
THE INTEL EXASCIENCE PROJECT

HIGH-PERFORMANCE
COMPUTING IN THE NEXT

DECADE

ROEL WUYTS EXASCIENCE LAB, IMEC

CONTENTS

About Me

About Intel ExaScience Lab

About the Runtime Layer

CARREER OVERVIEW

3

1995 2001 2004 07 08 09 10 11

Doctoral Researcher
VUB

Postdoc
University of Bern,
Switzerland

Chargé de cours
ULB

Principal Scientist
imec

Professor (10%)
KUL

Studies: Licentiaat Informatica (VUB, 1991-1995)

JUGGLING HATS

4

IMEC
• Embedded devices
• Runtime resource management
• Intel ExaScience Project

ULB
• Object versioning
• AOP

KUL
Language Design

ABOUT IMEC

Research organization located in Leuven

▸ world-leading independent research center in
nanoelectronics and nanotechnology

▸ More Moore research targets semiconductor scaling for
the 22nm technology node and beyond.

▸ More than Moore research invents technology for
nomadic embedded systems, wireless autonomous
transducer solutions, biomedical electronics, photovoltaics,
organic electronics and GaN power electronics.

Numbers

▸ Budget: ± 280 M€
▸ Staff: ± 1800
▸ Cleanroom: ± 10,000 m2

5

IMEC SMART SYSTEMS

6

EXASCIENCE LAB:
NOVEL RESEARCH STRUCTURE

TOWARDS EXASCALE
SUPERCOMPUTERS

1997 Intel ASCI Red/9152 1

1999 Intel ASCI Red/9632 2

2000 IBM ASCI White 7

2002 NEC Earth Simulator 36

2004 SGI Project Columbia 43

2004 IBM Blue Gene/L 71

2005 137

2006 281

2007 478

2008 IBM Roadrunner 1.026

2009 Cray XT4/XT5 Jaguar 1.759

2010 Tianhe-I 2.5

SuperComputer ≈ 2 PetaFlops ≈ 100.000 PC’s @ 20GigaFlops/PC

ExaScale ≈ 1000 * PetaScale ≈ 50.000.000 PC’s of today

Kilo 103 1. 000

Mega 106 1. 000. 000

Giga 109 1. 000. 000. 000

Tera 1012 1. 000. 000. 000. 000

Peta 1015 1. 000. 000. 000. 000. 000

Exa 1018 1. 000. 000. 000. 000. 000. 000

TOWARDS EXASCALE
SUPERCOMPUTERS

1

10

100

1,000

10,000

100,000

1,000,000

te
ra

flo
ps

Computer Simulations are needed to
fundamentally understand phenomena and to
accurately predict.

Simulation examples:
• Neural Networks
• Climate Models
• Economical Models
• Weather Prediction
• Space Weather Prediction

These are all limited by compute power

WHY DO WE NEED THEM ?

9

SPACE WEATHER PREDICTION

10

SPACE WEATHER PREDICTION

11

SPACE WEATHER PREDICTION

12

106 km

105 km

103 km

FLUID
hours

1 m

1 s

Petascale

SPACE WEATHER PREDICTION

13

105 km

103 km

102 km

100 km

10-1 km

FLUID

KINETIC

1 m

1 s

10-3 s

10-4 s

10-5 s

Petascale

SPACE WEATHER PREDICTION

14

106 km

105 km

103 km

102 km

100 km

10-1 km

FLUID

KINETIC

hours

1 m

1 s

10-3 s

10-4 s

10-5 s

Petascale Exascale

Hardware

Applications: computationally intensive, billions of threads

15

INSIDE A HPC CENTER

16

Datacenter: 109 threads

Rack: 104-105 threads

Socket/blade: 500-5000 threads

Die: 100-1000 threads

Core/tile: 1-10 threads

energy, energy, energy

WHAT ARE THE CHALLENGES ?

17

energy, energy, energy

heat

WHAT ARE THE CHALLENGES ?

18

energy, energy, energy

heat

hardware failures

WHAT ARE THE CHALLENGES ?

19

energy, energy, energy

heat

hardware failures

programming massively parallel machines
(a million cores, a billion threads!)

WHAT ARE THE CHALLENGES ?

20

Hardware: millions of cores, runtime variability and failures, energy

?

Applications: computationally intensive, billions of threads

21

IMEC SMART SYSTEMS

22

Simulation Toolkit

Architectural Simulation Hardware design

Space Weather Modeling Visualization

RESEARCH TOPICS
the ExaScience Lab will advance state of the art:

• More accurate space weather modeling and simulation
• Extremely scalable, fault tolerant simulation toolkit
• In-situ visualization through virtual telescopes
• Architectural simulation of large-scale systems and workloads

23

VISUALIZATION

24

longer term objective = Virtual Telescopes

SIMULATION TOOLKIT

25

HOW TO PROGRAM AN EXASCALE SYSTEM ?

Simulation Toolkit

Architectural Simulation Hardware design

Space Weather
Modeling Visualization

SIMULATION TOOLKIT

26

Isn’t this just our current software programs x 1.000.000 ?

Extreme Parallelism
▸ Optimized implementations of ‘ultra’ scalable

numerical kernels
▸ Heterogeneous Architecture
▸ Support for exascale parallel programming models

Dealing with hardware failures at the software level
▸ Dynamic load balancing
▸ Guarantee fault-tolerance

ARCHITECTURAL SIMULATION

27

Simulation Toolkit

Architectural Simulation Hardware design

Space Weather
Modeling Visualization

HOW TO SIMULATE AN EXASCALE SYSTEM ?

ARCHITECTURAL SIMULATION

28

Before running a program on an exascale system,
developers need to be able to predict:
▸ Performance
▸ Power
▸ Reliability
▸ Resource utilization

Usually this happens by simulating the system on a more
powerful computer system.
▸ But this is going to be the biggest system on earth.

So, how will we be able to simulate this system?

THE RUNTIME LAYER

Software problems to tackle:

▸ Minimize energy consumption
... while remaining performant

▸ Deal with hardware variability and failures
… transparently for the application

▸ Program massively parallel systems
… without burdening the developer

29

PROGRAMMING MODELS

30

Thread/process

Address space

Memory access

sequential

C, C++, Java (-threads), …

SEQUENTIAL PROGRAMMING
EXAMPLE

Explicit 2-dimensional heat distribution
simulation

31

for(it=0; it<nr;it++)
for(i=1; i<N; i++) {

for(j=1; j<N; j++) {
... stencil ...
(read from g1,
write to g2)

}
}

}

PROGRAMMING MODELS

32

Thread/process

Address space

Memory access

Shared memory model

…

Java (+threads), Cilk, TBB, …

SHARED MEMORY PROGRAMMING:
CILK

33

• New parallel function calling
mechanism:
• cilk_spawn indicates a call

to function that can proceed
in parallel with caller

• cilk_sync awaits finish of
spawned children

• work-stealing scheduler

#include <cilk/cilk.h>

…
int i, j;

cilk_for(i = 1; i < n; i++)
for(j = 1; j < n; j++)

v[P(i,j)] = …

WORK STEALING

34

Worker 1: Worker 2:

0..15
8..15
0..7

8..15
4..7
0..3

8..15

4..7
0..3 4..7

cilk_for(i = 1; i < n; i++)
for(j = 1; j < n; j++)

v[P(i,j)] = …

PROGRAMMING MODELS

35

Thread/process

Address space

Memory access

Message

Message Passing

…

MPI, actor models, …

ACTORS IN SCALA

36

• Scala blends object-oriented
and functional programming

• Pure OO
• Classes and

inheritance
• Block closures
• Type inference
• Higher-order functions
• Sophisticated static

type system

…
class Worker (signal : MailBox)

extends Runnable
{

var func = () => () ;

def run ()
{

var goOn = true;
while (goOn) {

signal.receive
{
case Go() => func();
case Stop() => goOn = false;

};
signal.send(Done());

}
}

}
…

PROGRAMMING MODELS

37

Thread/process

Address space

Memory access

Message

Partitioned Global
Address Space (PGAS)

…

UPC, Chapel, X10, …

UPC (UNIFIED PARALLEL C),
A PGAS LANGUAGE

38

• Threads working in SPMD
fashion
• MYTHREAD specifies thread index

• THREADS specifies number of threads
(workers)

• shared keyword indicates
shared scalars or arrays
• Shared data has affinity to one thread

• Synchronization when needed
(barriers, locks)

…
int i, j;

for(i = 1; i < n; i++)
upc_forall(j = 1; j < n; j++; &v[i][j])

v[i][j] = stencil(nu, u[i][j],
u[i][j-1],
u[i][j+1],
u[i-1][j],
u[i+1][j]);

…

PERFORMANCE ON A SHARED
MEMORY MACHINE

39

327682, 200it

PERFORMANCE ON
SUPERCOMPUTER

40

Vic3, 327682, 2000it

LESSONS LEARNED

UPC performs quite well

▸ But SPMD will not work on ExaScale machines
▸ Impact of memory affinity is huge

Work stealing shows promise

▸ Achieves automatic runtime load balancing with
reasonable performance

Conclusion:
we want memory affinity aware work stealing

41

REACTIVE WORK REBALANCING
EXPERIMENT ON CLUSTER

Start by giving each thread the same number of
grid rows to process

Measure how long it takes each UPC thread to
process these rows

If necessary:
React by transferring rows to other UPC thread

42

REACTIVE WORK REBALANCING:
KERNEL IMPLEMENTATION IN UPC

43

…
for (iteration = start; iter < start+nr; iteration ++) {
upc_barrier;

//potentially rebalance rows between threads
rebalance(mgr, iteration);
upc_barrier;
adjustWork(mgr, *old, *new, iteration);
incrementIterationCounter(mgr);

//do a heat step and measure how long it takes
upc_barrier;
timeTaken = (*step)(mgr, iteration, *old, *new);

//update the internal information
update(mgr, iteration, timeTaken);

}
…

REACTIVE WORK REBALANCING:
KERNEL IMPLEMENTATION IN UPC

44

…
for (iteration = start; iter < start+nr; iteration ++) {
upc_barrier;

//potentially rebalance rows between threads
rebalance(mgr, iteration);
upc_barrier;
adjustWork(mgr, *old, *new, iteration);
incrementIterationCounter(mgr);

//do a heat step and measure how long it takes
upc_barrier;
timeTaken = (*step)(mgr, iteration, *old, *new);

//update the internal information
update(mgr, iteration, timeTaken);

}
…

45© IMEC 2010

REACTIVE WORK REBALANCING:
ACTION!

Heat distribution simulation (16384x16384,
2000 it)

Every third thread (0, 3, ...) straggles

▸ slows down with a factor of 2

Ran distributed on 32 cores

X axis: core number

Y axis: nr of rows processed

45

46© IMEC 2010

ITERATION 0

47© IMEC 2010

ITERATION 3

48© IMEC 2010

ITERATION 12

49© IMEC 2010

ITERATION 13

50© IMEC 2010

ITERATION 26

51© IMEC 2010

ITERATION 125

52© IMEC 2010

ITERATION 1999

PERFORMANCE ON
SUPERCOMPUTER

53

Vic3, 327682, 2000it

PERFORMANCE ON
SUPERCOMPUTER

54

Vic3, 327682, 2000it

Hardware: millions of cores, runtime variability and failures, energy

Applications: computationally intensive, billions of threads

55

IMEC SMART SYSTEMS

www.exascience.com

57

BACKUP SLIDES

58

2D HEAT

 Grid

 Stencil Operation

 Explicit Timestepping

for(it=0; it<nr;it++)
for(i=1; i<N; i++) {

for(j=1; j<N; j++) {
... stencil ...
(read from g1, write to

g2)
}

}
}

59

CILK

• New parallel function calling
mechanism:
• cilk_spawn indicates a call

to function that can proceed
in parallel with caller

• cilk_sync awaits finish of
spawned children

• work-stealing scheduler

#include <cilk/cilk.h>

…
int i, j;

cilk_for(i = 1; i < n; i++)
for(j = 1; j < n; j++)

v[P(i,j)] = …

60

TBB (THREADING
BUILDING BLOCKS)

• C++ Threading library (Intel)
• Task based parallelism
• Task scheduler
• Work stealing approach

similar to Cilk

• Automatic parallellization
• parallel_for
• reduce/scan/sort/while

• Parallel data structures
• Scalable memory allocation
• Mutual exclusion
• Atomic operations

#include <tbb/parallel_for.h>
#include <tbb/blocked_range.h>

thread_code(blocked_range &r){
for (int j=r.begin(); j!=r.end(); j++)

// Stencil on rows j
}

...
blocked_range r(0, numThreads);
parallel_for(r, thread_code, aff_part);
...

61

ARBB (ARRAY BUILDING
BLOCKS)

• C++ language extension for
vector parallel programming

• Intel product
• currently beta 2

• Computational kernel defined
for the individual grid points

• Automatic parallelization
over cores and SIMD units

• Can be extended to GPU
• Vector code is JIT-compiled

#include <arbb.hpp>

template<typename T>
void heat_stencil(T src, T& dst) {

dst = src + D * (-4*src
+ neighbor(src, -1, 0)
+ neighbor(src, 1, 0)
+ neighbor(src, 0, -1)
+ neighbor(src, 0, 1));

}

template<typename T>
void heat_driver(dense<T, 2> grid,

dense<T, 2> next) {
map(heat_stencil<T>)(grid, next);

}

int main(){
...
call(heat_driver<T>)(grid, next);
...

}

62

UPC

• Threads working in SPMD
fashion
• MYTHREAD specifies thread index

• THREADS specifies number of threads
(workers)

• shared keyword indicates
shared scalars or arrays
• Shared data has affinity to one thread

• Synchronization when needed
(barriers, locks)

…
int i, j;

for(i = 1; i < n; i++)
upc_forall(j = 1; j < n; j++; &v[i][j])

v[i][j] = stencil(nu, u[i][j],
u[i][j-1],

u[i][j+1],
u[i-1][j],

u[i+1][j]);
…

63

CHAPEL

• “Global View” paradigm -
clean algorithm code
• No communication/data sharing code

intermixed
• No explicit decomposition of data

structures and control flow into per-task or
per “node” chunks

• Data parallel features based
on domains (index set)

• Data distribution
customizable by introducing
domain maps
• separate from algorithm code

• Explicit Task parallellism

const MatrixSpace :
domain(2) = [0..size, 0..size];

const ProblemSpace :
subdomain(MatrixSpace) = [1..n, 1..n];

def heat(n, u, v, nu) {
forall (i,j) in ProblemSpace do

v(i,j) = u(i,j) + nu * (u(i+1,j) …
}

64

X10

• Type-safe parallel OO
language

• Asynchronous PGAS
• data locality through

places
• lightweight activities

public class HeatTransfer_v1 {
const BigD =

Dist.makeBlock([0..n+1, 0..n+1], 0);
const D = BigD | ([1..n, 1..n] as Region);
const A = DistArray.make[Real]

(BigD,(p:Point) =>{ …init…});
…
def run() {
var iter:Int = 0;
do {
iter = iter + 1;
finish ateach (p in D) Temp(p) = stencil(p);
finish ateach (p in D) A(p) = Temp(p);
} while (iter < iterations);

}

65

SCALA

• Blends object-oriented and
functional programming

• Pure OO
• Classes and

inheritance
• Block closures
• Type inference
• Higher-order functions
• Sophisticated static

type system

…
class Worker (signal : MailBox)

extends Runnable
{

var func = () => () ;

def run ()
{

var goOn = true;
while (goOn) {

signal.receive
{
case Go() => func();
case Stop() => goOn = false;

};
signal.send(Done());

}
}

}
…

HPC VERSUS…

Grid/Cloud Computing

▸ loosely coupled heterogeneous systems that are
geographically dispersed

▸ Computing resources are not administered centrally
▸ Interconnected through slower networks
▸ Typically runs several different programs in parallel

66

	The Intel ExaScience Project��High-Performance Computing in the Next Decade
	Contents
	Carreer Overview
	Juggling Hats
	About imec
	Slide Number 6
	Towards exascale supercomputers
	Towards exascale supercomputers
	Why do we need them ?
	Space Weather Prediction
	Space Weather Prediction
	Space Weather Prediction
	Space Weather Prediction
	Space Weather Prediction
	Slide Number 15
	Inside a HPC center
	What are the challenges ?
	What are the challenges ?
	What are the challenges ?
	What are the challenges ?
	Slide Number 21
	Slide Number 22
	Research Topics
	Visualization
	Simulation Toolkit
	Simulation Toolkit
	Architectural Simulation
	Architectural Simulation
	The Runtime Layer
	Programming Models
	Sequential programming example
	Programming Models
	Shared memory programming: Cilk
	Work Stealing
	Programming Models
	Actors in Scala
	Programming Models
	UPC (Unified Parallel C), � a PGAS language
	Performance on a shared memory machine
	Performance on supercomputer
	Lessons Learned
	Reactive Work rebalancing Experiment on cluster
	Reactive work rebalancing: kernel implementation in UPC
	Reactive work rebalancing: kernel implementation in UPC
	Reactive Work Rebalancing: Action!
	iteration 0
	iteration 3
	iteration 12
	iteration 13
	iteration 26
	iteration 125
	iteration 1999
	Performance on supercomputer
	Performance on supercomputer
	Slide Number 55
	Slide Number 56
	Backup Slides
	2D Heat
	Cilk
	TBB (threading building blocks)
	ArBB (array building blocks)
	UPC
	Chapel
	X10
	Scala
	HPC versus…

