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• Intel ExaScience Project

ULB
• Object versioning
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ABOUT IMEC

Research organization located in Leuven

▸ world-leading independent research center in 
nanoelectronics and nanotechnology

▸ More Moore research targets semiconductor scaling for 
the 22nm technology node and beyond.

▸ More than Moore research invents technology for 
nomadic embedded systems, wireless autonomous 
transducer solutions, biomedical electronics, photovoltaics, 
organic electronics and GaN power electronics.

Numbers

▸ Budget: ± 280 M€
▸ Staff: ± 1800
▸ Cleanroom: ± 10,000 m2
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IMEC SMART SYSTEMS
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EXASCIENCE LAB: 
NOVEL RESEARCH STRUCTURE



TOWARDS EXASCALE 
SUPERCOMPUTERS

1997 Intel ASCI Red/9152 1   

1999 Intel ASCI Red/9632 2   

2000 IBM ASCI White 7   

2002 NEC Earth Simulator 36   

2004 SGI Project Columbia 43   

2004 IBM Blue Gene/L 71   

2005 137   

2006 281   

2007 478   

2008 IBM Roadrunner 1.026   

2009 Cray XT4/XT5 Jaguar 1.759   

2010 Tianhe-I 2.5

SuperComputer ≈ 2 PetaFlops ≈ 100.000 PC’s @ 20GigaFlops/PC

ExaScale ≈ 1000 * PetaScale ≈ 50.000.000 PC’s of today

Kilo 103 1. 000

Mega 106 1. 000. 000

Giga 109 1. 000. 000. 000

Tera 1012 1. 000. 000. 000. 000

Peta 1015 1. 000. 000. 000. 000. 000

Exa 1018 1. 000. 000. 000. 000. 000. 000



TOWARDS EXASCALE 
SUPERCOMPUTERS
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Computer Simulations are needed to 
fundamentally understand phenomena and to 
accurately predict. 

Simulation examples:
• Neural Networks
• Climate Models
• Economical Models
• Weather Prediction
• Space Weather Prediction

These are all limited by compute power

WHY DO WE NEED THEM ?
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SPACE WEATHER PREDICTION
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SPACE WEATHER PREDICTION
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SPACE WEATHER PREDICTION
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SPACE WEATHER PREDICTION
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Hardware

Applications: computationally intensive, billions of threads
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INSIDE A HPC CENTER
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Datacenter: 109 threads

Rack: 104-105 threads

Socket/blade: 500-5000 threads

Die: 100-1000 threads

Core/tile: 1-10 threads



energy, energy, energy

WHAT ARE THE CHALLENGES ?
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energy, energy, energy

heat

WHAT ARE THE CHALLENGES ?

18



energy, energy, energy

heat

hardware failures

WHAT ARE THE CHALLENGES ?
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energy, energy, energy

heat

hardware failures

programming massively parallel machines
(a million cores, a billion threads!)

WHAT ARE THE CHALLENGES ?
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Hardware: millions of cores, runtime variability and failures, energy

?

Applications: computationally intensive, billions of threads
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IMEC SMART SYSTEMS
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Simulation Toolkit

Architectural Simulation Hardware design

Space Weather Modeling Visualization

RESEARCH TOPICS
the ExaScience Lab will advance state of the art:

• More accurate space weather modeling and simulation
• Extremely scalable, fault tolerant simulation toolkit
• In-situ visualization through virtual telescopes
• Architectural simulation of large-scale systems and workloads
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VISUALIZATION
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longer term objective = Virtual Telescopes



SIMULATION TOOLKIT
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HOW TO PROGRAM AN EXASCALE SYSTEM ?

Simulation Toolkit

Architectural Simulation Hardware design

Space Weather 
Modeling Visualization



SIMULATION TOOLKIT
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Isn’t this just our current software programs x 1.000.000 ?

Extreme Parallelism
▸ Optimized implementations of ‘ultra’ scalable 

numerical kernels
▸ Heterogeneous Architecture
▸ Support for exascale parallel programming models

Dealing with hardware failures at the software level
▸ Dynamic load balancing 
▸ Guarantee fault-tolerance



ARCHITECTURAL SIMULATION
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Simulation Toolkit

Architectural Simulation Hardware design

Space Weather 
Modeling Visualization

HOW TO SIMULATE AN EXASCALE SYSTEM ?



ARCHITECTURAL SIMULATION
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Before running a program on an exascale system, 
developers need to be able to predict: 
▸ Performance
▸ Power
▸ Reliability
▸ Resource utilization

Usually this happens by simulating the system on a more 
powerful computer system. 
▸ But this is going to be the biggest system on earth. 

So, how will we be able to simulate this system? 



THE RUNTIME LAYER

Software problems to tackle:

▸ Minimize energy consumption
... while remaining performant

▸ Deal with hardware variability and failures
… transparently for the application

▸ Program massively parallel systems
… without burdening the developer
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PROGRAMMING MODELS
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Thread/process

Address space

Memory access

sequential

C, C++, Java (-threads), …



SEQUENTIAL PROGRAMMING 
EXAMPLE

Explicit 2-dimensional heat distribution 
simulation
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for(it=0; it<nr;it++)
for(i=1; i<N; i++) {

for(j=1; j<N; j++) { 
... stencil ...
(read from g1,
write to g2)

}
}

}



PROGRAMMING MODELS
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Thread/process

Address space

Memory access

Shared memory model

…

Java (+threads), Cilk, TBB, …



SHARED MEMORY PROGRAMMING: 
CILK
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• New parallel function calling 
mechanism:
• cilk_spawn indicates a call 

to function that can proceed 
in parallel with caller

• cilk_sync awaits finish of 
spawned children

• work-stealing scheduler

#include <cilk/cilk.h>

…
int i, j;

cilk_for(i = 1; i < n; i++)
for(j = 1; j < n; j++)

v[P(i,j)] = …



WORK STEALING
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Worker  1: Worker  2:

0..15
8..15
0..7

8..15
4..7
0..3

8..15

4..7
0..3 4..7

cilk_for(i = 1; i < n; i++)
for(j = 1; j < n; j++)

v[P(i,j)] = …



PROGRAMMING MODELS
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Thread/process

Address space

Memory access

Message

Message Passing

…

MPI, actor models, …



ACTORS IN SCALA
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• Scala blends object-oriented 
and functional programming

• Pure OO
• Classes and 

inheritance
• Block closures
• Type inference
• Higher-order functions
• Sophisticated static 

type system

…
class Worker (signal : MailBox) 

extends Runnable
{   

var func = () => () ;

def run ()
{

var goOn = true;
while (goOn) {

signal.receive
{
case Go()   => func();
case Stop() => goOn = false;

};
signal.send(Done());

}
}

}
…



PROGRAMMING MODELS
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Thread/process

Address space

Memory access

Message

Partitioned Global
Address Space (PGAS)

…

UPC, Chapel, X10, …



UPC (UNIFIED PARALLEL C), 
A PGAS LANGUAGE
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• Threads working in SPMD 
fashion
• MYTHREAD specifies thread index

• THREADS specifies number of threads 
(workers)

• shared keyword indicates 
shared scalars or arrays
• Shared data has affinity to one thread

• Synchronization when needed 
(barriers, locks)

…
int i, j;

for(i = 1; i < n; i++)
upc_forall(j = 1; j < n; j++; &v[i][j])

v[i][j] = stencil(nu, u[i][j],
u[i][j-1],
u[i][j+1],
u[i-1][j],
u[i+1][j]);

…



PERFORMANCE ON A SHARED 
MEMORY MACHINE
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327682, 200it 



PERFORMANCE ON 
SUPERCOMPUTER

40

Vic3, 327682, 2000it 



LESSONS LEARNED

UPC performs quite well

▸ But SPMD will not work on ExaScale machines
▸ Impact of memory affinity is huge

Work stealing shows promise

▸ Achieves automatic runtime load balancing with 
reasonable performance

Conclusion:
we want memory affinity aware work stealing
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REACTIVE WORK REBALANCING 
EXPERIMENT ON CLUSTER

Start by giving each thread the same number of 
grid rows to process

Measure how long it takes each UPC thread to 
process these rows

If necessary:
React by transferring rows to other UPC thread

42



REACTIVE WORK REBALANCING: 
KERNEL IMPLEMENTATION IN UPC
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…
for (iteration = start; iter < start+nr; iteration ++) {
upc_barrier;

//potentially rebalance rows between threads
rebalance(mgr, iteration);
upc_barrier;
adjustWork(mgr, *old, *new, iteration);
incrementIterationCounter(mgr);

//do a heat step and measure how long it takes
upc_barrier;
timeTaken = (*step)(mgr, iteration, *old, *new);

//update the internal information
update(mgr, iteration, timeTaken);

}
…



REACTIVE WORK REBALANCING: 
KERNEL IMPLEMENTATION IN UPC
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…
for (iteration = start; iter < start+nr; iteration ++) {
upc_barrier;

//potentially rebalance rows between threads
rebalance(mgr, iteration);
upc_barrier;
adjustWork(mgr, *old, *new, iteration);
incrementIterationCounter(mgr);

//do a heat step and measure how long it takes
upc_barrier;
timeTaken = (*step)(mgr, iteration, *old, *new);

//update the internal information
update(mgr, iteration, timeTaken);

}
…
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REACTIVE WORK REBALANCING: 
ACTION!

Heat distribution simulation (16384x16384, 
2000 it)

Every third thread (0, 3, ...) straggles

▸ slows down with a factor of 2

Ran distributed on 32 cores

X axis: core number

Y axis: nr of rows processed
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ITERATION 0
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ITERATION 3
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ITERATION 12
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ITERATION 13
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ITERATION 26
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ITERATION 125
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ITERATION 1999



PERFORMANCE ON 
SUPERCOMPUTER
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Vic3, 327682, 2000it 



PERFORMANCE ON 
SUPERCOMPUTER
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Vic3, 327682, 2000it 



Hardware: millions of cores, runtime variability and failures, energy

Applications: computationally intensive, billions of threads
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IMEC SMART SYSTEMS

www.exascience.com
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BACKUP SLIDES
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2D HEAT

 Grid

 Stencil Operation

 Explicit Timestepping

for(it=0; it<nr;it++)
for(i=1; i<N; i++) {

for(j=1; j<N; j++) { 
... stencil ...
(read from g1, write to 

g2)
}

}
}



59

CILK

• New parallel function calling 
mechanism:
• cilk_spawn indicates a call 

to function that can proceed 
in parallel with caller

• cilk_sync awaits finish of 
spawned children

• work-stealing scheduler

#include <cilk/cilk.h>

…
int i, j;

cilk_for(i = 1; i < n; i++)
for(j = 1; j < n; j++)

v[P(i,j)] = …
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TBB (THREADING 
BUILDING BLOCKS)

• C++ Threading library (Intel)
• Task based parallelism
• Task scheduler
• Work stealing approach 

similar to Cilk

• Automatic parallellization
• parallel_for
• reduce/scan/sort/while

• Parallel data structures
• Scalable memory allocation
• Mutual exclusion
• Atomic operations

#include <tbb/parallel_for.h>
#include <tbb/blocked_range.h>

thread_code(blocked_range &r){
for (int j=r.begin(); j!=r.end(); j++)

// Stencil on rows j
}

...
blocked_range r(0, numThreads);
parallel_for(r, thread_code, aff_part);
...
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ARBB (ARRAY BUILDING 
BLOCKS)

• C++ language extension for 
vector parallel programming

• Intel product
• currently beta 2

• Computational kernel defined 
for the individual grid points

• Automatic parallelization 
over cores and SIMD units

• Can be extended to GPU
• Vector code is JIT-compiled

#include <arbb.hpp>

template<typename T>
void heat_stencil(T src, T& dst) {

dst = src + D * (-4*src
+ neighbor(src, -1, 0)
+ neighbor(src, 1, 0)
+ neighbor(src, 0, -1)
+ neighbor(src, 0, 1));

}

template<typename T>
void heat_driver(dense<T, 2> grid,

dense<T, 2> next) {
map(heat_stencil<T>)(grid, next);

}

int main(){
...
call(heat_driver<T>)(grid, next);
...

}
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UPC

• Threads working in SPMD 
fashion
• MYTHREAD specifies thread index

• THREADS specifies number of threads 
(workers)

• shared keyword indicates 
shared scalars or arrays
• Shared data has affinity to one thread

• Synchronization when needed 
(barriers, locks)

…
int i, j;

for(i = 1; i < n; i++)
upc_forall(j = 1; j < n; j++; &v[i][j])

v[i][j] = stencil(nu, u[i][j],
u[i][j-1], 

u[i][j+1],
u[i-1][j], 

u[i+1][j]);
…
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CHAPEL

• “Global View” paradigm -
clean algorithm code
• No communication/data sharing code 

intermixed
• No  explicit decomposition of data 

structures and control flow into per-task or 
per “node” chunks

• Data parallel features based 
on domains (index set)

• Data distribution 
customizable by introducing 
domain maps
• separate from algorithm code

• Explicit Task parallellism

const MatrixSpace :
domain(2) = [0..size, 0..size];

const  ProblemSpace : 
subdomain(MatrixSpace) = [1..n, 1..n];

def  heat(n, u, v, nu) {
forall (i,j) in ProblemSpace do

v(i,j) = u(i,j) + nu * ( u(i+1,j) …
}
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X10

• Type-safe parallel OO 
language

• Asynchronous PGAS
• data locality through 

places
• lightweight activities

public class HeatTransfer_v1 {
const BigD = 

Dist.makeBlock([0..n+1, 0..n+1], 0);
const D = BigD | ([1..n, 1..n] as Region);
const A = DistArray.make[Real]

(BigD,(p:Point) =>{ …init…});
…
def run() {
var iter:Int = 0;
do {
iter = iter + 1;
finish ateach (p in D) Temp(p) = stencil(p);
finish ateach (p in D) A(p) = Temp(p);
} while (iter < iterations);

}
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SCALA

• Blends object-oriented and 
functional programming

• Pure OO
• Classes and 

inheritance
• Block closures
• Type inference
• Higher-order functions
• Sophisticated static 

type system

…
class Worker (signal : MailBox) 

extends Runnable
{   

var func = () => () ;

def run ()
{

var goOn = true;
while (goOn) {

signal.receive
{
case Go()   => func();
case Stop() => goOn = false;

};
signal.send(Done());

}
}

}
…



HPC VERSUS…

Grid/Cloud Computing

▸ loosely coupled heterogeneous systems that are 
geographically dispersed

▸ Computing resources are not administered centrally
▸ Interconnected through slower networks
▸ Typically runs several different programs in parallel
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