
DATA ANALYTICS ON WEB SCALE
Lecture 12

Source: The Economist,
February 25, 2010

The Data Deluge

“ EIGHTEEN months ago, Li & Fung, a firm that manages supply chains
for retailers, saw 100 gigabytes of information flow through its
network each day. Now the amount has increased tenfold. During
2009, American drone aircraft flying over Iraq and Afghanistan sent
back around 24 years' worth of video footage. New models being
deployed this year will produce ten times as many data streams as
their predecessors, and those in 2011 will produce 30 times as many.

Source: The Economist,
February 25, 2010

The Data Deluge

“ Everywhere you look, the quantity of information in the world is
soaring. According to one estimate, mankind created 150 exabytes
(billion gigabytes) of data in 2005. This year, it will create 1,200
exabytes. Merely keeping up with this flood, and storing the bits that
might be useful, is difficult enough. Analysing it, to spot patterns and
extract useful information, is harder still.

Source: The Economist,
February 25, 2010

1 gigabyte = 109 bytes
1 terabyte = 1012 bytes
1 petabyte = 1015 bytes
1 exabyte = 1018 bytes

The Data Deluge on the Web

Social Networks
(Facebook, Twitter)

Web Pages & Links
Internet e-
commerce

Web Surfer History
& Contextualization

(Smartphones)

Web Data
Deluge

Why analyze this data?

Social Networks
(Facebook, Twitter)

Web Pages & Links
Internet e-
commerce

Web Surfer History
& Contextualization

(Smartphones)

Web Data
Deluge

Why analyze this data?

Social Networks
(Facebook, Twitter)

Web Pages & Links
Internet e-
commerce

Web Surfer History
& Contextualization

(Smartphones)

Web Data
Deluge

Web Search Index
Construction

Why analyze this data?

Social Networks
(Facebook, Twitter)

Web Pages & Links
Internet e-
commerce

Web Surfer History
& Contextualization

(Smartphones)

Web Data
Deluge

Web Search Index
Construction

Recommender
systems & advertising

Why analyze this data?

Social Networks
(Facebook, Twitter)

Web Pages & Links
Internet e-
commerce

Web Surfer History
& Contextualization

(Smartphones)

Web Data
Deluge

Web Search Index
Construction

Recommender
systems & advertising

Sentiment analysis
E-marketing

Click Stream Analysis

Is this really problematic?

“ Although it is hard to accurately determine the size of the Web at any
point in time, it is safe to say that it consists of hundreds of billions of
individual documents and that it continues to grow. If we assume the
Web to contain 100 billion documents, with an average document size
of 4 kB (after compression), the Web is about 400 TB …

… The size of the resulting inverted (web search) index depends on the
specific implementation, but it tends to be on the same order of
magnitude as the original repository.

Source: The Datacenter as a Computer
Luiz André Barroso (Google)
Jimmy Clidaras (Google)
Urs Hölzle (Google)

Limitations of Traditional Data Analytics Architecture

Data Collection Processes

Data Storage Infrastructure
[Storage only, no computation]

Extract-Transform-Load (ETL)
Compute Grid

Relational Database System
(Containing Aggregated Data only)

Interactive applications + Reporting
(On aggregated data only)

Limitations of Traditional Data Analytics Architecture

Data Collection Processes

Data Storage Infrastructure
[Storage only, no computation]

Extract-Transform-Load (ETL)
Compute Grid

Relational Database System
(Containing Aggregated Data only)

Interactive applications + Reporting
(On aggregated data only)

Moving the data to another
infrastructure to perform computation
does not scale

Limitations of Traditional Data Analytics Architecture

Data Collection Processes

Data Storage Infrastructure
[Storage only, no computation]

Extract-Transform-Load (ETL)
Compute Grid

Relational Database System
(Containing Aggregated Data only)

Interactive applications + Reporting
(On aggregated data only)

Moving the data to another
infrastructure to perform computation
does not scale

Impossible to explore RAW data

Google’s solutions

• New programming models and frameworks
for distributed and scalable data analysis

Google’s solutions

• New programming models and frameworks
for distributed and scalable data analysis

Name Purpose

Google File System A distributed file system for scalable
storage and high-throughput retrieval

Map Reduce A programming model + execution
environment for general-purpose
distributed batch processing

Pregel A programming model + execution
environment for analysis of graphs

Dremel A query language for interactive SQL-
like analysis of structured datasets

Google’s solutions

• New programming models and frameworks
for distributed and scalable data analysis

Name Purpose

Google File System A distributed file system for scalable
storage and high-throughput retrieval

Map Reduce A programming model + execution
environment for general-purpose
distributed batch processing

Pregel A programming model + execution
environment for analysis of graphs

Dremel A query language for interactive SQL-
like analysis of structured datasets

High-level design described in a series of papers; no implementation available

Google’s solutions

• New programming models and frameworks
for distributed and scalable data analysis

Name Purpose

Google File System A distributed file system for scalable
storage and high-throughput retrieval

Map Reduce A programming model + execution
environment for general-purpose
distributed batch processing

Pregel A programming model + execution
environment for analysis of graphs

Dremel A query language for interactive SQL-
like analysis of structured datasets

Open Source Impl

Apache Hadoop

• HDFS
• M/R

Apache Giraph

Apache Drill

High-level design described in a series of papers; no implementation available

Rest of this lecture

1. Execution hardware

2. HDFS: Hadoop Distributed File System

3. Map/Reduce

WAREHOUSE SCALE MACHINES

Execution environment - 1997

• Just a bunch of
computers.

• The web index fit on
a single computer

• Redundancy to
ensure availability

Execution environment - 1999

• Compute servers consist of
multiple CPUs (possibly with
multiple cores per CPU), and
attached hard disks,

• Servers are collected in racks.
High-speed Ethernet connections
(at least 1Gbps) connect servers
in a rack together

The Google “Corckboard”
rack

Execution environment - currently

• Racks are connected together to central network switches using
multi-Gbps redundant links.

• Access of data from other racks is slower than data on same
computer/same rack

• Many racks together form a data center

An image of the google
datacenter in Mons
(Belgium)

Discussion

• Each compute node is kept simple by design:

– Mid-range computers are much cheaper than
powerful high-range computers …

– … and consume less energy

– … but google has lots of them!

Characteristics

Figure Source: The Datacenter as a Computer

Characteristics

Figure Source: The Datacenter as a Computer
Capacity: The amount of data we can
store per server/rack/datacenter

Characteristics

Figure Source: The Datacenter as a Computer

Characteristics

Figure Source: The Datacenter as a Computer
Latency: The time it takes to fetch a data
item, when asked on local
machine/another server on the same
rack/another server on a different rack

Characteristics

Figure Source: The Datacenter as a Computer

Characteristics

Figure Source: The Datacenter as a Computer
Bandwidth: the speed at which data can
be transferred to the same
machine/another server on the same
rack/another server ona different rack

Characteristics

Figure Source: The Datacenter as a Computer

Characteristics

Figure Source: The Datacenter as a Computer

Conclusion:
• Huge storage capacity

• Latency between racks
= 1/10 latency on rack level
≈ 1/10 latency on server level

• Bandwidth between racks
= 1/10 bandwidth on rack level
= ½ to 1/10 bandwidth on server level

What do we gain? Parallellism!

• Let us consider the maximal aggregate bandwidth: the speed
by which we can analyze data in parallel assuming ideal data
distribution over servers & disks

What do we gain? Parallellism!

• Let us consider the maximal aggregate bandwidth: the speed
by which we can analyze data in parallel assuming ideal data
distribution over servers & disks

• “Embarassingly parallel” example: count the number of times
the word “Belgium” appears in documents on the Web.

What do we gain? Parallellism!

• Let us consider the maximal aggregate bandwidth: the speed
by which we can analyze data in parallel assuming ideal data
distribution over servers & disks

• “Embarassingly parallel” example: count the number of times
the word “Belgium” appears in documents on the Web.

• Each server has multiple CPUs and
can read from multiple disks in
parallel. As such, each server can
analyze many documents in parallel.

What do we gain? Parallellism!

• Let us consider the maximal aggregate bandwidth: the speed
by which we can analyze data in parallel assuming ideal data
distribution over servers & disks

• “Embarassingly parallel” example: count the number of times
the word “Belgium” appears in documents on the Web.

• Each server has multiple CPUs and
can read from multiple disks in
parallel. As such, each server can
analyze many documents in parallel.

What do we gain? Parallellism!

• Let us consider the maximal aggregate bandwidth: the speed
by which we can analyze data in parallel assuming ideal data
distribution over servers & disks

• “Embarassingly parallel” example: count the number of times
the word “Belgium” appears in documents on the Web.

• Each server has multiple CPUs and
can read from multiple disks in
parallel. As such, each server can
analyze many documents in parallel.

• At the end, sum the per-server
counters (which can be done very
fast)

What do we gain? Parallellism!

• Let us consider the maximal aggregate bandwidth: the speed
by which we can analyze data in parallel assuming ideal data
distribution over servers & disks

Component Max Aggr Bandwidth

1 Hard Disk 100 MB/sec (≈ 1 Gbps)

Server = 12 Hard Disks 1.2 GB/sec (≈ 12 Gbps)

Rack = 80 servers 96 GB/sec (≈ 768 Gbps)

Cluster/datacenter = 30 racks 2.88 TB/sec (≈ 23 Tbps)

• Scanning 400TB hence takes 138 secs ≈ 2,3 minutes

• Scanning 400TB sequentially at 100 MB/sec takes ≈ 46,29 days

The challenge

• Scalable software development: allow growth without
requiring re-architecting algorithm/applications

Auto scale

Google’s solutions

• New programming models and frameworks
for distributed and scalable data analysis

Google’s solutions

• New programming models and frameworks
for distributed and scalable data analysis

Name Purpose

Google File System A distributed file system for scalable
storage and high-throughput retrieval

Map Reduce A programming model + execution
environment for general-purpose
distributed batch processing

Pregel A programming model + execution
environment for analysis of graphs

Dremel A query language for interactive SQL-
like analysis of structured datasets

Google’s solutions

• New programming models and frameworks
for distributed and scalable data analysis

Name Purpose

Google File System A distributed file system for scalable
storage and high-throughput retrieval

Map Reduce A programming model + execution
environment for general-purpose
distributed batch processing

Pregel A programming model + execution
environment for analysis of graphs

Dremel A query language for interactive SQL-
like analysis of structured datasets

High-level design described in a series of papers; no implementation available

Google’s solutions

• New programming models and frameworks
for distributed and scalable data analysis

Name Purpose

Google File System A distributed file system for scalable
storage and high-throughput retrieval

Map Reduce A programming model + execution
environment for general-purpose
distributed batch processing

Pregel A programming model + execution
environment for analysis of graphs

Dremel A query language for interactive SQL-
like analysis of structured datasets

Open Source Impl

Apache Hadoop

• HDFS
• M/R

Apache Giraph

Apache Drill

High-level design described in a series of papers; no implementation available

HDFS:
THE HADOOP DISTRIBUTED FILE SYTEM

HDFS Architecture

• HDFS has a master/slave architecture

• Master = NameNode (NN) manages the file system and
regulates access to files by clients.

• Slaves = DataNodes (DN), usually one per server in the cluster,
manage storage attached to the server that they run on.

HDFS Architecture

• HDFS has a master/slave architecture

• Master = NameNode (NN) manages the file system and
regulates access to files by clients.

• Slaves = DataNodes (DN), usually one per server in the cluster,
manage storage attached to the server that they run on.

NameNode

DataNodes

HDFS Architecture

• HDFS has a master/slave architecture

• Master = NameNode (NN) manages the file system and
regulates access to files by clients.

• Slaves = DataNodes (DN), usually one per server in the cluster,
manage storage attached to the server that they run on.

NameNode

DataNodes

• Files are transparently
broken down into blocks
(default 64 MB).

• Blocks are replicated
across datanodes.
Replication is rack-aware.

HDFS Architecture

• HDFS has a master/slave architecture

• Master = NameNode (NN) manages the file system and
regulates access to files by clients.

• Slaves = DataNodes (DN), usually one per server in the cluster,
manage storage attached to the server that they run on.

NameNode

DataNodes

• Files are transparently
broken down into blocks
(default 64 MB).

• Blocks are replicated
across datanodes.
Replication is rack-aware.

dat0.txt 1 3

dat1.txt 2 4 5

HDFS Architecture

• HDFS has a master/slave architecture

• Master = NameNode (NN) manages the file system and
regulates access to files by clients.

• Slaves = DataNodes (DN), usually one per server in the cluster,
manage storage attached to the server that they run on.

NameNode

DataNodes

1 2

4 5

2 5

3

1 3

4

2 4

5

• Files are transparently
broken down into blocks
(default 64 MB).

• Blocks are replicated
across datanodes.
Replication is rack-aware.

dat0.txt 1 3

dat1.txt 2 4 5

HDFS Architecture

• HDFS has a master/slave architecture

• Master = NameNode (NN) manages the file system and
regulates access to files by clients.

• Slaves = DataNodes (DN), usually one per server in the cluster,
manage storage attached to the server that they run on.

NameNode

DataNodes

/users/sv/dat0.txt r:2 {1,3}
/users/sv/dat1.txt r:3 {2, 4, 5}

MetaData(FileName, Replication Factor, Block Ids)

1 2

4 5

2 5

3

1 3

4

2 4

5

• Files are transparently
broken down into blocks
(default 64 MB).

• Blocks are replicated
across datanodes.
Replication is rack-aware.

dat0.txt 1 3

dat1.txt 2 4 5

HDFS Architecture

• HDFS has a master/slave architecture

• Master = NameNode (NN) manages the file system and
regulates access to files by clients.

• Slaves = DataNodes (DN), usually one per server in the cluster,
manage storage attached to the server that they run on.

NameNode

DataNodes

/users/sv/dat0.txt r:2 {1,3}
/users/sv/dat1.txt r:3 {2, 4, 5}

MetaData(FileName, Replication Factor, Block Ids)

1 2

4 5

2 5

3

1 3

4

2 4

5

• Optimized for:
• Large files
• Read throughput
• Appending writes

• Replication ensures:
• Durability
• Availability
• Throughput

HDFS Implementation

• This implies that clients only need to install a JAR file to access
the HDFS

“ The NameNode and DataNode are pieces of software designed to run
on commodity machines. These machines typically run a GNU/Linux
operating system (OS). HDFS is built using the Java language; any
machine that supports Java can run the NameNode or the DataNode
software. Usage of the highly portable Java language means that
HDFS can be deployed on a wide range of machines.

Source: Hadoop documentation

Typical HDFS commands
bin/hadoop fs –ls

bin/hadoop fs –mkdir

bin/hadoop fs –copyFromLocal

bin/hadoop fs –copyToLocal

bin/hadoop fs –moveToLocal

bin/hadoop fs –rm

MAP/REDUCE: SIMPLIFIED DATA
PROCESSING ON LARGE CLUSTERS

M/R Computational Model

• A M/R program (or job) is specified by two functions: map and
reduce

M/R Computational Model

• A M/R program (or job) is specified by two functions: map and
reduce

map: (key1, value1) -> list(key2, value2)

The input key/value pair represents a logical record in the input data source.
In the case of a file this could be a line, or if the input source is a database
table, this could be a record,

A single input key/value pair may result in zero
or more output key/value pairs.

M/R Computational Model

• A M/R program (or job) is specified by two functions: map and
reduce

reduce: (key2, list(value2)) -> list(key3, value3)

The reduce function is called once per
unique map output key, and receives
a list of all values emitted for that key

Like the map function, reduce can output zero
to many key/value pairs.

M/R Computational Model

• For each word occurring in a document on the Web, count the
number of occurrences across all documents.

def map(docid, line):
for each word in line:

yield (word, docid)

def reduce(word, list-of-docids):
yield (word, sizeof(list-of-docids))

M/R: opportunity for parallellism

• We can spawn multiple copies of the map function (called
map tasks) in parallel (at most one for each key/value pair).

• Likewise, we can spawn multiple copies of the reduce
function (called reduce tasks) in parallel (at most one for each
unique key output by the map).

Input

map

map

map

map output

cat, d1
dog, d1
turtle, d1

cat, d2
belgium, d2

turtle, d3
dog, d3

doc1

doc2

doc3

shuffle+sort reduce
input

cat, [d1,d2]

dog, [d1,d3]

turtle, [d1,d3]

belgium, [d2]

reduce

reduce

reduce

reduce

M/R: opportunity for parallellism

• We can spawn multiple copies of the map function (called
map tasks) in parallel (at most one for each key/value pair).

• Likewise, we can spawn multiple copies of the reduce
function (called reduce tasks) in parallel (at most one for each
unique key output by the map).

Input

map

map

map

map output

cat, d1
dog, d1
turtle, d1

cat, d2
belgium, d2

turtle, d3
dog, d3

doc1

doc2

doc3

shuffle+sort reduce
input

cat, [d1,d2]

dog, [d1,d3]

turtle, [d1,d3]

belgium, [d2]

reduce

reduce

reduce

reduce

M/R Execution: Architecture

• Master = JobTracker – accepts jobs, decomposes them into map
and reduce tasks, and schedules them for remote execution on
child nodes.

• Slave = TaskTracker – accepts tasks from Jobtracker and spawns
child processes to do the actual work.

• Idea: ship computation to data

NameNode

DataNodes = TaskTrackers

1 3

4

2 4

5

• The JobTracker accepts M/R
jobs.

• If the input is a HDFS file, a
map task is created for each
block and sent to the node
holding that block for
execution.

• Map output is written to
local disk.

JobTracker Job1

Job2

Map task 1

Map task 2

Reduce task 1

Reduce task 2

…

1 2

4 5

2 5

3

M/R Execution: Architecture

• Master = JobTracker – accepts jobs, decomposes them into map
and reduce tasks, and schedules them for remote execution on
child nodes.

• Slave = TaskTracker – accepts tasks from Jobtracker and spawns
child processes to do the actual work.

• Idea: ship computation to data

NameNode

DataNodes = TaskTrackers

1 3

4

2 4

5

• The JobTracker creates
reduce tasks intelligently

• Reduce tasks read the map
outputs over the network
and write their output
back to HDFS.

JobTracker Job1

Job2

Map task 1

Map task 2

Reduce task 1

Reduce task 2

…

1 2

4 5

2 5

3

M/R Execution: Architecture

• Master = JobTracker – accepts jobs, decomposes them into map
and reduce tasks, and schedules them for remote execution on
child nodes.

• Slave = TaskTracker – accepts tasks from Jobtracker and spawns
child processes to do the actual work.

• Idea: ship computation to data

NameNode

DataNodes = TaskTrackers

1 3

4

2 4

5

• Load balancing: The
JobTracker monitors for
stragglers and may spawn
additional map on
datanodes that hold a
block replica. Whichever
node completes first is
allowed to proceed. The
other(s) is/are killed.

JobTracker Job1

Job2

Map task 1

Map task 2

Reduce task 1

Reduce task 2

…

1 2

4 5

2 5

3

M/R Execution: Architecture

• Master = JobTracker – accepts jobs, decomposes them into map
and reduce tasks, and schedules them for remote execution on
child nodes.

• Slave = TaskTracker – accepts tasks from Jobtracker and spawns
child processes to do the actual work.

• Idea: ship computation to data

NameNode

DataNodes = TaskTrackers

1 3

4

2 4

5

• Failures: In clusters with
1000s of nodes, hardware
failures occur frequently.
The same mechanism as
for load balancing allows
to cope with such failures

JobTracker Job1

Job2

Map task 1

Map task 2

Reduce task 1

Reduce task 2

…

1 2

4 5

2 5

3

References
• S. Ghemawate, H. Gobioff H.-T. Leung

The Google File System
http://research.google.com/archive/gfs-sosp2003.pdf

• HDFS architecture: http://hadoop.apache.org/docs/stable/hadoop-
project-dist/hadoop-hdfs/HdfsDesign.html

• Jeffrey Dean and Sanjay Ghemawat
MapReduce: Simplified Data Processing on Large Clusters
Communications of the ACM 2008

• G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski .
Pregel: a system for large scale graph processing
http://kowshik.github.io/JPregel/pregel_paper.pdf

• L. A. Barroso, J. Clidaras, U. Hölzle
The datacenter as a computer.
http://www.morganclaypool.com/doi/abs/10.2200/S00516ED2V01Y20130
6CAC024

http://research.google.com/archive/gfs-sosp2003.pdf
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://kowshik.github.io/JPregel/pregel_paper.pdf
http://www.morganclaypool.com/doi/abs/10.2200/S00516ED2V01Y201306CAC024

