
RESTFUL WEB SERVICES

INFOH509 XML & Web Technologies

Lecture 10

What is a Web Information System?

• Information system (IS) refers to the networks of hardware
and software that people and organizations use to collect,
filter, process, create, and distribute data.

• Web information system, or web-based information system,
is an information system that uses Internet web technologies
to deliver information and services, to users or other
information systems/applications. It is a software system
whose main purpose is to publish and maintain data by using
hypertext-based principles.

--Wikipedia

--Wikipedia

What is the Web?

• 1989: At the CERN physics laboratory,
Tim Berners-Lee designs a simple
global hypermedia system, now
known as the World Wide Web

Three constitutents (with their current meaning):

• URIs as a means for identifying & locating resources

• HTTP as a protocol for transmitting information over networks

• Several data formats for describing information (representations of
resources):

– HTML for display in a web browser

– XML as a data exchange format

– JSON as a data exchange format, alternative to XML

– RDF as a machine-interpretable data model

INTRODUCTION TO SERVICES
Part I

What is a service?
• The term service is like the term multimedia: lots of people

have given different definitions.

• Essentially, a service is a software function or component:
– It may carry out a business task,
– provides access to files,
– Perform generic functions like authentication and logging,
– …

• Services reflect a new ‘service-oriented’ approach to
programming, based on the idea of composing applications
by discovering and invoking network-available services
rather than building new applications or by invoking
available applications to accomplish some task.

Some history: from local to distributed objects

• Object-oriented programming allows encapsulation of both
behavior and data.

• Clients use objects by first instantiating an object, and then
calling their properties & methods

• Re-use is usually restricted to the same programming
language and platform

Customer
Object

Invoice
Address
Object

(e.g., Java)

Some history: from local to distributed objects

• Components were devised to facilitate software reuse across
disparate programming languages.

• Components group related objects into (binary) units that can
be plugged into applications (cf. electronic component
assembly in circuit boards).

• Component reuse typically restricted to same computing
platform due to incompatible binary interfaces.

Client
Customer

Object

Platform-specific
interface

Invoice
Address
Object

Customer component

(e.g., C++) (e.g., Java)

Some history: from local to distributed objects

• Distributed objects. To share and reuse objects, objects were
deployed to remote servers. Clients connect to such objects
through a remoting technology (CORBA, DCOM, Java or .NET
Remote Method Invocation).

• Clients and distributed objects live in separate machines, and
can therefore live in separate programming languages and
platforms.

• Reuse restricted to the same remoting technology

• Scalability problems due to client state

Client Proxy Stub
Customer

Object

Client Process Server process
for distributed object

Platform A Platform B

Network

Some history: from local to distributed objects

• Distributed objects were quickly grouped into a logic tier that
stores all of the application logic – these are already “services”

Here be services!

What is a service? (cont.)

• Services hence provide logical functions that are shared
across different applications. They enable software that
runs on disparate computing platforms to collaborate.

• A platform may be any combination of hardware, operating
systems (e.g., Windows, Linux, Android, iOS), software
framework (java, .Net, Rails), and programming language.

• The service-oriented paradigm to programming utilizes
services as the constructs to support the rapid
development of easily composable distributed applications
(again cf. electronic component assembly in circuit boards).

What is a Web Service?

• Service reuse is restricted to the same remoting technology
when built on traditional distributed object architectures.

• This is especially problematic in enterprise integration and
communication scenarios, where services must be callable
from outside enterprise boundaries.

Logic & Services tier
[CORBA]

Data tier

Logic & Services tier
[.NET]

Data tier

Enterprise BEnterprise A

?

What is a Web Service?

• Web services integrate disparate systems and expose
reusable business functions over the web (HTTP).

• They leverage HTTP either:
– as a simple transport over which data is carried (e.g., SOAP/WSDL

services), or

– a complete pre-defined application protocol (RESTful services).

Logic & Services tier
[CORBA]

Data tier

Logic & Services tier
[.NET]

Data tier

Enterprise BEnterprise A

HTTP
Web Server Web Server

Where are Services used?
• Within an enterprise (Enterprise Application Integration)

– Accelerate and reduce the cost of integration
– Save on infrastructure deployment and management costs
– Reduce skill requirements
– Improve reuse

• Between enterprises (E-business integration, B2B)
– Providing service to a company’s customers
– e.g., an Insurance company wishes to link its systems to the systems of a new

institutional customer

– Accessing services from a company’s partners and suppliers
– e.g., dynamically link to new partners and suppliers to offer their services to

complement the value the company provides

– Standards and common infrastructure reduce the barriers
– Simplicity accelerates deployment
– Dynamics opens new business opportunities

Web Service API styles

• RPC (Remote Procedure Call)

• Message-based

• Resource-based

• Client sends message to a remote server and blocks while
waiting for response

• Request message identifies the procedure to be executed and its
arguments

• Server decodes message, maps message arguments directly to
input parameters, executes procedure, and sends (serialized)
results back to client

RPC Style (1/2)

Client Service

Procedure name
AND

Procedure arguments

Procedure results

Request

Response

Procedure

• Pros:

– Very easy to implement (lots of frameworks that automate the
process, e.g. JAX-WS framework for Java)

• Cons:

– Usually inflexible and fragile: tight coupling between client and
service, if procedure needs to change (e.g., number of arguments),
all clients need to be rewritten.

– Usually restricted to synchronous communication (client blocks
while waiting for response)

RPC Style (2/2)

• In a message-based API, messages are not derived from the
signatures of remote procedures.

• Instead, messages may carry information on specific topics, tasks
to execute, and events.

• The server selects the correct procedure to execute based on
the message content

Message-based style

Client Service

Topic, Task, or Event ID
AND

Structured msg content

Standardized content

Request

Response

Procedure

Procedure

Procedure

• Pros:

– Looser coupling between clients and servers

– Support for asynchronous communication [necessary on web-scale
networks]

• Cons:

– Messages must be standardized somehow. This is easy if
communication is within the same organization, but more difficult
when many parties are involved.

Message-based Style (2/2)

• In a resource-based API, all procedures, instances of domain
data, and files are given a URI.

• HTTP is used as a complete application protocol to define
standard service behavior.

• Information is exchanged based on standardized media types
(JSON, XML, …) and HTTP response codes where possible

• Clients manipulate the state of resources through
representations (e.g., a database table row may be represented
as XHTML, XML, or JSON).

Resource-based style

Client Service

HTTP REQUEST
(GET, PUT, POST, DELETE)

HTTP RESPONSE
(Standardized/propietary

media type OR HTTP response
code)

Request

Response

Procedure

Procedure

Procedure

Two competing technology stacks

• Big Web Services (WS-*)
– Various (complex) protocols on top of HTTP

(SOAP, UDDI, WSDL, WS-Addressing, …)
– Is mostly used to implement RPC-style services, but

can be used to implement any of the three
– Lots of standards! Primarily meant to create web

services that involve more than 2 peers.

• RESTful Web Services
– Use ONLY HTTP and standard media types
– Restricted to Resource-style services
– Conceptually simpler, but mainly restricted to web

services that are limited to two endpoints

This lecture

Next lecture

A word of caution

• Web Service calls entail distributed communication &
programming

– Network latency

– Failures

– Complexity of distributed programming

• So using web services only makes sense in situations
where out-of-processes and cross-machine calls
make sense.

REST
= REPRESENTATIONAL STATE TRANSFER

Part II

REST: some history

• The term REpresentational State Transfer was introduced and
defined in 2000 by Roy Fielding in his doctoral dissertation.

• Fielding is one of the principal authors of the Hypertext
Transfer Protocol (HTTP) specification versions 1.0 and 1.1.

At the beginning of our efforts within the Internet Engineering
Taskforce to define the existing (HTTP/1.0) and design the
extensions for the new standards of HTTP/1.1 and Uniform
Resource Identifiers (URI), we recognized the need for a model of
how the World Wide Web (WWW, or simply Web) should work.
This idealized model of the interactions within an overall Web
application—what we refer to as the Representational State
Transfer (REST) architectural style—became the foundation for the
modern Web architecture, providing the guiding principles by
which flaws in the existing architecture could be identified and
extensions validated prior to deployment.

“

REST: some history
A software architecture is an abstraction of the runtime elements
of a software system during some phase of its operation. A system
may be composed of many levels of abstraction and many phases
of operation, each with its own software architecture. An
architecture determines how system elements are identified and
allocated, how the elements interact to form a system, the amount
and granularity of communication needed for interaction, and the
interface protocols used for communication.

“

REST is a coordinated set of architectural constraints that attempts to minimize
latency and network communication, while at the same time maximizing the
independence and scalability of component implementations. This is achieved by
placing constraints on connector semantics, where other styles have focused on
component semantics. REST enables the caching and reuse of interactions,
dynamic substitutability of components, and processing of actions by
intermediaries, in order to meet the needs of an Internet-scale distributed
hypermedia system.

From “Principled design of the modern Web architecture.”

REST: some history
The name “Representational State Transfer” is intended to evoke
an image of how a well-designed Web application behaves: a
network of Web pages forms a virtual state machine, allowing a
user to progress through the application by selecting a link or
submitting a short data-entry form, with each action resulting in a
transition to the next state of the application by transferring a
representation of that state to the user.

“

• The modern (human) Web is one instance of a REST-style
architecture

• RESTful web services transfer these ideas from the human
web to web services, founded by idea that there should be no
essential difference between the human web (designed for
human consumption) and the “programmable web” designed
for consumption by software

ROA: Some History

• REST is actually a meta-architecture: it is a collection of
architectures – the current Web is just one instance.

• In 2007, Richardson & Ruby introduced the term Resource
Oriented Architecture (ROA) to refer to a set of design
guidelines and best practices (adhering to the REST
constraints) that should be used to design RESTful Web
Services

• We mention the ROA guidelines in what follows.

• Beware, however, that many current web services do not
implement or follow all of these guidelines. [Your milage may
vary].

Key REST concepts

• Rest consists of 4 key concepts:
– Resources

– Resource names (URIs)

– Resource representations

– Links between resources

• And 4 key properties:
– Addressability

– Statelessness

– Connectedness

– The Uniform Interface

Resources

• Resource examples
– A historical building

– The newspaper “le soir”

– The newspaper “le soir” at a particular date

– The collection of all Belgian newspapers

– The Belgian prime minister

– The preferred newspaper of the prime minister

The key abstraction of information in REST is a resource. Any information that can be
named can be a resource: a document or image, a temporal service (e.g., “today’s
weather in Los Angeles”), a collection of other resources, a nonvirtual object (e.g., a
person), a concept and so on.

“

Every object manipulated by the web service (or web application)
should be identified and exposed as a resource.

RESTFUL WEB SERVICE DESIGN GUIDELINE 1:

URIs: names for resources

• A URI is the name of a resource

• Examples:
– http://www.lesoir.be

– http:// www.lesoir.be/edition/20-01-2012

– http:// www.example.org/newspapers/belgium

– http:// www.example.org/newspapers?country=belgium

• Every identified resource must be assigned at least one URI.
This ensures it is addressable

• A URI should never represent more than one resource.

• Resources can have multiple URIs, but should have as few URIs
as possible.

RESTFUL WEB SERVICE DESIGN GUIDELINE 2:

http://www.lesoir.be/
http://www.lesoir.be/
http://www.lesoir.be/edition/20-01-2012
http://www.lesoir.be/
http://www.example.org/newspapers/belgium
http://www.lesoir.be/
http://www.example.org/newspapers?country=belgium

Representations

• A representation is a description of (some part of) the
resource.

• A resource can have multiple representations (one in HTML,
one in XML, one in a Google protocol buffer, …).

• Example:
– http:// www.example.org/newspapers/belgium could support both

HTML and JSON

Specify, for every resource:

• The representations that the service serves to the client

• The representations that the service accepts from the client

Use standard representations whenever possible

RESTFUL WEB SERVICE DESIGN GUIDELINE 3:

http://www.lesoir.be/
http://www.example.org/newspapers/belgium

On content negotiation and URIs

• Content negotiation can be used to get dinstinct
representations of the same resource.

• By giving these distinct representations their own URIs,
however, we also make them addressable

• Example:
– http:// www.example.org/newspapers/belgium

– http:// www.example.org/newspapers/belgium.json

– http:// www.example.org/newspapers/belgium.xml

– http://www.belgium.be/consitution

– http://www.belgium.be/constitution.nl

– http://www.belgium.be/constitution.fr

• Addressability is useful, e.g.,
– http://myservice.com/rank?site=http%3A%2F%2Fwww.example.org%

2Fnewspapers%2Fbelgium.json

http://www.lesoir.be/
http://www.example.org/newspapers/belgium
http://www.example.org/newspapers/belgium.json
http://www.lesoir.be/
http://www.example.org/newspapers/belgium.xml
http://www.belgium.be/consitution
http://www.belgium.be/constitution.nl
http://www.belgium.be/constitution.fr
http://myservice.com/rank?site=http://www.example.org/newspapers/belgium.json

The Uniform Interface

• All access to resources happens through HTTP uniform
interface (GET, POST, PUT, DELETE, HEAD, OPTIONS).

CRUD REST

CREATE POST Create a (sub)resource

RETRIEVE GET Retrieve a representation of a resource

UPDATE PUT Modify a resource/create a new resource

DELETE DELETE delete a resource

OPTIONS Discover what HTTP methods are supported
by the resource

HEAD requests headers only (similar to GET but
omits representation)

The Uniform Interface (cont.)

HTTP Client Web Server Database

GET /books?isbn=122 SELECT * FROM BOOKS
WHERE ISBN=122

HTTP/1.1 200 OK

{ “title”: “REST”,
“authors”:
[“Auth1”, “Auth2”]

}

RESOURCE RETRIEVAL

The Uniform Interface (cont)

HTTP Client Web Server Database

POST /order
INSERT INTO ORDERS

HTTP/1.1 201 CREATED
Location: /orders/4569

RESOURCE CREATION

Factory URI

The Uniform Interface (cont)

HTTP Client Web Server Database

PUT /orders/4569

<item id=“A”, count=“10”/>

UPDATE ORDERS
SET COUNT= 10
WHERE ORDER=4569
AND ITEMID=“A”

HTTP/1.1 200 OK

RESOURCE UPDATE

The Uniform Interface (cont)

HTTP Client Web Server Database

DELETE /orders/4569 DELETE FROM ORDERS
WHERE ORDER=4569

HTTP/1.1 200 OK

RESOURCE DELETION

GET /orders/4569

HTTP/1.1 404 NOT FOUND

The Uniform Interface (cont)

• All access to resources happens through HTTP uniform
interface (GET, POST, PUT, DELETE, HEAD, OPTIONS).

• All information necessary to understand the request must be
contained in the request message.

Specify, for every URI (and hence, resource): the HTTP methods
supported (e.g., GET and POST, but not DELETE, PUT)

Allow querying of these operations by supporting OPTIONS

RESTFUL WEB SERVICE DESIGN GUIDELINE 4:

Statelessness
• Each request from client to server must contain all of the

information necessary to understand the request, and cannot
take advantage of any client state stored on the server.

• Application state is therefore kept entirely on the client.

• Resource state is of course still kept on the server

• Statelessness:

– Improves reliability because it makes it easier to recover
from partial failures

– Improves scalability because:
• Servers can quickly free computing resources after each request

• Different requests can be handled by different servers (load
balancing) exactly because the server doesn’t have to manage
resource usage across requests.

Safety & idempotency

• GET, HEAD, OPTIONS are read-only operations but PUT, POST,
DELETE are read-write operations with side effects.

• An operation f is called idempotent if
f(f(x)) = f(x)

• PUT and DELETE are idempotent.

• Idempotent and read-only operations can safely be re-
executed multiple times (e.g., network timeouts) without
risking errors

• POST is not idempotent nor read-only, and is not safe to re-
execute

Why the Uniform Interface matters

• Consider a GET of

http://api.del.icio.us/posts/delete

• This misuses GET and does not adhere to the uniform
interface

• But software programs don’t know this. Programs that follow
a link by GETTing it may hence (inadvertly) delete data. [e.g.,
Google Web Accelerator]

Use the HTTP methods correctly when designing web services.

RESTFUL WEB SERVICE DESIGN GUIDELINE 5:

http://api.del.icio.us/posts/delete

Connecting resources

• Server response representations should include links to other
relevant resources

• This makes a web service self-documenting (the
representation can be parsed to see what other resources can
be accessed).

• [This will become more clear with the example that follows]

• In a resource-based API, all procedures, instances of domain
data, and files are given a URI.

• HTTP is used as a complete application protocol to define
standard service behavior.

• Information is exchanges based on standardized media types
(JSON, XML, ATOM, …) and HTTP response codes where possible

• Clients manipulate the state of resources through
representations (e.g., a database table row may be represented
as XHTML, XML, or JSON).

Summary: REST = Resource-based API

Client Service

HTTP REQUEST
(GET, PUT, POST, DELETE)

HTTP RESPONSE
(Standardized/propietary

media type OR HTTP response
code)

Request

Response

Procedure

Procedure

Procedure

Discussion

• In order to allow clients to cache representations that do not
change frequently, the server should include the following

headers:

– Last-Modified

– Etags

• This allows clients to use conditional get (using e.g., If-
Modified-Since and If-None-Matches)

REST: AN EXAMPLE

Design procedure

• Richardson and Ruby propose the following design method to
obtain a resource-oriented architecture

• Figure out the data set

• Split the data set into resources

• For each kind of resource

• Expose a subset of the uniform interface

• Design the representation(s) accepted from the client

• Design the representation(s) served to the client

• Integrate this resource into existing resources, using
hypermedia links

• Consider the typical course of events: what’s supposed to
happen?

• Consider error conditions: what might go wrong?

The ROA procedure

The example scenario

• Example taken from Richardson and Ruby RESTful
web services.

• Suppose we want to construct an (imaginary) web
service that serves maps of different kinds:

– Political maps

– Physical maps

– Road maps

– Geological maps

of different planets and at different scales

Step 1: Figure out the data set

• Maps are made out of points (specific longitude & latitude)

• A map concerns a certain planet (Earth, Venus)

• Some points on a map are places (Brussels, the Himalaya, …)

• Places can be of different types

Step 2: split the data into resources

• Web services commonly expose three kinds of
resources:

– Predefined resources for especially important aspects of
the application
• (e.g., top-level directory of other available resources)

– A resource for every object exposed through the service

– Resources representing the results of algorithms applied to
the data set
• (e.g., a search resource http://google.com/search?q=books)

http://google.com/search?q=books

Step 2: our resources so far

• For planets and entire maps:

– The list of planets

– Mars

– Earth

– The satellite map of Mars

– The radar map of Venus

– The road map of Earth

Step 2: our resources so far

• For parts of maps
– 24.9195N 17.821E on Earth

– 24.9195N 17.821E on the political map of Earth

– 24.9195N 17.821E on Mars

– 44N 0W on the geologic map of Earth

• For places:
– The Cleopatra crater on Venus

– Campus Solbosch of ULB in Brussels, Belgium on Earth

– The place called Springfield in Massachusetts, in the
United States of America, on Earth

Step 2: our resources so far

• Algorithmic resources

– Places on Earth called Springfield

– Container ships on Earth

– Craters on Mars more than 1 km in diameter

– Places on the moon named before 1900

Step 2: in conclusion, our resources:

1. The list of planets

2. A place on a planet—possibly the entire planet—
identified by name

3. A geographic point on a planet, identified by
latitude and longitude

4. A list of places on a planet that match some search
criteria

5. A map of a planet, centered around a particular
point

Step 3: name the resources

Some guidelines, born of collective experience:

• Use path variables to encode hierarchy:
/parent/child

• Put punctuation characters in path variables to avoid
implying hierarchy where none exists:

/parent/child1;child2

• Use query variables to imply inputs into an
algorithm:

/search?q=jellyfish&start=20

Step 3: name the resources
1. The list of planets at the root URI

http://maps.example.com

2. A place on a planet, possibly the entire planet, identified by name
http://maps.example.com/Venus
http://maps.example.com/Earth/France/Paris

3. A geographic point on a planet, identified by latitude and
longitude

http://maps.example.com/Earth/24.9195,17.821

4. A list of places on a planet that match some search criteria
http://maps.example.com/Earth?show=Springfield
http://maps.example.com/Mars?show=craters+bigger+than+1km

5. A particular map of a planet, centered around a particular point
http://maps.example.com/geographic/Venus/24.5,17.2

http://maps.example.com/
http://maps.example.com/Venus
http://maps.example.com/Earth/France/Paris
http://maps.example.com/Earth/24.9195,17.821
http://maps.example.com/Earth?show=Springfield
http://maps.example.com/Mars?show=craters+bigger+than+1km
http://maps.example.com/geographic/Venus/24.5,17.2

Step 4: design representations

• An XML representation of the list of planets

• Note: Richardson and Ruby choose XHTML in their
examples (using the “class” attribute to denote
semantics), but this is inferior to choosing XML.

<?xml version="1.0"?>
<planets>
<planet href="http://maps.example.com/Earth" name="Earth" />
<planet href="http://maps.example.com/Venus" name="Venus" />
...
</planets>

Step 4: design representations

• An XML representation of a given planet

<?xml version="1.0"?>
<planet>
<name> Earth </name>
<maps>

<map href=“/road/Earth”> Road </map>
<map href=“/satellite/Earth”>Satellite</map>
…

</maps>
<description> Third planet from the So … </description>

</planet>

Step 4: design representations

• An XML representation of a point on a map

<?xml version="1.0"?>
<point>

<coordinate> 37.0,-95</coordinate>
<tile src=“/road/Earth/images/37.0,-95.png”/>
<nav direction=“north” href=“46.0518,-95.8”/>
<nav direction=“northeast” href=“46.0518,-89.7698”/>
<nav direction=“south” href=“36.4642,-84.5187”/>
<nav direction=“southeast” href=“32.3513,-95.8”/>
…
<zoom direction=“in” href=“…” />
<zoom direction=“out” href=“…/>

</point>

Step 4: design representations

• An XML representation of results of search “list of places
called springfield in the US”

<?xml version="1.0"?>
<result>

<description> … </description>
<places>

<place href=“/Earth/USA/IL/Springfield”>Springfield, IL</place>
<place href=“/Earth/USA/MA/Springfield”>Springfield, MA</place>
…

</places>
</result>

Expose a subset of the Uniform Interface

• Let’s say that the service is read-only for now
– We only provide GET and HEAD

• What is supposed to happen? What can go
wrong
– GET:

• 200 OK if resource exists + representation

• 404 Not Found if resource does not exist …

• …or 303 See other if we think we have an alternate
solution

– HEAD: same, but no representation

What about read&write resources?

• Let’s say we want to allow users to annotate
our maps with Points of Interests (POI’s),
which are just places.

0ur first R/W resource: user accounts

• User accounts are typically created through a
form that has to be filled in by humans.

• However, there are cases where the ability to
create user accounts through web services is
desirable.

– E.g., consider “smart” GPS devices with built-in
annotation capabilities. Each GPS device can
automatically register a user account for itself.

Design of R/W user accounts (1/8)

• Figure out the data set:

– Account = user name; password

• Split the data set into resources:

– Each user account becomes a resource

• Name the resources with URI’s
https://maps.example.com/user/{user-name}

Design of R/W user accounts (2/8)

• Expose a subset of the uniform interface

– Will clients be creating new resources of this type?
YES

– When the client creates a new resource of this
type, who’s in charge of determining the new
resource’s URI? Is it the client or the server?
THE CLIENT

https://maps.example.com/user/{user-name}

Design of R/W user accounts (3/8)

• Expose a subset of the uniform interface
– Will clients be modifying resources of this type?

YES (they should be able to change their password)

– Will clients be deleting resources of this type?
YES (delete an account)

– Will clients be fetching representations of
resources of this type?
DEBATABLE (but let’s say yes)

https://maps.example.com/user/{user-name}

Design of R/W user accounts (4/8)

• Expose a subset of the uniform interface:

• Note: all of these methods must provide the
minimal security (authentication & authorization)

https://maps.example.com/user/{user-name}

REST INCLUDE?

POST NO Not supported because the client
determines the resource URI

GET YES Retrieve a summary of the account

PUT YES Create user/modify his password.

DELETE YES Close account

OPTIONS YES Discover what HTTP methods are
supported by the resource

HEAD YES requests headers

Design of R/W user accounts (4/8)

• Design representations accepted from
client/sent to client

https://maps.example.com/user/{user-name}

REST INCLUDE? REPRESENTATION

POST NO Not supported because the client
determines the resource URI

GET YES application/xml

PUT YES application/x-www-form-urlencoded

DELETE YES none

OPTIONS YES none

HEAD YES none

Design of R/W user accounts (5/8)

• An XML representation of

(assuming this user is authenticated as svsummer)

GET https://maps.example.com/user/svsummer

<?xml version="1.0"?>
<user>
<name> Stijn Vansummeren </name>
<homepage> https://maps.exampl... </homepage>
<modify xmlns:hthml=“http:/…”>

<html:form id="modifyUser" method="put" action=“…/users/svsummer">
<html:input class="password" name="password" />

<html:input class="submit" /></p>

</html:form>
</modify>
</user>

https://maps.exampl/

Design of R/W user accounts (6/8)

• An XML representation of

(assuming this user is not authenticated as
svsummer)

GET https://maps.example.com/user/svsummer

<?xml version="1.0"?>
<user>
<name> Stijn Vansummeren </name>
<homepage> https://maps.exampl... </homepage>

</user>

https://maps.exampl/

Design of R/W user accounts (7/8)

• An application/x-www-form-urlencoded
representation sent to

(assuming this user is authenticated as svsummer or
the user does not yet exist):

• (application/x-www-form-urlencoded just means a list of
key=value pairs, separated by &, where special characters
in keys and values are escaped)

PUT https://maps.example.com/user/svsummer

password=ThisIsNotAPassword

Design of R/W user accounts (8/8)

• Link this resource to other resources

– E.g., put a link or form to create users at the
service URI http://maps.example.com

• What can go wrong?
– PUT request with wrong media type: return 415

(“Unsupported Media Type”).

– PUT request without media type: 400 (“Bad
Request”)

– PUT request without “password” key: 400 (“Bad
Request”)

– …

http://maps.example.com/

What about read&write resources?

• See other examples in handouts available on
website

DISCUSSION

Discussion

• REST = synchronous

• Asynchronous can be crafted on top by splitting
asynchronous requests into multiple synchronous
requests, but this essentially defeats the uniform
interface:

– POST to a URL to submit a new asynchronous request

– Server replies with 202 “Created” + URI at which the
status of the request can be queried (GET) or by which the
request can be deleted (DELETE)

– [Note that asynchronous operations hence cannot be
GETten because they create new suboperations]

Discussion

• Lots of web services claim RESTfullness, but
actually overloaded POST:

– They send data to a particular process to call a
particular function = RPC call

– If possible, restrict POST to the use of factory
URI’s!

References

• R. T. Fielding and R. N. Taylor. Principled design of the modern
Web architecture. ACM Transactions on Internet Technology
(TOIT), 2(2), May 2002, pp. 115-150.

• L. Richardson and S. Ruby. RESTful Web Services. O’Reilly,
2007.

• R. Daignau, Service Design Patterns, Addisson-Wesley, 2011.

