
INFO-H-509 XML Technologies
XML Schema Languages Part II

Stijn Vansummeren

March 15, 2012

Objectives

1. The essence of XML Schema Definitions (XSDs)

2. Basic features of XML Schema Definitions

3. Advanced features of XML Schema Definitions

4. Deterministic Regular Expressions

2 / 83

Our story so far ...

• An XML Language is a set of XML documents that belong to the same
“application domain”

• A schema is a formal definition of the syntax of an XML language

• A document is either valid w.r.t. a schema, or not

• A schema language is a notation by which schemas can be defined.

The idea of validation:

3 / 83

Our Story so far: Limitations of DTDs

1. Cannot constrain character data

2. Specification of attribute values is too limited

3. Element and attribute declarations are context insensitive

4. Character data cannot be combined with the regular expression content
model

5. The content models lack an “interleaving” operator

6. The support for modularity, reuse, and evolution is too primitive

7. The normalization features lack content defaults and proper whitespace
control

8. Structured embedded self-documentation is not possible

9. The ID/IDREF mechanism is too simple

10. It does not itself use an XML syntax

11. No support for namespaces

4 / 83

Requirements for XML Schema

XML Schema is W3C’s proposal for replacing DTDs

Design Principles:

• More expressive than DTD

• Use XML notation

• Self-describing

→ not really

• Simplicity

→ not really

Technical Requirements:

• Namespace support

• User-defined datatypes

• Inheritance (OO-like)

• Evolution

• Embedded documentation

• ...

5 / 83

Requirements for XML Schema

XML Schema is W3C’s proposal for replacing DTDs

Design Principles:

• More expressive than DTD

• Use XML notation

• Self-describing → not really

• Simplicity → not really

Technical Requirements:

• Namespace support

• User-defined datatypes

• Inheritance (OO-like)

• Evolution

• Embedded documentation

• ...

6 / 83

Requirements for XML Schema

XML Schema is W3C’s proposal for replacing DTDs

Design Principles:

• More expressive than DTD

• Use XML notation

• Self-describing → not really

• Simplicity → not really

Technical Requirements:

• Namespace support

• User-defined datatypes

• Inheritance (OO-like)

• Evolution

• Embedded documentation

• ...

7 / 83

Part I: The Essence

Let’s start simple

• XML Schema is a large and complicated standard

• Its syntax in XML is really verbose ...

• ... so it’s easy to get lost in the beginning

• Let us illustrate the essential ideas without using the actual XSD
syntax

• Let us focus on elements

9 / 83

Let’s start simple

• XML Schema is a large and complicated standard

• Its syntax in XML is really verbose ...

• ... so it’s easy to get lost in the beginning

• Let us illustrate the essential ideas without using the actual XSD
syntax

• Let us focus on elements

10 / 83

The Essence of XSDs
Dealer

UsedCars

ad

model

. . .

year

. . .

. . . ad

model

. . .

year

. . .

NewCars

ad

model

. . .

. . . ad

model

. . .

• ads under UsedCars must
contain both model and year

• ads under NewCars must contain
only model

• This XML language cannot be
specified by a DTD

We need a way to distinguish between UsedCar ads and NewCar ads

XML Schema solves this by introducing types

• Simple types describe the legal values of text and attribute nodes (integer,
string, date, . . .)

• Complex types describe the content model for element nodes: each complex
type is a regular expression over pairs of the form (element name, type).

• An XML Schema is a collection of type definitions.

11 / 83

The Essence of XSDs
Dealer

UsedCars

ad

model

. . .

year

. . .

. . . ad

model

. . .

year

. . .

NewCars

ad

model

. . .

. . . ad

model

. . .

• ads under UsedCars must
contain both model and year

• ads under NewCars must contain
only model

• This XML language cannot be
specified by a DTD

We need a way to distinguish between UsedCar ads and NewCar ads

XML Schema solves this by introducing types

• Simple types describe the legal values of text and attribute nodes (integer,
string, date, . . .)

• Complex types describe the content model for element nodes: each complex
type is a regular expression over pairs of the form (element name, type).

• An XML Schema is a collection of type definitions.

12 / 83

The Essence of XSDs
Dealer

UsedCars

ad

model

. . .

year

. . .

. . . ad

model

. . .

year

. . .

NewCars

ad

model

. . .

. . . ad

model

. . .

• ads under UsedCars must
contain both model and year

• ads under NewCars must contain
only model

• This XML language cannot be
specified by a DTD

We need a way to distinguish between UsedCar ads and NewCar ads

XML Schema solves this by introducing types

• Simple types describe the legal values of text and attribute nodes (integer,
string, date, . . .)

• Complex types describe the content model for element nodes: each complex
type is a regular expression over pairs of the form (element name, type).

• An XML Schema is a collection of type definitions.

13 / 83

The Essence of XSDs
Dealer

UsedCars

ad

model

. . .

year

. . .

. . . ad

model

. . .

year

. . .

NewCars

ad

model

. . .

. . . ad

model

. . .

• ads under UsedCars must
contain both model and year

• ads under NewCars must contain
only model

• This XML language cannot be
specified by a DTD

We need a way to distinguish between UsedCar ads and NewCar ads

XML Schema solves this by introducing types

• Simple types describe the legal values of text and attribute nodes (integer,
string, date, . . .)

• Complex types describe the content model for element nodes: each complex
type is a regular expression over pairs of the form (element name, type).

• An XML Schema is a collection of type definitions.

14 / 83

The Essence of XSDs (2)

Dealer

UsedCars

ad

model

. . .

year

. . .

. . . ad

model

. . .

year

. . .

NewCars

ad

model

. . .

. . . ad

model

. . .

dealerType

usedType newType

adType1 adType1

string date string date

adType2 adType2

string string

Example:

dealerType → (UsedCars, usedType), (NewCars, newType)
usedType → (ad, adType1)*
newType → (ad, adType2)*
adType1 → (model, string), (year, date)
adType2 → (model, string)

15 / 83

The Essence of XSDs (2)

Dealer

UsedCars

ad

model

. . .

year

. . .

. . . ad

model

. . .

year

. . .

NewCars

ad

model

. . .

. . . ad

model

. . .

dealerType

usedType newType

adType1 adType1

string date string date

adType2 adType2

string string

Example:

dealerType → (UsedCars, usedType), (NewCars, newType)
usedType → (ad, adType1)*
newType → (ad, adType2)*
adType1 → (model, string), (year, date)
adType2 → (model, string)

16 / 83

The Essence of XSDs (2)

Dealer

UsedCars

ad

model

. . .

year

. . .

. . . ad

model

. . .

year

. . .

NewCars

ad

model

. . .

. . . ad

model

. . .

dealerType

usedType newType

adType1 adType1

string date string date

adType2 adType2

string string

Example:

dealerType → (UsedCars, usedType), (NewCars, newType)
usedType → (ad, adType1)*
newType → (ad, adType2)*
adType1 → (model, string), (year, date)
adType2 → (model, string)

17 / 83

The Essence of XSDs (2)

Dealer

UsedCars

ad

model

. . .

year

. . .

. . . ad

model

. . .

year

. . .

NewCars

ad

model

. . .

. . . ad

model

. . .

dealerType

usedType newType

adType1 adType1

string date string date

adType2 adType2

string string

Example:

dealerType → (UsedCars, usedType), (NewCars, newType)
usedType → (ad, adType1)*
newType → (ad, adType2)*
adType1 → (model, string), (year, date)
adType2 → (model, string)

18 / 83

The Essence of XSDs (2)

Dealer

UsedCars

ad

model

. . .

year

. . .

. . . ad

model

. . .

year

. . .

NewCars

ad

model

. . .

. . . ad

model

. . .

dealerType

usedType newType

adType1 adType1

string date string date

adType2 adType2

string string

Example:

dealerType → (UsedCars, usedType), (NewCars, newType)
usedType → (ad, adType1)*
newType → (ad, adType2)*
adType1 → (model, string), (year, date)
adType2 → (model, string)

19 / 83

The Essence of XSDs (2)

Dealer

UsedCars

ad

model

. . .

year

. . .

. . . ad

model

. . .

year

. . .

NewCars

ad

model

. . .

. . . ad

model

. . .

dealerType

usedType newType

adType1 adType1

string date string date

adType2 adType2

string string

Example:

dealerType → (UsedCars, usedType), (NewCars, newType)
usedType → (ad, adType1)*
newType → (ad, adType2)*
adType1 → (model, string), (year, date)
adType2 → (model, string)

20 / 83

The Essence of XSDs (2)

Dealer

UsedCars

ad

model

. . .

year

. . .

. . . ad

model

. . .

year

. . .

NewCars

ad

model

. . .

. . . ad

model

. . .

dealerType

usedType newType

adType1 adType1

string date string date

adType2 adType2

string string

Example:

dealerType → (UsedCars, usedType), (NewCars, newType)
usedType → (ad, adType1)*
newType → (ad, adType2)*
adType1 → (model, string), (year, date)
adType2 → (model, string)

21 / 83

The Element Declaration Consistent Constraint (EDC)

XML Schema requires that within the same type definition the same element
name must occur with the same type. This is called the element declaration
consistent constraint (EDC).

Definition

Example

• Legal:

dealerType→ (UsedCars, usedType), (NewCars, newType)

• Illegal:
dealerType→ (Cars, usedType), (Cars, newType)

• Legal:
dealerType→ (Cars, usedType), (Cars, usedType)

22 / 83

The Element Declaration Consistent Constraint (EDC)

XML Schema requires that within the same type definition the same element
name must occur with the same type. This is called the element declaration
consistent constraint (EDC).

Definition

Example

• Legal:

dealerType→ (UsedCars, usedType), (NewCars, newType)

• Illegal:
dealerType→ (Cars, usedType), (Cars, newType)

• Legal:
dealerType→ (Cars, usedType), (Cars, usedType)

23 / 83

The Element Declaration Consistent Constraint (EDC)

XML Schema requires that within the same type definition the same element
name must occur with the same type. This is called the element declaration
consistent constraint (EDC).

Definition

Example

• Legal:

dealerType→ (UsedCars, usedType), (NewCars, newType)

• Illegal:
dealerType→ (Cars, usedType), (Cars, newType)

• Legal:
dealerType→ (Cars, usedType), (Cars, usedType)

24 / 83

The Element Declaration Consistent Constraint (EDC)

XML Schema requires that within the same type definition the same element
name must occur with the same type. This is called the element declaration
consistent constraint (EDC).

Definition

Example

• Legal:

dealerType→ (UsedCars, usedType), (NewCars, newType)

• Illegal:
dealerType→ (Cars, usedType), (Cars, newType)

• Legal:
dealerType→ (Cars, usedType), (Cars, usedType)

25 / 83

The Element Declaration Consistent Constraint (EDC)
(2)

Dealer

UsedCars

ad

model

. . .

year

. . .

. . . ad

model

. . .

year

. . .

NewCars

ad

model

. . .

. . . ad

model

. . .

dealerType

usedType newType

adType1 adType1

string date string date

adType2 adType2

string string

The type assignment is determined by path from element to root

Theorem [Martens, Neven, Schwentick, 2006]

In other words: paths determine types!

26 / 83

The Element Declaration Consistent Constraint (EDC)
(2)

Dealer

UsedCars

ad

model

. . .

year

. . .

. . . ad

model

. . .

year

. . .

NewCars

ad

model

. . .

. . . ad

model

. . .

dealerType

usedType newType

adType1 adType1

string date string date

adType2 adType2

string string

The type assignment is determined by path from element to root

Theorem [Martens, Neven, Schwentick, 2006]

In other words: paths determine types!

27 / 83

What XML languages can we express with an XSD?

Hence if

type T

a ∈ S and

type T

a ∈ S then

type T

a ∈ S

We can use this to show that an XML language is not definable in XML
Schema

28 / 83

Part II: Basic Syntax

XSDs: XML Schema Definitions - Syntax

Syntactically, an XSDs is a collection of:

• complex type definitions: defines content and attributes

• simple type definitions: defines a family of legal Unicode text strings

• element declarations: associate an element name with a simple or complex
type

• attribute declarations: associate an attribute name with a simple type

Definition

30 / 83

XSDs by Example

• XSDs are written in XML

• All definitions and declarations are put inside an schema element

<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://cardealers.org"

xmlns:b="http://cardealers.org">

the definitions go here . . .

</schema>

31 / 83

XSDs by Example

Example in our made-up syntax:

dealerType → (UsedCars, usedType), (NewCars, newType)

usedType → (ad, adType1)*
newType → (ad, adType2)*
adType1 → (model, string), (year, date)
adType2 → (model, string)

Real XSD syntax:
<complexType name="dealerType">

<sequence>

<element name="UsedCars" type="b:usedType"/>

<element name="NewCars" type="b:newType" />

</sequence>

</complexType>

32 / 83

XSDs by Example

Example in our made-up syntax:

dealerType → (UsedCars, usedType), (NewCars, newType)
usedType → (ad, adType1)*

newType → (ad, adType2)*
adType1 → (model, string), (year, date)
adType2 → (model, string)

Real XSD syntax:
<complexType name="usedType">

<sequence>

<element name="ad" type="b:adType1"

minOccurs="0" maxOccurs ="unbounded"/>

</sequence>

</complexType>

33 / 83

XSDs by Example

Example in our made-up syntax:

dealerType → (UsedCars, usedType), (NewCars, newType)
usedType → (ad, adType1)*
newType → (ad, adType2)*

adType1 → (model, string), (year, date)
adType2 → (model, string)

Real XSD syntax:
<complexType name="newType">

<sequence>

<element name="ad" type="b:adType2"

minOccurs="0" maxOccurs ="unbounded"/>

</sequence>

</complexType>

34 / 83

XSDs by Example

Example in our made-up syntax:

dealerType → (UsedCars, usedType), (NewCars, newType)
usedType → (ad, adType1)*
newType → (ad, adType2)*
adType1 → (model, string), (year, date)

adType2 → (model, string)

Real XSD syntax:
<complexType name="addType1">

<sequence>

<element name="model" type="string" />

<element name="year" type="date" />

</sequence>

</complexType>

35 / 83

XSDs by Example

Example in our made-up syntax:

dealerType → (UsedCars, usedType), (NewCars, newType)
usedType → (ad, adType1)*
newType → (ad, adType2)*
adType1 → (model, string), (year, date)
adType2 → (model, string)

Real XSD syntax:
<complexType name="addType2">

<sequence>

<element name="model" type="string" />

</sequence>

</complexType>

36 / 83

XSDs by Example

Example in our made-up syntax:

dealerType → (UsedCars, usedType), (NewCars, newType)
usedType → (ad, adType1)*
newType → (ad, adType2)*
adType1 → (model, string), (year, date)
adType2 → (model, string)

Finally we need to declare globally that Dealer elements have type
dealerType:
<!-- Global element declaration -->

<element name="Dealer" type="b:dealerType"/>

37 / 83

The complete XSD

By means of
Online

demonstration

38 / 83

Element and attribute declarations

Declarations (global and local):

• <element name="elem name " type="simple or complex type name "/>

• <attribute name="attr name " type="simple type name ..."/>

References:

• <element ref="elem name "/>

• <attribute ref="attr name "/>

Definition

Example
By means of

Online
demonstration

39 / 83

Element and attribute declarations

Declarations (global and local):

• <element name="elem name " type="simple or complex type name "/>

• <attribute name="attr name " type="simple type name ..."/>

References:

• <element ref="elem name "/>

• <attribute ref="attr name "/>

Definition

Example
By means of

Online
demonstration

40 / 83

Global versus local type definitions

Global style:

<complexType name="newType">

<sequence>

<element name="ad" type="b:adType2"

minOccurs="0" maxOccurs ="unbounded"/>

</sequence>

</complexType>

<complexType name="addType2">

<sequence>

<element name="model" type="string" />

</sequence>

</complexType>

41 / 83

Global versus local type definitions

Local style: in-line anonymous type definitions

<complexType name="newType">

<sequence>

<element name="ad" minOccurs="0" maxOccurs ="unbounded">

<complexType>

<sequence>

<element name="model" type="string" />

</sequence>

</complexType>

</element>

</sequence>

</complexType>

42 / 83

Global versus local declarations

An example with global and local declarations:

<element name="ad" type="adType1">

<complexType name="usedType">

<sequence>

<element ref="b:ad" minOccurs="0" maxOccurs ="unbounded"/>

</sequence>

</complexType>

<complexType name="newType">

<sequence>

<element name="ad" type="b:adType2"

minOccurs="0" maxOccurs ="unbounded"/>

</sequence>

</complexType>

Note that we need at least one local element declaration to distinguish
between used car ads and new car ads. This is called overloading.

43 / 83

Complex Type Definitions

• Syntax:

<complexType name="..."> content model/attributes </complexType>

• Content models are regular expressions with a peculiar syntax

Element declaration → <element name="..." type="...">

Element reference → <element ref="...">

Concatenation → <sequence> ...</sequence>

Union → <choice> ...</choice>

All (unordered) → <all> ...</all>

Element Wildcard → <any namespace="..." processContents="...">

Cardinalities (*,+) → attributes minOccurs, maxOccurs

Mixed content → attribute mixed="true"

• Attributes:

Attribute declaration → <attribute name="..." type="..." ...>

Attribute reference → <attribute ref="..." ...>

Attribute wildcard → <attribute namespace="..."

→ processContents="...">

Definition

44 / 83

Complex Type Definitions

• Syntax:

<complexType name="..."> content model/attributes </complexType>

• Content models are regular expressions with a peculiar syntax

Element declaration → <element name="..." type="...">

Element reference → <element ref="...">

Concatenation → <sequence> ...</sequence>

Union → <choice> ...</choice>

All (unordered) → <all> ...</all>

Element Wildcard → <any namespace="..." processContents="...">

Cardinalities (*,+) → attributes minOccurs, maxOccurs

Mixed content → attribute mixed="true"

• Attributes:

Attribute declaration → <attribute name="..." type="..." ...>

Attribute reference → <attribute ref="..." ...>

Attribute wildcard → <attribute namespace="..."

→ processContents="...">

Definition

45 / 83

Complex Type Definitions

• Syntax:

<complexType name="..."> content model/attributes </complexType>

• Content models are regular expressions with a peculiar syntax

Element declaration → <element name="..." type="...">

Element reference → <element ref="...">

Concatenation → <sequence> ...</sequence>

Union → <choice> ...</choice>

All (unordered) → <all> ...</all>

Element Wildcard → <any namespace="..." processContents="...">

Cardinalities (*,+) → attributes minOccurs, maxOccurs

Mixed content → attribute mixed="true"

• Attributes:

Attribute declaration → <attribute name="..." type="..." ...>

Attribute reference → <attribute ref="..." ...>

Attribute wildcard → <attribute namespace="..."

→ processContents="...">

Definition

46 / 83

Complex Type Definitions

• Syntax:

<complexType name="..."> content model/attributes </complexType>

• Content models are regular expressions with a peculiar syntax

Element declaration → <element name="..." type="...">

Element reference → <element ref="...">

Concatenation → <sequence> ...</sequence>

Union → <choice> ...</choice>

All (unordered) → <all> ...</all>

Element Wildcard → <any namespace="..." processContents="...">

Cardinalities (*,+) → attributes minOccurs, maxOccurs

Mixed content → attribute mixed="true"

• Attributes:

Attribute declaration → <attribute name="..." type="..." ...>

Attribute reference → <attribute ref="..." ...>

Attribute wildcard → <attribute namespace="..."

→ processContents="...">

Definition

47 / 83

Complex Type Definitions (2)

Example:

<element name="order" type="n:order type"/>

<complexType name="order type" mixed="true">

<choice>

<element ref="n:address"/>

<sequence>

<element ref="n:email" minOccurs="0" maxOccurs="4"/>

<element ref="n:phone"/>

</sequence>

</choice>

<attribute ref="n:id" use="required"/>

<attribute ref="n:email" default="no email address available"/>

<attribute ref="n:method" fixed="some fixed value"/>

</complexType>

48 / 83

Simple types

• XML Schema has a myriad of built-in simple types . . .

• . . . but it is also possible to define your own simple types.

string any Unicode string
boolean true, false, 1, 0
decimal 3.1415
float 6.02214199E23
double 42E970
dateTime 2004-09-26T16:29:00-05:00
time 16:29:00-05:00
date 2004-09-26
hexBinary 48656c6c6f0a
base64Binary SGVsbG8K
anyURI http://www.brics.dk/ixwt/
QName rcp:recipe, recipe
...

49 / 83

Simple types

• XML Schema has a myriad of built-in simple types . . .

• . . . but it is also possible to define your own simple types.

string any Unicode string
boolean true, false, 1, 0
decimal 3.1415
float 6.02214199E23
double 42E970
dateTime 2004-09-26T16:29:00-05:00
time 16:29:00-05:00
date 2004-09-26
hexBinary 48656c6c6f0a
base64Binary SGVsbG8K
anyURI http://www.brics.dk/ixwt/
QName rcp:recipe, recipe
...

50 / 83

Simple type definition by example

• New simple types are defined by restricting existing simple types

• By defining lists of simple types

• Or taking unions of simple types

Example:

• To match integers between 0 and 100:

<simpleType name="score from 0 to 100">

<restriction base="integer">

<minInclusive value="0"/>

<maxInclusive value="100"/>

</restriction>

</simpleType>

51 / 83

Simple type definition by example

• New simple types are defined by restricting existing simple types

• By defining lists of simple types

• Or taking unions of simple types

Example:

• To match strings of the form N% with 0 ≤ N ≤ 100:

<simpleType name="percentage">

<restriction base="string">

<pattern value="([0-9]|[1-9][0-9]|100)%"/>

</restriction>

</simpleType>

52 / 83

Simple type definition by example

• New simple types are defined by restricting existing simple types

• By defining lists of simple types

• Or taking unions of simple types

Example:

• To match a whitespace-separated list of integers like 1 55 399:

<simpleType name="score from 0 to 100">

<list itemType="integer"/>

</simpleType>

53 / 83

Simple type definition by example

• New simple types are defined by restricting existing simple types

• By defining lists of simple types

• Or taking unions of simple types

Example:

• To match all booleans and decimals:

<simpleType name="boolean or decimal">

<union>

<simpleType>

<restriction base="boolean"/>

</simpleType>

<simpleType>

<restriction base="decimal"/>

</simpleType>

</union>

</simpleType>

54 / 83

Deriving simple types by restriction

The things that we restrict by are called facets

Available constraining facets:

• length

• minLength

• maxLength

• pattern

• enumeration

• whiteSpace

• maxInclusive

• maxExclusive

• minInclusive

• minExclusive

• totalDigits

• fractionDigits

55 / 83

Built-in derived simple types

XML Schema has a myriad of built-in simple types that are defined by derivation
from the primitive simple types

• normalizedString

• token

• language

• Name

• NCName

• ID

• IDREF

• integer

• nonNegativeInteger

• unsignedLong

• long

• int

• short

• byte

• ...

56 / 83

Complex types with simple content

• Sometimes we want to specify that the content of an element should be of
some simple type, but that it can also have some attribute.

• This requires a peculiar syntax

Example:

<element name="category" type="n:category"/>

<attribute name="class" type="string"/>

<complexType name="category">

<simpleContent>

<extension base="integer">

<attribute ref="n:class"/>

</extension>

</simpleContent>

</complexType>

57 / 83

Connecting Schemas and Instances

Example instance document:

<b:card xmlns:b="http://businesscard.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://businesscard.org

business card.xsd">

<b:name>John Doe</b:name>

<b:title>CEO, Widget Inc.</b:title>

<b:email>john.doe@widget.com</b:email>

<b:phone>(202) 555-1414</b:phone>

<b:logo b:uri="widget.gif"/>

</b:card>

• Only globally declared elements can be starting points for validation!

• The targetNamespace of the Schema, and the nameSpace of the
elements in the instance document must match!

• If the XSD does not have a target namespace, use
noNameSpaceSchemaLocation instead of schemaLocation

58 / 83

Part III: Advanced Features

Complex Type Derivation

• Also complex types can be derived by restricting or extending existing
complex types

• This is similar to inheritance in object-oriented programming languages

Example:

• Assume given the following complex type:

<complexType name="basic card type">

<sequence> <element name="name" type="string"/> </sequence>

</complexType>

60 / 83

Complex Type Derivation

• Also complex types can be derived by restricting or extending existing
complex types

• This is similar to inheritance in object-oriented programming languages

Example:

• We can extend this type with a title element and optional email elements
as follows:

<complexType name="extended type">

<complexContent>

<extension base="b:basic card type">

<sequence>

<element ref="b:title"/>

<element ref="b:email" minOccurs="0"/>

</sequence>

</extension>

</complexContent>

</complexType>

61 / 83

Complex Type Derivation

• Also complex types can be derived by restricting or extending existing
complex types

• This is similar to inheritance in object-oriented programming languages

Example:

• We can subsequently restrict this type such that email becomes required:

<complexType name="restricted type">

<complexContent>

<restriction base="b:extended type">

<sequence>

<element name="name" type="string"/>

<element ref="b:title"/>

<element ref="b:email"/>

</sequence>

</restriction>

</complexContent>

</complexType>

62 / 83

Complex Type Derivation: subsumption

Assume that:

• T is some (complex or simple) type

• T− is derived from T by restriction

• T+ is derived from T by extension

Subsumption is the principle that whenever a instance of type T is required,

• an instance of type T− may be used instead (every instance of type T− is
also of type T)

• an instance of type T+ may be used instead if the instance has attribute
xsi:type="T+" with

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Definition

Note: Derivation, instantiation, and subsumption can be constrained using final,
abstract, and block

63 / 83

Complex Type Derivation: subsumption

Assume that:

• T is some (complex or simple) type

• T− is derived from T by restriction

• T+ is derived from T by extension

Subsumption is the principle that whenever a instance of type T is required,

• an instance of type T− may be used instead (every instance of type T− is
also of type T)

• an instance of type T+ may be used instead if the instance has attribute
xsi:type="T+" with

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Definition

Note: Derivation, instantiation, and subsumption can be constrained using final,
abstract, and block

64 / 83

Namespaces

<schema targetNamespace="..." ...>

• Prefixes are also used in certain attribute values!

• Unqualified Locals:
◦ if enabled, the name of a locally declared element or attribute in the

instance document must have no namespace prefix (i.e. the empty
namespace URI)

◦ such an attribute or element “belongs to” the element declared in the
surrounding global definition

◦ always change the default behavior using
elementFormDefault="qualified"

65 / 83

Uniqueness, Keys, references

• Keys can be defined by means of key

• Keys can be referred to by means of keyref

• unique functions as key, but fields may be absent

Example:

<element name="w:widget" xmlns:w="http://www.widget.org">

<complexType> ... </complexType>

<key name="my widget key">

<selector xpath="w:components/w:part"/>

<field xpath="@manufacturer"/>

<field xpath="w:info/@productid"/>

</key>

<keyref name="annotation references" refer="w:my widget key">

<selector xpath=".//w:annotation"/>

<field xpath="@manu"/>

<field xpath="@prod"/>

</keyref>

</element>
66 / 83

Other Features

• Groups

• Substitution groups (essentially subsumption based on element names,
not types)

• Nil values

• Annotations

• Defaults and whitespace

• Modularization

Read the book chapter

67 / 83

Specifying RecipyML with XML Schema

By means of
Online

demonstration

68 / 83

Problems with the XML Schema Description

We had the following problems with the DTD description:

• calories should contain a non-negative number; → FIXED!

• protein should contain a value on the form N% where N is between 0
and 100; → FIXED!

• comment should be allowed to appear anywhere in the contents of
recipe; → NOT FIXED!

• unit should only be allowed in an elements where amount is also
present; → NOT FIXED!

• nested ingredient elements should only be allowed when amount is
absent; → NOT FIXED!

69 / 83

Limitations of XML Schema

• The details are extremely complicated (and the spec is unreadable)

• Declarations are (mostly) context insentitive

• It is impossible to write an XML Schema description of XML Schema

• With mixed content, character data cannot be constrained

• Unqualified local elements are bad practice

• Cannot require specific root element

• Element defaults cannot contain markup

• The type system is overly complicated

• xsi:type is problematic

• Simple type definitions are inflexible

70 / 83

An important comment (not in book!)

The regular expressions used as element content models must be deter-
ministic, sometimes also called one-unambiguous

Intuitively:

• Intuitively, a regular expression is deterministic if, when processing the
input sequence from left to right, it is always determined which symbol in
the expression matches the next input symbol without looking ahead.

• This is supposed to make implementations faster

Example:

• a, a | a, b is not deterministic (consider input aa)

• a, (a | b) is deterministic

• Note that these two expressions match the same sequences!

71 / 83

An important comment (not in book!)

The regular expressions used as element content models must be deter-
ministic, sometimes also called one-unambiguous

Intuitively:

• Intuitively, a regular expression is deterministic if, when processing the
input sequence from left to right, it is always determined which symbol in
the expression matches the next input symbol without looking ahead.

• This is supposed to make implementations faster

Example:

• a, a | a, b is not deterministic (consider input aa)

• a, (a | b) is deterministic

• Note that these two expressions match the same sequences!

72 / 83

An important comment (not in book!)

The regular expressions used as element content models must be deter-
ministic, sometimes also called one-unambiguous

Intuitively:

• Intuitively, a regular expression is deterministic if, when processing the
input sequence from left to right, it is always determined which symbol in
the expression matches the next input symbol without looking ahead.

• This is supposed to make implementations faster

Example:

• a, a | a, b is not deterministic (consider input aa)

• a, (a | b) is deterministic

• Note that these two expressions match the same sequences!

73 / 83

An important comment (not in book!)

The regular expressions used as element content models must be deter-
ministic, sometimes also called one-unambiguous

Intuitively:

• Intuitively, a regular expression is deterministic if, when processing the
input sequence from left to right, it is always determined which symbol in
the expression matches the next input symbol without looking ahead.

• This is supposed to make implementations faster

Example:

• a, a | a, b is not deterministic (consider input aa)

• a, (a | b) is deterministic

• Note that these two expressions match the same sequences!

74 / 83

An important comment (not in book!)

• For a regular expression α, define α to be the regular expression
obtained from α by replacing, for each i , the i-th occurrence of symbol
σ in α (counting from left to right) by σi

• So if α is over the alphabet {a, b, c , . . . } then α is over the alphabet
{a1, a2, . . . , b1, b2, . . . , c1, c2, . . . }.

• A regular expression α is deterministic if there are no sequences waiv
and wajv

′ in L(r) with i 6= j (w may be empty).

Definition

Example:

• a, a | a, b → a1, a2 | a3, b1

not deterministic: consider a1a2 and a3b1

• a, (a | b)→ a1, (a2 | b1)

deterministic

• (a | b)*, a, c , (b | c)*→ (a1 | b1)*, a2, c1, (b2 | c2)*

deterministic? or

not

?

75 / 83

An important comment (not in book!)

• For a regular expression α, define α to be the regular expression
obtained from α by replacing, for each i , the i-th occurrence of symbol
σ in α (counting from left to right) by σi

• So if α is over the alphabet {a, b, c , . . . } then α is over the alphabet
{a1, a2, . . . , b1, b2, . . . , c1, c2, . . . }.

• A regular expression α is deterministic if there are no sequences waiv
and wajv

′ in L(r) with i 6= j (w may be empty).

Definition

Example:

• a, a | a, b → a1, a2 | a3, b1

not deterministic: consider a1a2 and a3b1

• a, (a | b)→ a1, (a2 | b1)

deterministic

• (a | b)*, a, c , (b | c)*→ (a1 | b1)*, a2, c1, (b2 | c2)*

deterministic? or

not

?

76 / 83

An important comment (not in book!)

• For a regular expression α, define α to be the regular expression
obtained from α by replacing, for each i , the i-th occurrence of symbol
σ in α (counting from left to right) by σi

• So if α is over the alphabet {a, b, c , . . . } then α is over the alphabet
{a1, a2, . . . , b1, b2, . . . , c1, c2, . . . }.

• A regular expression α is deterministic if there are no sequences waiv
and wajv

′ in L(r) with i 6= j (w may be empty).

Definition

Example:

• a, a | a, b → a1, a2 | a3, b1

not deterministic: consider a1a2 and a3b1

• a, (a | b)→ a1, (a2 | b1)

deterministic

• (a | b)*, a, c , (b | c)*→ (a1 | b1)*, a2, c1, (b2 | c2)*

deterministic? or

not

?

77 / 83

An important comment (not in book!)

• For a regular expression α, define α to be the regular expression
obtained from α by replacing, for each i , the i-th occurrence of symbol
σ in α (counting from left to right) by σi

• So if α is over the alphabet {a, b, c , . . . } then α is over the alphabet
{a1, a2, . . . , b1, b2, . . . , c1, c2, . . . }.

• A regular expression α is deterministic if there are no sequences waiv
and wajv

′ in L(r) with i 6= j (w may be empty).

Definition

Example:

• a, a | a, b → a1, a2 | a3, b1 not deterministic: consider a1a2 and a3b1

• a, (a | b)→ a1, (a2 | b1)

deterministic

• (a | b)*, a, c , (b | c)*→ (a1 | b1)*, a2, c1, (b2 | c2)*

deterministic? or

not

?

78 / 83

An important comment (not in book!)

• For a regular expression α, define α to be the regular expression
obtained from α by replacing, for each i , the i-th occurrence of symbol
σ in α (counting from left to right) by σi

• So if α is over the alphabet {a, b, c , . . . } then α is over the alphabet
{a1, a2, . . . , b1, b2, . . . , c1, c2, . . . }.

• A regular expression α is deterministic if there are no sequences waiv
and wajv

′ in L(r) with i 6= j (w may be empty).

Definition

Example:

• a, a | a, b → a1, a2 | a3, b1

not deterministic: consider a1a2 and a3b1

• a, (a | b)→ a1, (a2 | b1) deterministic

• (a | b)*, a, c , (b | c)*→ (a1 | b1)*, a2, c1, (b2 | c2)*

deterministic? or

not

?

79 / 83

An important comment (not in book!)

• For a regular expression α, define α to be the regular expression
obtained from α by replacing, for each i , the i-th occurrence of symbol
σ in α (counting from left to right) by σi

• So if α is over the alphabet {a, b, c , . . . } then α is over the alphabet
{a1, a2, . . . , b1, b2, . . . , c1, c2, . . . }.

• A regular expression α is deterministic if there are no sequences waiv
and wajv

′ in L(r) with i 6= j (w may be empty).

Definition

Example:

• a, a | a, b → a1, a2 | a3, b1

not deterministic: consider a1a2 and a3b1

• a, (a | b)→ a1, (a2 | b1)

deterministic

• (a | b)*, a, c , (b | c)*→ (a1 | b1)*, a2, c1, (b2 | c2)*
deterministic? or not?

80 / 83

An important comment (not in book!)

• For a regular expression α, define α to be the regular expression
obtained from α by replacing, for each i , the i-th occurrence of symbol
σ in α (counting from left to right) by σi

• So if α is over the alphabet {a, b, c , . . . } then α is over the alphabet
{a1, a2, . . . , b1, b2, . . . , c1, c2, . . . }.

• A regular expression α is deterministic if there are no sequences waiv
and wajv

′ in L(r) with i 6= j (w may be empty).

Definition

Example:

• a, a | a, b → a1, a2 | a3, b1

not deterministic: consider a1a2 and a3b1

• a, (a | b)→ a1, (a2 | b1)

deterministic

• (a | b)*, a, c , (b | c)*→ (a1 | b1)*, a2, c1, (b2 | c2)*

deterministic? or

not

?

81 / 83

An important comment (not in book!)

Can we make every regular expression deterministic?

• a, a | a, b −→ a, (a | b)

No there exists regular expressions for which no equivalent deterministic
regular expression exists.

Theorem

So we are limited to a subset of the regular expressions in DTDs and
XSDs

82 / 83

An important comment (not in book!)

Can we make every regular expression deterministic?

• a, a | a, b −→ a, (a | b)

No there exists regular expressions for which no equivalent deterministic
regular expression exists.

Theorem

So we are limited to a subset of the regular expressions in DTDs and
XSDs

83 / 83

