Next Challenges of Cloud Computing InfoH508 – ULB

Skhiri Sabri, R&D director Brussels, 26/04/2011

Agenda

- 1. Cloud Ecosystem overview
- 2. SLA
- 3. Multi-tenancy
- 4. Governance
- 5. Standardization and interoperability

Agenda

- 1. Cloud Ecosystem overview
- 2. SLA
- 3. Multi-tenancy
- 4. Governance
- 5. Standardization and interoperability

Is it really cloudy?

Cloud definition

Cloud computing is a model for enabling convenient, ondemand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.

Delivery model

User's perspective layers

use provider's application

deploy our own application

manage our own infrastructure

Deployment models

Key characteristics

- Elasticity
 - Quickly provisionned and released
 - Unlimited resources access
- On-demand self-service
 - No human interaction on provider side
- Resource pooling
 - Multi-tenant model
- Broadband network access
 - Always available from network
- Measured service
 - Monitoring transparency
 - Pay as you grow/use

Cloud architecture layers

Detailed view – major players

SaaS					Google docs	Cloud So gmail	oftware Oracle CRM	IBM lotus live
					SalesForce.com	Microsft live	DropBox	SAP Business by design
PaaS		3			Clo Heroku Force.com Platform core services AWS ELB Cloudera Hadoop Cassand RabbitMQ		AWS Beanstalk	
laaS	Security	Charging/Billing	Monitoring	SLA	Cloud Infrastructure Service Manager RightScale CA AppLogic vCloud Director Novell Cloud BMC Cloud AWS AutoScaling AWS CloudFormation F5 Virtual Environment Manager Radware OpenNebula OpenStack Eucalyptus AWS EC2 Cloud.com Flexiant's Extility Savvis Citrix			
DCM VDC Manager (Xen Server, vCenter) Xen KVM HyperV ESX								
					Compute	Network	Storage	

The most important pieces

Trends

- There is a clear convergence between DCM and laaS
- Service management is emerging
- Platform is the current battle
- The global governance on all the stack is key element missing

This presentation focuses on SLA/Multi-tenancy/Governance/ Standardization

Hypervisor

Hardware

Agenda

- 1. Cloud Ecosystem overview
- 2. SLA
- 3. Multi-tenancy
- 4. Governance
- 5. Standardization and interoperability

What is a SLA?

Trying to define SLA

Business level

What is the SLA?

- Under normal conditions
 - Service response time from the client viewpoint
 - X% of request must be treated in less than Y ms
 - Service availability
 - 99.xxx% availability Vs Gmail example
 - Service cost
- SLA may be defined for exceptional conditions:
 - Availability in case of natural disaster
 - Time to adapt to exceptional peak usage period
 - Using traffic shaping mechanisms to limit request rate to a defined acceptable rate

Business level

What is the SLA?

Geographical constraints

- Geographic zone where the service is allowed to execute
- Geographic zone where the service is allowed to be stored and to store data (regulatory issues)
- Geographic zone where the service should be accessible or not
- Outages
 - How to define an outage
 - How to prove an outage
 - How to get credit in case of outage
 - Time to Repair
 - Self-healing properties

Service level

What is the SLA?

Each global service is composed of sub-services

- The global service level is impacted by the service level offered by each sub-service
- Each characteristic/constraint defined in the business SLA has to be translated into characteristics and SLO on each sub-service
 - Availability -> FT mechanism, DR, replication ...
 - Response time -> elasticity constraints, cache ... •

Different versions of a service may exist

Different prices and different guaranties and performance levels => notion of negotiation

Service management module

Service level SLA

http://cloudtechnologies.morfeo-project.org/wpcontent/uploads/2009/04/reservoir-architecture.png

Service management module

Service level SLA

euranova

Developed by Telefonica I+D

http://www.reservoir-fp7.eu/index.php?page=open-source-code

What is a SLA?

Infrastructure level

1. For each service, being able to define the characteristics of each VM

- Cpu
- Memory
- vDisk
- Network
- 2. Priority level of each VM
 - Scheduling

http://haizea.cs.uchicago.edu

SLA@SOI

EU FP7 project

SLA is defined as a "formal contract that specify the characteristics, quality parameters and nonfunctional properties of a service – like price, performance and availability"

http://sla-at-soi.eu/research/

http://sla-at-soi.eu/wp-content/uploads/2008/12/diagram01.jpg

High level architecture

The SLA big picture

Hot topics arround SLA

Challenges

- KPI management / Self-* properties
- SLA -> SLOs transformation
- Cloud brokering for SLA management
 - Guaranteeing SLAs on different cloud providers
- Metering
 - Measuring usage accurately
- Auditing
 - Infrastructure validation SOX compliancy
- Regulatory issue for data location

Agenda

- 1. Cloud Ecosystem overview
- 2. SLA
- 3. Multi-tenancy
- 4. Governance
- 5. Standardization and interoperability

What is the multi-tenancy?

Offering shared resources

- Offering shared resources to multiple users
 - While guaranteeing isolation & SLA
- Which use cases are you thinking about ?

Challenges

Multi-tenants architectures

- Sharing storage
 - Access & performance/space/isolation/Security
- Sharing CPU and memory
 - Guarantees on isolation
- Sharing bandwidths
 - Guarantee on access & performance
- Charging to each tenant according to SLA

Multi-Actors billing

Tenants can have different roles

- The App Store example
 - The app provider does not pay neither for the storage nor for the uploading bandwidth
 - Paid by the app downloader

Agenda

- 1. Cloud Ecosystem overview
- 2. SLA
- 3. Multi-tenancy
- 4. Governance
- 5. Standardization and interoperability

What is the governance?

Working definition

Global governance must help the developers and designers during each phase and must ensure the global coherence of the infrastructure by validating services with its policy rule against the system. Moreover, it is as well all other mechanisms about getting People (developer, architect, and designer) to do the right thing at the right time. In other words, it is about encouraging the behaviour that will achieve Enterprise business goals.

[1] Oracle, SOA Governance: Framework and Best Practices, Oracle Whitepapers 2007

[2] L. F. Kenney, D.I C. Plummer, *Magic Quadrant for Integrated SOA Governance Technology Sets*. Gartner Research, 2009.

[3] M Afshar and al., SOA Governance: Framework and Best Practices. Oracle Whitepaper, 2007.

[4] P. Malinverno, Simple Governance Mechanisms for a Service Orinented Architecture. Gartner Group Research Note G00139465, 27/ April 2006.

[5] W.A. Brown and al., SOA Governance: Achieving and Sustaining Business and IT Agility. IBM press 2008.

euranova

Governance framework

Implementing the governance

Governing the complete life-cycle of infrastructure components and services

- Designing service
- Building and deploying service
- Linking Service
- Operating service
- Modifying, make evolve service
- Retiring service

Tooling layer				Duntimo
	MetaData repository	Policy Management	Asset And Services	Runtime layer Performance Management
	S ²			
🥤 eurano	ova			

Why do we need goverance in the cloud?

- What is the difference between an IT infrastructure and a cloudified IT infrastructure?
- Two viewpoints to consider
 - The cloud customer who deploy services on its *cloudified* IT
 - The cloud provider who must manage the entire infrastructure

Governance in the cloud

A cloud service life-cycle

* Picture inspired by BMC software Cloud Lifecycle Management

Governance in the cloud infra

A cloud service life-cycle

- Service catalogs
 - CMDB Dependencies management UDDI servers
- Deploying on x10³ machines requires other kind of tools for
 - Configuring VMs
 - Updating the template on live VMs
- Cloud configuration stack
 - Elastic group
 - Elastic IP management
 - KPI management alerting system corrective actions
 - Auditing monitoring
 - Charging and billing configuration

Governance in the cloud infra

A cloud service life-cycle

- Workflow management
 - Approval orchestration and complex provisioning
- Multi-site load balancers
 - CDN and service-aware cache optimizations

Agenda

- 1. Cloud Ecosystem overview
- 2. SLA
- 3. Multi-tenancy
- 4. Governance
- 5. Standardization and interoperability

Why do we need standards?

Example of Hypothetical Customer Scenarios: Microsoft Use Cases

- 1. Move three-tiered application from on-premises to cloud
- 2. Move three-tiered cloud application to another cloud
- 3. Move part of an on-premise application to cloud to create a "hybrid" application
- 4. Hybrid application with shared user ID and access services
- 5. Move hybrid application to another cloud with common infrastructures
- 6. Hybrid cloud application that uses platform services
- 7. Port cloud application that uses platform services to another cloud
- 8. Create cloud application with components that run on multiple clouds
- 9. Cloud application workload requires use of multiple clouds (Cloudburst)
- 10. Users and developers shop across hosted or public cloud offerings for best price/performance ratio, while optimizing against other considerations

Microsoft⁻

What kind of standars?

- Infrastructure management
 - API to create elastic group Starting Removing VM Resources management
- Appliance format
 - The package portability from one provider to another
- Storage & Core services
 - Standard interfaces

Infrastructure management

Emerging standards OCCI

Open Cloud Control Interface (OCCI)

- Open Grid Forum
- Supported by the EU via SIENA

euranova

- Focus on Interoperability
- Easily extensible
 - Infrastructure
 - Platform
 - Service
- Different possible renderings
 - Only RESTful at the moment
- Reference implementation from OpenNebula

Infrastructure management

OCCI Reference implementation & tools

OpenNebula using Sinatra

OCCI compliance Test

OCCI compliance test								
OCCI service URL: http://localhost:8888 Go R								
Session information	Service information Server version: pyocci OCCI/1.1							
Username: foo Password: ***	Number of registered categories: 18							
Checking for correct version information:								
Checking completeness of infrastructure model:								
Checking correct handling of Content-type/Accept headers:								
Testing instantiation of compute/storage/network kinds:								
Testing correct handling of user-defined mixins (tagging/grouping):								
Testing links between compute/storage compute/network:								
Triggering actions on compute/network/storage kinds:								
Testing filter mechanisms using Categories:								
Testing correct behaviour on location and "normal" paths:								
Simple syntax checks:								

NOTE: Passing all tests only indicates that the service you are testing is OCCI compliant - IT DOES NOT GUARANTE IT!

Appliance format

Emerging standards OVF

- Defines the topology the service
- Contains the full software stack from OS to service
- Specify the HW of the VM

Storage & Core services

Enabling a real apps portability

- Applications usually use core services
 - Storage (S3, RDS, SimpleDB) Messaging (SQS, Burrow) Load Balancer (ELB), etc.
- Guaranteeing the portability means standardize the core services as well
 - Currently only storage is in the process of standardization

Storage interface in cloud

Taxonomy

- Block/File level
- Content
- Table: NoSQL

Storage interface

Emerging standard for content CDMI

Storage interface

Emerging standard for Block-level

- Standardized APIs

 iSCSI, CIFS, NFS, etc.
- Specialized hardware
 EMC NetApp 3PAR
- Open source solution
 - DRDB Lustre

EMC²

where information lives

That is not enough

Need more standard

- Governance
 - Life-cycle management CMDB ADC workflow management
- Billing & charging
 - Similar to DIAMETER Ro/Rf
- Metering
 - Measuring resource usage
- Cloud brokering
 - Managing a set of cloud providers

Euranova R&D

<u>http://euranova.eu</u> <u>http://twitter/sskhiri</u> <u>sabri.skhiri@euranova.eu</u>

QUESTIONS

