INFO-H-509 XML Technologies

XML Schema Languages Part |

Stijn Vansummeren

March 6, 2013

Objectives

1. The purpose of using schemas

2. Regular Expressions — a commonly used formalism in
schema languages

3. The schema language DTD and its expressiveness

Our story so far ...

XML

e |s a standard, flexible notation for text with markup

e Does not constrain the form of XML documents

However:

e Applications typically expect XML documents of a specific form:
XHTML, XML Recipes, ...

e How can this form be described?

e How can applications check that an input document has the requested
form?

Our story so far ...

XML

e |s a standard, flexible notation for text with markup

e Does not constrain the form of XML documents

However:

e Applications typically expect XML documents of a specific form:
XHTML, XML Recipes, ...

e How can this form be described?

e How can applications check that an input document has the requested
form?

Implementing a specialized validation tool for each XML Language sepa-
rately is not the solution...

XML Languages, Schemas, and validation

Definition

e An XML Language is a set of XML documents that belong to the same
“application domain”

Examples:
e XHTML
e XML Recipes

XML Languages, Schemas, and validation

Definition

e A schema is a formal definition of the syntax of an XML language

® A document is either valid w.r.t. a schema, or not

defines

<!ELEMENT store (order™*,stock)>
<!ELEMENT order (customer,item™)>
<!ELEMENT customer (name,email®)>
<!ELEMENT item (id,price

+(aty, (supplier + item™)))>
<!ELEMENT stock (item*)>
<!ELEMENT supplier (first,last,email*)>
<!ELEMENT name (#PCDATA)>
<VELEMENT email (#PCDATA)>
<!ATTLIST price reductionCDTATA#IMPLIED>

The benefit of having schemas

e Formal but human-readable descriptions

e Documents can be validated automatically with existing schema
processors (no need to “roll your own")

The idea of validation:

instance
document

schema
processor

valid invalid
nprmalized error
instance message
document

XML Languages, Schemas, and validation

Definition

e A schema language is a notation by which schemas can be defined.]

XML Languages, Schemas, and validation

Definition

e A schema language is a notation by which schemas can be defined.]

Here we will study two schema languages
e DTDs: Document Type Definitions
e XSDs: XML Schema Defintions (next lesson)

General Schema Language Requirements

e Expressiveness
e Efficiency
e Comprehensibility

10/71

General Schema Language Requirements

e Expressiveness
e Efficiency
e Comprehensibility

Here we will study two schema languages
e DTDs: limited expressiveness, very efficient, straightforward to use

e XSDs: greater expressiveness, efficient, more difficult to use

11/71

Intermezzo: Regular Expressions (Syntax)

(Definition

N

e Let X be an alphabet (typically the set of all Unicode characters or the set of
all element names)

12/71

Intermezzo: Regular Expressions (Syntax)

(Definition

N

e Let X be an alphabet (typically the set of all Unicode characters or the set of
all element names)

e A regular expression is an expression built from the following rules

13/71

Intermezzo: Regular Expressions (Syntax)

Definition

(N\

e Let X be an alphabet (typically the set of all Unicode characters or the set of
all element names)

e A regular expression is an expression built from the following rules

1. each o € X is by itself a regular expression

Intermezzo: Regular Expressions (Syntax)

(Definition

e Let X be an alphabet (typically the set of all Unicode characters or the set of
all element names)

e A regular expression is an expression built from the following rules

1. each o € X is by itself a regular expression

2. if a and (8 are regular expressions, then the following are also regular
expressions:

a? % a+ apB alp (a)

N

Intermezzo: Regular Expressions (Syntax)

(Definition

e Let X be an alphabet (typically the set of all Unicode characters or the set of
all element names)

e A regular expression is an expression built from the following rules

1. each o € X is by itself a regular expression
2. if a and (8 are regular expressions, then the following are also regular
expressions:

a? % a+ apB alp (a)

N

e A regular expression over the alphabet {0,1,...,9,—}
0 (=7 (1]2/3[4|5/6]7|8]9) (0]1|2[3|4/5|6]7|8]9)*)

e A regular expression over the alphabet {caption, col, colgroup, thead,
tfoot, tbody, tr}

caption? (colx | colgroup#) thead? tfoot? (tbody+ | tr+)

16/71

Intermezzo: Regular Expressions (Semantics)

Intuitively, a regular expression matches a sequence over ¥:

o € ¥ matches only o

«? matches zero or one «

a* matches zero or more a's

a-+ matches one or more «'s

a8 matches any concatenation of an « and a 3

a | B matches the union of « and 3

17/71

Intermezzo: Regular Expressions (Semantics)

Intuitively, a regular expression matches a sequence over ¥:

o € ¥ matches only o

«? matches zero or one «

a* matches zero or more a's

a-+ matches one or more «'s

a8 matches any concatenation of an « and a 3

a | B matches the union of « and 3

Consider

01 (=7(1]23]4/5/6]7(8|9) (0[1]2[3]4(5[6]78|9)*)

Intermezzo: Regular Expressions (Semantics)

Intuitively, a regular expression matches a sequence over ¥:

o € ¥ matches only o

«? matches zero or one «

a* matches zero or more a's

a-+ matches one or more «'s

a8 matches any concatenation of an « and a 3

a | B matches the union of « and 3

Consider

01 (=7(1]23]4/5/6]7(8|9) (0[1]2[3]4(5[6]78|9)*)

® |t matches O; it also matches 123

19

71

Intermezzo: Regular Expressions (Semantics)

Intuitively, a regular expression matches a sequence over ¥:

o € ¥ matches only o

«? matches zero or one «

a* matches zero or more a's

a-+ matches one or more «'s

a8 matches any concatenation of an « and a 3

a | B matches the union of « and 3

Consider

01 (=7(1]23]4/5/6]7(8|9) (0[1]2[3]4(5[6]78|9)*)

® |t matches O; it also matches 123

® |t does not match 01; neither does it match 3.14

Intermezzo: Regular Expressions (Semantics)

Intuitively, a regular expression matches a sequence over ¥:

o € ¥ matches only o

«? matches zero or one «

a* matches zero or more a's

a-+ matches one or more «'s

a8 matches any concatenation of an « and a 3

a | B matches the union of « and 3

Consider

01 (=7(1]23]4/5/6]7(8|9) (0[1]2[3]4(5[6]78|9)*)

® |t matches O; it also matches 123

® |t does not match 01; neither does it match 3.14
® Does it match —193207

21/71

Intermezzo: Regular Expressions (Semantics)

(Definition

Formally, define the set £(«a) of all sequences matched by a regular expression «)

by induction on «a:

L(o) = {0}
a?) ={e} U L(a)

£(

L(ax)={s1...5,| n>0,every s; € L(a)}
o Lla+)={s1...5, | n>1,every s; € L(a)}

L£(

L£(

af)={sis2|s € L(a),s € L(S)}
al|B) = L(a) U L(B)

Here, e denotes the empty sequence. We call £(«) also the language of a.

DTDs: Document Type Definitions

e Defined as a subset of the DTD formalism from SGML
o Specified as an integral part of XML 1.0
e A starting point for development of more expressive schema languages

e Considers elements, attributes, and character data — processing
instructions and comments are mostly ignored; no support for namespaces

Example DTD

<!ELEMENT store (order*, stock)>
<!ELEMENT order (customer,item™)>
<!ELEMENT customer (name,email®)>
<VELEMENT item (id,price

| (qty, (supplier | item™)))>
<!ELEMENT stock (item*)>
<!ELEMENT supplier (first,last,email®)>
<1ELEMENT name (#PCDATA)> _ _
<VELEMENT email (#PCDATA)> John Mitchell/ /j:m.yahoo.com
<!ATTLIST price reduction CDATA #IMPLIED>

e DTD provides content models for elements
e Specifies attribute names for elements, plus their legal values

Example DTD

<!ELEMENT store (order*, stock)>
<!ELEMENT order (customer,item™)>
<!ELEMENT customer (name, email*)>)
<VELEMENT item (id, price

| (aty, (supplier | item™)))> customer
<!ELEMENT stock (item*)>
<!ELEMENT supplier (first,last, email*)>

<VELEMENT name (#PCDATA)> _]
<VELEMENT email (#PCDATA)> John Mitchell/ /j.m.yahoo.com
<!ATTLIST price reduction CDATA #IMPLIED>

e DTD provides content models for elements
e Specifies attribute names for elements, plus their legal values

Example DTD

<!ELEMENT store (order*, stock)>
<!ELEMENT order (customer,item™)>

<!ELEMENT customer (name, email*);\
<!ELEMENT item (id,price

| (aty, (supplier | item™)))> (@ustomer))
<!ELEMENT stock (item*)>
<VELEMENT supplier (first,last,email*)>
<!ELEMENT name (#PCDATA)> _ :
<VELEMENT email (#PCDATA)> John Mitchell/ /j:m.yahoo.com

<!ATTLIST price reduction CDATA #IMPLIED>

e DTD provides content models for elements
e Specifies attribute names for elements, plus their legal values

Example DTD

<!ELEMENT store (order*, stock)>
<!ELEMENT order (customer,item™)>
<!ELEMENT customer (name,email®)>
<VELEMENT item (id,price

| (qty, (supplier | item™)))>
<!ELEMENT stock (item*)>
<!ELEMENT supplier (first,last,email®)>
<1ELEMENT name (#PCDATA)> _ _ ‘
<VELEMENT email (#PCDATA)> <— JohrHMitchel7{/J.m yahoo com /)
<!ATTLIST price reduction CDATA #IMPLIED>

e DTD provides content models for elements
e Specifies attribute names for elements, plus their legal values

DTDs: Document Type Definitions: Syntax

Syntactically, a DTD is a collection of:
e element declarations

e attribute-list declarations

e entity declarations

28 /71

Element declarations

(Definition
e An element declaration is of the form
<!ELEMENT element-name content-model>

A content model can be:

o EMPTY
o ANY

o #PCDATA
o a regular expression over element names (concatenation with “)")
o (#PCDATA | e1 | e | --- | en)* (this is called mixed content)

29 /71

Element declarations

(Definition
® An element declaration is of the form
<IELEMENT element-name content-model>

A content model can be:

o EMPTY
o ANY

o #PCDATA
o a regular expression over element names (concatenation with “)")
o (#PCDATA | e | &2 | -+ | en)* (this is called mixed content)

Example:

e <!ELEMENT store (order®,stock)>

® <!ELEMENT description ((#PCDATA | name | price)x) >
® <!ELEMENT is_on_offer EMPTY >

30/71

Attribute declarations

rDefinition
e An attribute declaration is of the form
<VATTLIST element-name attribute-definitions>

e attribute-definitions is a sequence of attribute definitions, separated by
whitespace

e An attribute definition consists of 3 components

o an attribute name
o an attribute type
o a default declaration

31/71

Attribute declarations

_Definition .
e An attribute declaration is of the form

<VATTLIST element-name attribute-definitions>
e attribute-definitions is a sequence of attribute definitions, separated by

whitespace
e An attribute definition consists of 3 components
o an attribute name

o an attribute type
o a default declaration)

Example:
® <IATTLIST price reduction CDTATA #IMPLIED>
® <IATTLIST input maxlength CDTATA #IMPLIED tabindex CDTATA #REQUIRED >

32/71

Attribute declarations: attribute types

_Definition
An attribute type is either

® CDATA: any value

Example:
® <IATTLIST price reduction CDATA #IMPLIED>

33/71

Attribute declarations: attribute types

Definition

(An attribute type is either
® CDATA: any value

® (s1]|s|---]|sn): an enumeration of possible values

Example:
® <IATTLIST price reduction CDATA #IMPLIED>
® <IATTLIST p align (left | center | right | justify) #IMPLIED>

Attribute declarations: attribute types

Definition

(An attribute type is either
® CDATA: any value
® (s1]|s|---]|sn): an enumeration of possible values

e ID: must have a unique value across the document

Example:
® <IATTLIST price reduction CDATA #IMPLIED>

® <IATTLIST p align (left | center | right | justify) #IMPLIED>
® <IATTLIST recipe id ID #IMPLIED>

Attribute declarations: attribute types

Definition

(An attribute type is either
® CDATA: any value

(si]s2|---|sn): an enumeration of possible values

ID: must have a unique value across the document

IDREF: value must occur in an ID attribute somewhere in the document

IDREFS: list of IDREF, separated by whitespace

Example:

® <IATTLIST price reduction CDATA #IMPLIED>

® <IATTLIST p align (left | center | right | justify) #IMPLIED>
® <IATTLIST recipe id ID #IMPLIED>

® <IATTLIST related ref IDREF #IMPLIED>

36/71

Attribute declarations: default declarations

Definition
An attribute default declaration is either

e #REQUIRED: must always be present

37/71

Attribute declarations: default declarations

Definition
An attribute default declaration is either

e #REQUIRED: must always be present
e #IMPLIED: optional

38/71

Attribute declarations: default declarations

Definition

An attribute default declaration is either
e #REQUIRED: must always be present
e #IMPLIED: optional

® "yglue": optional, if attribute is not present, value will be used as default

39/71

Attribute declarations: default declarations

Definition

An attribute default declaration is either

#REQUIRED: must always be present
#IMPLIED: optional
"value": optional, if attribute is not present, value will be used as default

#FIXED "walue": required, must have this value

40/71

Attribute declarations: default declarations

Definition

An attribute default declaration is either

e #REQUIRED: must always be present

e #IMPLIED: optional

® "yglue": optional, if attribute is not present, value will be used as default

® #FIXED "walue": required, must have this value

Example:

<!ATTLIST form
action CDATA #REQUIRED
onsubmit CDATA #IMPLIED
method (get | post) "get”
enctype CDATA "application/x-www-form-urlencoded">

Attribute declarations: default declarations

Definition

An attribute default declaration is either

e #REQUIRED: must always be present

e #IMPLIED: optional

® "yglue": optional, if attribute is not present, value will be used as default

® #FIXED "walue": required, must have this value

Example:

<!ATTLIST form
action CDATA #REQUIRED
onsubmit CDATA #IMPLIED
method (get | post) "get”
enctype CDATA "application/x-www-form-urlencoded">

<!ATTLIST html
xmlns CDATA #FIXED "http: //www.w3.org/1999/xhtml” >

Attribute declarations: default declarations

Example:

<!ATTLIST form
action CDATA #REQUIRED
onsubmit CDATA #IMPLIED
method (get | post) "get”
enctype CDATA "application/x-www-form-urlencoded">

® Input:
<form action="http://code.ulb.ac.be/hello.jsp">

</form>

43 /71

Attribute declarations: default declarations

Example:

<!ATTLIST form
action CDATA #REQUIRED
onsubmit CDATA #IMPLIED
method (get | post) "get”
enctype CDATA "application/x-www-form-urlencoded">

® Input:
<form action="http://code.ulb.ac.be/hello.jsp">

</form>
e Qutput after normalization:

<form action="http://code.ulb.ac.be/hello.jsp"
method="get"
enctype="application/x-www-form-urlencoded">

</form>

44 /71

Entity Declarations

(Entity Declarations are a simple macro mechanism

There are 4 kinds of entity declarations
e Internal entity declarations

e Internal parameter entity declarations

e External parsed entity declarations

e External unparsed entity declarations

Internal Entity Declarations

(Internal Entity Declarations apply to the instance document J

Example:

® |n the DTD:

<!ENTITY copyrightnotice "Copyright © 2005 Widgets R’ Us.">

46 /71

Internal Entity Declarations

(Internal Entity Declarations apply to the instance document

Example:

® |n the DTD:
<!ENTITY copyrightnotice "Copyright © 2005 Widgets R’ Us.">

® |nput in Input Document:

A gadget has a medium size head and a big gizmo subwidget.
©rightnotice;

Internal Entity Declarations

(Internal Entity Declarations apply to the instance document J

Example:
® |n the DTD:

<!ENTITY copyrightnotice "Copyright © 2005 Widgets R’ Us.">

® |nput in Input Document:
A gadget has a medium size head and a big gizmo subwidget.
©rightnotice;

e Qutput after normalization:

A gadget has a medium size head and a big gizmo subwidget.
Copyright © 2005 Widgets ’R’ Us.

48 /71

Internal Parameter Entity Declarations

[Internal Parameter Entity Declarations apply to the DTD, not the instance doc-
ument

)

Example:

® |n the DTD:

<IENTITY % Shape "(rect|circle|poly|default)">

Internal Parameter Entity Declarations

[Internal Parameter Entity Declarations apply to the DTD, not the instance doc-]
ument

Example:
® |n the DTD:

<IENTITY % Shape "(rect|circle|poly|default)">
® Then:

<IATTLIST area shape %Shape; "rect">
Corresponds to

<IATTLIST area shape (rect|circle|polyldefault) "rect">

50/71

External Parsed Entity Declarations

(External Parsed Entity Declarations References XML Data in other files

Example:

® |n the DTD:

<!ENTITY widgets SYSTEM "http://www.brics.dk/ixwt/widgets.xml">

External Parsed Entity Declarations

(External Parsed Entity Declarations References XML Data in other files

Example:

® |n the DTD:

<!ENTITY widgets SYSTEM "http://www.brics.dk/ixwt/widgets.xml">

® |nput in Input Document:

<items> &widgets; </items>

External Parsed Entity Declarations

(External Parsed Entity Declarations References XML Data in other files

Example:
® |n the DTD:

<!ENTITY widgets SYSTEM "http://www.brics.dk/ixwt/widgets.xml">

® |nput in Input Document:

<items> &widgets; </items>

e Qutput after normalization:

<items> contents of widgets.zml goes here </items>

External Unparsed Entity Declarations

(External Unparsed Entity Declarations References non-XML Data in other files J

Example:

® |n the DTD:

<!ENTITY widget-image SYSTEM
"http://www.brics.dk/ixwt/widget.gif" NDATA gif >
<INOTATION gif SYSTEM

"http://www.iana.org/assignments/media-types/image/gif">

54 /71

Specifying a DTD for a document

By means of a Document Type Declaration

e External DTD: <IDOCTYPE rootelem SYSTEM url>
e Internal DTD: <IDOCTYPE rootelem [declarations | >

55 /71

Specifying a DTD for a document

By means of a Document Type Declaration

e External DTD: <IDOCTYPE rootelem SYSTEM url>
e Internal DTD: <IDOCTYPE rootelem [declarations | >

Example:

e External:

<?xml version="1.1"7>
<!DOCTYPE collection SYSTEM "http://www.brics.dk/ixwt/recipes.dtd">

<collection> ... </collection>

56 /71

Specifying a DTD for a document

By means of a Document Type Declaration

e External DTD: <IDOCTYPE rootelem SYSTEM url>
e Internal DTD: <IDOCTYPE rootelem [declarations | >

Example:

e External:

<?xml version="1.1"7>
<!DOCTYPE collection SYSTEM "http://www.brics.dk/ixwt/recipes.dtd">

<collection> ... </collection>

® |[nternal:

<?xml version="1.1"7>
<!DOCTYPE collection [
<!ENTITY collection (description,recipy*)>

1>
<collection> ... </collection>

Checking Validity With DTDs

A DTD processor (also called a validating XML parser):

parses the input document (includes checking well-formedness);

checks the root element name;

for each element, checks its contents and attributes;

inserts default values for attributes, if necessary;

checks uniqueness and referential constraints (ID/IDREF(S) attributes);

expands references to internal and external entities.

Specifying RecipyML with DTDs

By means of
Online
demonstration

59/71

Problems with the DTD description

e calories should contain a non-negative number;

e protein should contain a value on the form N% where N is between 0
and 100;

e comment should be allowed to appear anywhere in the contents of
recipe;

e unit should only be allowed in an elements where amount is also
present;

® nested ingredient elements should only be allowed when amount is
absent;

Problems with the DTD description

e calories should contain a non-negative number;

e protein should contain a value on the form N% where N is between 0
and 100;

e comment should be allowed to appear anywhere in the contents of
recipe;

e unit should only be allowed in an elements where amount is also
present;

® nested ingredient elements should only be allowed when amount is
absent;

Conclusion: Qur DTD schema permits in some cases too much and
in other cases too little!

61/71

Limitations of DTDs

M=

o

Cannot constrain character data
Specification of attribute values is too limited
Element and attribute declarations are context insensitive

Character data cannot be combined with the regular expression content
model

The content models lack an “interleaving” operator

6. The support for modularity, reuse, and evolution is too primitive

7. The normalization features lack content defaults and proper whitespace

control

8. Structured embedded self-documentation is not possible
9. The ID/IDREF mechanism is too simple

10.
11.

It does not itself use an XML syntax

No support for namespaces

Limitations of DTDs

M=

o

Cannot constrain character data
Specification of attribute values is too limited
Element and attribute declarations are context insensitive

Character data cannot be combined with the regular expression content
model

The content models lack an “interleaving” operator

6. The support for modularity, reuse, and evolution is too primitive

7. The normalization features lack content defaults and proper whitespace

control

8. Structured embedded self-documentation is not possible
9. The ID/IDREF mechanism is too simple

10.
11.

It does not itself use an XML syntax

No support for namespaces

63 /71

What XML languages can we express with a DTD
schema?

(Observation: There is only one declaration for every element in a DTD D J

64 /71

What XML languages can we express with a DTD
schema?

(Observation: There is only one declaration for every element in a DTD D J

Hence if eD

65 /71

What XML languages can we express with a DTD
schema?

(Observation: There is only one declaration for every element in a DTD D J

Hence if € D and eD

66 /71

What XML languages can we express with a DTD
schema?

(Observation: There is only one declaration for every element in a DTD D J

Hence if € D and € D then eD

67 /71

What XML languages can we express with a DTD
schema?

(Observation: There is only one declaration for every element in a DTD D J

Hence if € D and € D then eD

We can use this to show that a tree language is not expressible as a DTD

68 /71

What XML languages can we express with a DTD
schema?

Example: there is no DTD recognizing only XML documents of the form

e @ @ e
(o) (=7) (ar) (=) (roc)

69/71

What XML languages can we express with a DTD
schema?

Example: there is no DTD recognizing only XML documents of the form

& W
<IDOCTYPE Dealer [

<IELEMENT Dealer (UsedCars, NewCars)>
<IELEMENT UsedCars (ad*)>
<!ELEMENT NewCars (ad*)>
<!ELEMENT ad ((model, year) | model)>

Obviously incorrect:

1>

70/71

What XML languages can we express with a DTD
schema?

Example: there is no DTD recognizing only XML documents of the form

XML Schema will remedy
<IDOCTYPE Dealer [this!
<IELEMENT Dealer (UsedCars, NewCars)>
<IELEMENT UsedCars (ad*)>
<!ELEMENT NewCars (ad*)>
<!ELEMENT ad ((model, year) | model)>

Obviously incorrect:

1>

