rdf:type owl:Restriction; owl:onProperty P; owl:someValuesFrom D]

denotes the class consisting of all individuals u that have at least one occurrence of
property P whose range is class D.

If u P v .

And v rdf:type D .

Then add u rdf:type [rdf:type owl:Restriction;

owl:onProperty P;

owl:someValuesFrom D] .

If u rdf:type [rdf:type owl:Restriction;

owl:onProperty P;

owl:someValuesFrom D] .

There has to exist some u P v .

with v rdf:type D

Inference Rule:

:Mother rdf:type owl:Class ;
owl:intersectionOf (:Person :Female

[rdf:type owl:Restriction;
owl:onProperty :hasChild;
owl:someValuesFrom :Person]

) .
:jane rdf:type :Female, :Person ;

:hasChild :john .
:john rdf:type :Person .

:jane rdf:type :Mother .

Example: a class for all Mothers

75 / 105

Property restrictions: someValuesFrom

• [rdf:type owl:Restriction; owl:onProperty P; owl:someValuesFrom D]

denotes the class consisting of all individuals u that have at least one occurrence of
property P whose range is class D.

If u P v .

And v rdf:type D .

Then add u rdf:type [rdf:type owl:Restriction;

owl:onProperty P;

owl:someValuesFrom D] .

If u rdf:type [rdf:type owl:Restriction;

owl:onProperty P;

owl:someValuesFrom D] .

There has to exist some u P v .

with v rdf:type D

Inference Rule:

:Mother rdf:type owl:Class ;
owl:intersectionOf (:Person :Female

[rdf:type owl:Restriction;
owl:onProperty :hasChild;
owl:someValuesFrom :Person]

) .
:jane rdf:type :Female, :Person ;

:hasChild :john .
:john rdf:type :Person .

:jane rdf:type :Mother .

Example: a class for all Mothers

76 / 105

Property restrictions: someValuesFrom

• [rdf:type owl:Restriction; owl:onProperty P; owl:someValuesFrom D]

denotes the class consisting of all individuals u that have at least one occurrence of
property P whose range is class D.

If u P v .

And v rdf:type D .

Then add u rdf:type [rdf:type owl:Restriction;

owl:onProperty P;

owl:someValuesFrom D] .

If u rdf:type [rdf:type owl:Restriction;

owl:onProperty P;

owl:someValuesFrom D] .

There has to exist some u P v .

with v rdf:type D

Inference Rule:

:Mother rdf:type owl:Class ;
owl:intersectionOf (:Person :Female

[rdf:type owl:Restriction;
owl:onProperty :hasChild;
owl:someValuesFrom :Person]

) .
:jane rdf:type :Female, :Person ;

:hasChild :john .
:john rdf:type :Person .
:jane rdf:type :Mother .

Example: a class for all Mothers

77 / 105

Property restrictions: hasValue

• [rdf:type owl:Restriction; owl:onProperty P; owl:hasValue v] is a particular
form of owl:someValuesFrom. It denotes the class consisting of all individuals u for
which u P v holds.

If u P v .

Then add u rdf:type [rdf:type owl:Restriction;

owl:onProperty P;

owl:hasValue v] .

If u rdf:type [rdf:type owl:Restriction;

owl:onProperty P;

owl:hasValue D] .

Then add u P v .

Inference Rule:

:MarysChildren rdf:type owl:Class ;
owl:intersectionOf (:Person

[rdf:type owl:Restriction;
owl:onProperty :hasParent;
owl:hasValue :mary]

) .
:john rdf:type :Person .
:john :hasParent :mary .

:john rdf:type :MarysChildren .

Example: a class for all of Mary’s children

78 / 105

Property restrictions: hasValue

• [rdf:type owl:Restriction; owl:onProperty P; owl:hasValue v] is a particular
form of owl:someValuesFrom. It denotes the class consisting of all individuals u for
which u P v holds.

If u P v .

Then add u rdf:type [rdf:type owl:Restriction;

owl:onProperty P;

owl:hasValue v] .

If u rdf:type [rdf:type owl:Restriction;

owl:onProperty P;

owl:hasValue D] .

Then add u P v .

Inference Rule:

:MarysChildren rdf:type owl:Class ;
owl:intersectionOf (:Person

[rdf:type owl:Restriction;
owl:onProperty :hasParent;
owl:hasValue :mary]

) .
:john rdf:type :Person .
:john :hasParent :mary .

:john rdf:type :MarysChildren .

Example: a class for all of Mary’s children

79 / 105

Property restrictions: hasValue

• [rdf:type owl:Restriction; owl:onProperty P; owl:hasValue v] is a particular
form of owl:someValuesFrom. It denotes the class consisting of all individuals u for
which u P v holds.

If u P v .

Then add u rdf:type [rdf:type owl:Restriction;

owl:onProperty P;

owl:hasValue v] .

If u rdf:type [rdf:type owl:Restriction;

owl:onProperty P;

owl:hasValue D] .

Then add u P v .

Inference Rule:

:MarysChildren rdf:type owl:Class ;
owl:intersectionOf (:Person

[rdf:type owl:Restriction;
owl:onProperty :hasParent;
owl:hasValue :mary]

) .
:john rdf:type :Person .
:john :hasParent :mary .
:john rdf:type :MarysChildren .

Example: a class for all of Mary’s children

80 / 105

Cardinality restrictions: minCardinality

• [rdf:type owl:Restriction; owl:onProperty P; owl:minCardinality

"i"̂ x̂sd:nonNegativeInteger] is used to denotes the class consisting of all
individuals u for which there are at least i distinct individuals v1, v2, . . . , vi such
that u P v1, v2, . . . , vi.

:Person rdf:type owl:Class ;
owl:subClassOf [rdf:type owl:Restriction;

owl:onProperty :hasParent;
owl:minCardinality "2"̂ x̂sd:nonNegativeInteger].

Example: every person has at least two parents

81 / 105

Cardinality restrictions: minCardinality

• [rdf:type owl:Restriction; owl:onProperty P; owl:minCardinality

"i"̂ x̂sd:nonNegativeInteger] is used to denotes the class consisting of all
individuals u for which there are at least i distinct individuals v1, v2, . . . , vi such
that u P v1, v2, . . . , vi.

:Person rdf:type owl:Class ;
owl:subClassOf [rdf:type owl:Restriction;

owl:onProperty :hasParent;
owl:minCardinality "2"̂ x̂sd:nonNegativeInteger].

Example: every person has at least two parents

82 / 105

Cardinality restrictions: maxCardinality

• [rdf:type owl:Restriction; owl:onProperty P; owl:maxCardinality

"i"̂ x̂sd:nonNegativeInteger] is used to denotes the class consisting of all
individuals u for which there are at most i distinct individuals v1, v2, . . . , vi such
that u P v1, v2, . . . , vi.

:Person rdf:type owl:Class ;
owl:subClassOf [rdf:type owl:Restriction;

owl:onProperty :hasParent;
owl:maxCardinality "2"̂ x̂sd:nonNegativeInteger].

Example: every person has at most two parents

83 / 105

Cardinality restrictions: maxCardinality

• [rdf:type owl:Restriction; owl:onProperty P; owl:maxCardinality

"i"̂ x̂sd:nonNegativeInteger] is used to denotes the class consisting of all
individuals u for which there are at most i distinct individuals v1, v2, . . . , vi such
that u P v1, v2, . . . , vi.

:Person rdf:type owl:Class ;
owl:subClassOf [rdf:type owl:Restriction;

owl:onProperty :hasParent;
owl:maxCardinality "2"̂ x̂sd:nonNegativeInteger].

Example: every person has at most two parents

84 / 105

Cardinality restrictions: maxCardinality

• [rdf:type owl:Restriction; owl:onProperty P; owl:cardinality

"i"̂ x̂sd:nonNegativeInteger] is used to denotes the class consisting of all
individuals u for which there are at exactly i distinct individuals v1, v2, . . . , vi such
that u P v1, v2, . . . , vi.

85 / 105

Consistency of an OWL document/graph with OWL

• An OWL document is consistent (also called satisfiable) if it does not contain
any contradictions

• An OWL document is class consistent if none of its classes is equivalent to
owl:Nothing

Example of an inconsistent document:

:Male rdf:type owl:Class .
:Female rdf:type owl:Class .
:Male owl:disjointWith :Female .
:john rdf:type :Male .
:john rdf:type :Female .

86 / 105

Consistency of an OWL document/graph with OWL

• An OWL document is consistent (also called satisfiable) if it does not contain
any contradictions

• An OWL document is class consistent if none of its classes is equivalent to
owl:Nothing

Example of a consistent but class inconsistent document:

:Book rdf:type owl:Class .
:Publication rdf:type owl:Class .
:Book rdfs:subClassOf :Publication ;

owl:disjointWith :Publication .

87 / 105

Part III: Reasoning with OWL

Typical reasoning tasks

• Checking consistency (also called satisfiability).

• Checking class consistency

• Computing all relationships between classes in documents.

• Computing all instances of a given class.

• If the OWL vocabulary is carelessly mingled with the RDF Schema vocabulary,
then all of these task are undecidable: no algorithm exists that does these
tasks and is guaranteed to terminate.

• As such, the OWL 1.0 standard defines several OWL dialects, including
dialects for which these tasks are decidable:

◦ OWL Full
◦ OWL DL
◦ OWL Lite

89 / 105

Typical reasoning tasks

• Checking consistency (also called satisfiability).

• Checking class consistency

• Computing all relationships between classes in documents.

• Computing all instances of a given class.

• If the OWL vocabulary is carelessly mingled with the RDF Schema vocabulary,
then all of these task are undecidable: no algorithm exists that does these
tasks and is guaranteed to terminate.

• As such, the OWL 1.0 standard defines several OWL dialects, including
dialects for which these tasks are decidable:

◦ OWL Full
◦ OWL DL
◦ OWL Lite

90 / 105

OWL version 1.0 Full

OWL version 1 Full

• Allows all of the OWL vocabulary

• Allows the combination of these vocabulary terms in arbitrary ways with RDF
and RDF schema (including rdfs:Class, rdfs:Resource, rdfs:Property)

• OWL Full is fully upward-compatible with RDF, both syntactically and
semantically

• OWL Full is so powerful that it is undecidable

◦ Hence, there is no complete or efficient reasoning support
◦ Undecidability due, among other reasons, to the fact the we allow classes to

be members of themselves.

91 / 105

OWL version 1.0 DL

OWL version 1 DL

• OWL 1 DL = OWL Description Logic

• A sublanguage of OWL Full that restricts how OWL constructors can be
used. (See next slide)

• It corresponds to a well-studied description logic

• Description logics are well-known knowledge representation formalisms.
They are fragments of first order logic with decidable and often efficient
reasoning support.

• As such, OWL 1 DL permits efficient reasoning support

• But we lose full compatibility with RDF and RDF Schema
◦ Every legal OWL DL document is a legal RDF document
◦ But not every legal RDF document is a legal OWL DL document.

92 / 105

OWL version 1.0 DL (2/2)

OWL version 1 DL conditions

• The only terms from RDF and RDFS that can be used are rdf:type,
rdfs:domain, rdfs:range, rdfs:subClassOf, rdfs:subPropertyOf (in
particular, rdfs:Class and rdfs:Property cannot be used).

• Type separation and declaration: an OWL DL document must treat classes,
abstract properties, concrete properties, and datatypes as disjoint things.
Furthermore, classes and properties must be declared explicitly.

The following is hence not allowed (on classes we should only use subClassOf

and the like)

:Book rdf:type owl:Class .
:Book :germanName ”Buch” .
:Book :frenchName ”Livre” .

• Restricted use of concrete roles: owl:inverseOf, owl:TransitiveProperty,
owl:InverseFunctionalProperty, and owl:SymmetricProperty must not
be used for concrete properties.

• Restricted use of abstract properties: cardinality restrictions via
owl:cardinality, owl:minCardinality, owl:maxCardinality must not be
used with transitive properties, inverses of transitive properties, or
superproperties of transitive properties. (To obtain decidability.)

93 / 105

OWL version 1.0 DL (2/2)

OWL version 1 DL conditions

• The only terms from RDF and RDFS that can be used are rdf:type,
rdfs:domain, rdfs:range, rdfs:subClassOf, rdfs:subPropertyOf (in
particular, rdfs:Class and rdfs:Property cannot be used).

• Type separation and declaration: an OWL DL document must treat classes,
abstract properties, concrete properties, and datatypes as disjoint things.
Furthermore, classes and properties must be declared explicitly.

The following is hence not allowed (on classes we should only use subClassOf

and the like)

:Book rdf:type owl:Class .
:Book :germanName ”Buch” .
:Book :frenchName ”Livre” .

• Restricted use of concrete roles: owl:inverseOf, owl:TransitiveProperty,
owl:InverseFunctionalProperty, and owl:SymmetricProperty must not
be used for concrete properties.

• Restricted use of abstract properties: cardinality restrictions via
owl:cardinality, owl:minCardinality, owl:maxCardinality must not be
used with transitive properties, inverses of transitive properties, or
superproperties of transitive properties. (To obtain decidability.)

94 / 105

OWL version 1.0 DL (2/2)

OWL version 1 DL conditions

• The only terms from RDF and RDFS that can be used are rdf:type,
rdfs:domain, rdfs:range, rdfs:subClassOf, rdfs:subPropertyOf (in
particular, rdfs:Class and rdfs:Property cannot be used).

• Type separation and declaration: an OWL DL document must treat classes,
abstract properties, concrete properties, and datatypes as disjoint things.
Furthermore, classes and properties must be declared explicitly.

The following is hence not allowed (on classes we should only use subClassOf

and the like)

:Book rdf:type owl:Class .
:Book :germanName ”Buch” .
:Book :frenchName ”Livre” .

• Restricted use of concrete roles: owl:inverseOf, owl:TransitiveProperty,
owl:InverseFunctionalProperty, and owl:SymmetricProperty must not
be used for concrete properties.

• Restricted use of abstract properties: cardinality restrictions via
owl:cardinality, owl:minCardinality, owl:maxCardinality must not be
used with transitive properties, inverses of transitive properties, or
superproperties of transitive properties. (To obtain decidability.)

95 / 105

OWL version 1.0 DL (2/2)

OWL version 1 DL conditions

• The only terms from RDF and RDFS that can be used are rdf:type,
rdfs:domain, rdfs:range, rdfs:subClassOf, rdfs:subPropertyOf (in
particular, rdfs:Class and rdfs:Property cannot be used).

• Type separation and declaration: an OWL DL document must treat classes,
abstract properties, concrete properties, and datatypes as disjoint things.
Furthermore, classes and properties must be declared explicitly.

The following is hence not allowed (on classes we should only use subClassOf

and the like)

:Book rdf:type owl:Class .
:Book :germanName ”Buch” .
:Book :frenchName ”Livre” .

• Restricted use of concrete roles: owl:inverseOf, owl:TransitiveProperty,
owl:InverseFunctionalProperty, and owl:SymmetricProperty must not
be used for concrete properties.

• Restricted use of abstract properties: cardinality restrictions via
owl:cardinality, owl:minCardinality, owl:maxCardinality must not be
used with transitive properties, inverses of transitive properties, or
superproperties of transitive properties. (To obtain decidability.)

96 / 105

OWL version 1.0 Lite

OWL version 1 Lite

• Restricts OWL 1 DL further to a subset of the language constructors. (E.g., no
disjointness statements, cardinality statements, . . .)

• Designed to be easier

◦ to understand, for users (ontology builders)
◦ implement, for tool builders

• The disadvantage is its restricted expressivity

• And actually, it proved as difficult to implement as OWL DL.

97 / 105

OWL version 1.0 Lite

OWL version 1 Lite

• Restricts OWL 1 DL further to a subset of the language constructors. (E.g., no
disjointness statements, cardinality statements, . . .)

• Designed to be easier

◦ to understand, for users (ontology builders)
◦ implement, for tool builders

• The disadvantage is its restricted expressivity

• And actually, it proved as difficult to implement as OWL DL.

98 / 105

OWL version 2.0 Dialects

In OWL 2, there are only two dialects

• OWL Full: all features, but reasoning is undecidable

• OWL DLa: expressive, but not entirely compatible with RDF Schema;
efficient reasoning support

aDL=Description Logic

• OWL 1 DL is a strict subset of OWL 2 DL

• OWL Lite was dropped as a dialect in OWL 2 because it proved to be as hard
to implement as OWL 1 DL (yet it is significantly less expressive).

99 / 105

OWL version 2 Profiles

OWL 2 introduces three new fragments of OWL 2 DL, called profiles

• Full OWL 2 DL has requires exponential time for most reasoning tasks.

• OWL 2 EL is designed for applications where very large ontologies are needed,
and where expressive power can be traded for performance guarantees.
Reasoning complexity: polynomial time in the size of the OWL ontology.

• OWL 2 QL is designed for applications where relatively lightweight ontologies
are used to organize large numbers of individuals and where it is useful or
necessary to access the data directly via relational queries (e.g., SQL).

Reasoning complexity: polynomial time in the size of the OWL ontology.

• OWL 2 RL is designed for applications where relatively lightweight ontologies
are used to organize large numbers of individuals and where it is useful or
necessary to operate directly on data in the form of RDF triples.

Reasoning complexity: polynomial time in the size of the OWL ontology.

100 / 105

OWL version 2.0 extra features

• OWL version 1.0 was standardized as a recommendation in 2004.

• OWL version 2.0 (second edition) proposes a backwards-compatible update to
OWL 1.0. It features several extensions to OWL version 1.0

◦ keys;
◦ property chains;
◦ richer datatypes, data ranges;
◦ qualified cardinality restrictions;
◦ asymmetric, reflexive, and disjoint properties; and
◦ enhanced annotation capabilities

See book/handouts!

101 / 105

Examples of OWL ontologies (1/3)

FOAF: Friend of a Friend

• vocabulary to link people and information using the Web

FOAF is a project devoted to linking people and information using the Web.
Regardless of whether information is in people’s heads, in physical or digital
documents, or in the form of factual data, it can be linked. FOAF integrates three
kinds of network: social networks of human collaboration, friendship and
association; representational networks that describe a simplified view of a cartoon
universe in factual terms, and information networks that use Web-based linking to
share independently published descriptions of this inter-connected world. FOAF
does not compete with socially-oriented Web sites; rather it provides an approach
in which different sites can tell different parts of the larger story, and by which
users can retain some control over their information in a non-proprietary format.

102 / 105

Examples of OWL ontologies (2/3)

GoodRelations: a vocabulary for e-commerce

• a lightweight ontology for annotating offerings and other aspects of
e-commerce on the Web.

• GoodRelations is the only OWL DL ontology officially supported by both
Google and Yahoo.

• It provides a standard vocabulary for expressing things like that a particular
Web site describes an offer to sell cellphones of a certain make and model at a
certain price, that a pianohouse offers maintenance for pianos that weigh less
than 150 kg, or that a car rental company leases out cars of a certain make and
model from a particular set of branches across the country.

• Also, most if not all commercial and functional details of e-commerce scenarios
can be expressed, e.g. eligible countries, payment and delivery options, quantity
discounts, opening hours, etc.

103 / 105

Examples of OWL ontologies (3/3)

SNOMED CT

• an ontology of medical terms.

• used in clinical documentation and reporting

• standard ontology for patient records etc. in Belgium

More specifically, the following sample computer applications use SNOMED CT:

• Electronic Health Record Systems

• Computerized Provider Order Entry CPOE such as E-Prescribing or Laboratory Order
Entry

• Catalogues of clinical services; e.g., for Diagnostic Imaging procedures

• Knowledge databases used in clinical decision support systems (CDSS)

• Remote Intensive Care Unit Monitoring

• Laboratory Reporting

• Emergency Room Charting

• Cancer Reporting

• Genetic Databases

104 / 105

References

• P. Hitzler, M. Krötzsch, S. Rudolph. Foundations of Semantic Web
technologies. Chapter 4.

• D. Allemang, J. Hendler. Semantic Web for the Working Ontologist..
Chapter 9-11.

105 / 105

