Adaptive Runtime Resource
Management of Heterogeneous
Resources

Roel Wuyts
Principal Scientist, imec
Professor, KUL (Distrinet)

Carreer Overview

Studies: Licentiaat Informatica (VUB, 1991-1995)

1995 2001 12004 ___|07/08

Doctoral Researcher Postdoc Chargé de Principal Scientist
VUB University of cours imec

Bern, ULB

Switzerland

Professor (10%)
KUL

Juggling Hats

IMEC
- Embedded devices
« Runtime resource management

ULB

* Object
versioning

- AOP

KUL
Language Design

Imec

o Research organization located in Leuven

- world-leading independent research center in nanoelectronics and
nanotechnology

— More Moore research targets semiconductor scaling for the 22nm
technology node and beyond.

— More than Moore research invents technology for nomadic embedded
systems, wireless autonomous transducer solutions, biomedical electronics,
photovoltaics, organic electronics and GaN power electronics.

e Numbers
— Budget: £ 200 M€
- Staff: £ 1700

— Cleanroom: £ 10,000 m2 == —

The ARES Team

. o
Maja Rogier Carolin
D'Hondt Baert Blanch

IMEC Ph.D. Students

N :
&

Narasinga Rao Hengjie
Miniskar Song

Master Students

ARES General Goal

o Software that takes advantage of heterogeneous
platforms is becoming the rule.

» Developing such software is hard because:

- A decision needs to be made regarding what software components can use
what resources,

- that decision varies at runtime as the application’s context changes.
— moreover the decision needs to result in good performance,

- And the software needs to run with many possible resource configurations

* ARES solves this problem through adaptive runtime
resource management, a solution that monitors
applications at runtime and decides the assignment of

resources to software components at runtime according
to a decision algorithm.

Resource Management at Network, Device and SoC Leve

‘i SANVIDIAe
NV0925014 925A8
¢ KOREA

PC2488.009
APX2600-HM-AS

GeForce
GPU

HD
kg Video
hfocessor Processor

Display HDMI

Security ~ I'S
Engine FC

System-on-Chip

Context: Networked Video Processing

video wall

=)y 5 &

=) a @ =M ombedded

display controllers

rem o 'sm

desktop computer

video
processing
device

Video Processing Device

e Previously: custom hardware

e Now: Device with off-the-shelf CPU and GPU

and optionally DSP-board
— Many different kinds of CPUs and GPUs -> high variability

— hardware evolves rapidly -> high variability

video
processing
device
GPU CPU DSP
9 multi-core farm)

010 9

Software Pipelines in Video Processing

o Software to process and analyze video streams

— encoders, decoders, transcoders, object (e.g. logo) detection, video
scalers, color space conversion, ...

e Characteristics

— Data-dependent: changing workloads (component A in example)

— User/context interaction: changing pipelines (B triggers pipeline P)

Developing on Heterogeneous Platforms

* Assignment Problem: what runs where when?

P "
Software

ardvare .-éﬁ

CPU DSP
L multi-core farm)

010

Related Work

* Practice: (manual) design-space exploration + assumptions

o Task assignment for heterogeneous systems

- V. 1. Jiménez, L. Vilanova, I. Gelado, M. Gil, G. Fursin, and N. Navarro. Predictive
runtime code scheduling for heterogeneous architectures [HIPEAC '09]

- Finer-granularity imposing only simple assignment strategies

e Task scheduling on heterogeneous multicore architectures

- C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A Unified
Platform for Task Scheduling on Heterogeneous Multicore Architectures [Euro-

par'09].
— Only list scheduling and without taking data transfer times into account

o Static scheduling heuristics for heterogeneous processors

- H. Oh and S. Ha. A static scheduling heuristic for heterogeneous processors [Euro-
Par '96], H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task scheduling algorithms for
heterogeneous processors. Heterogeneous Computing Workshop, 1999.

- Formal approaches without implementation, no runtime assignment

Static Assignment Problem 1: which is best

GPU bottleneck

different workloads have — speed / //
different best static - / /|
assignments on l
heterogeneous processors ¢
200 / ry
[]
different static 150 N '
assignments on ' '
GPU and CPU ™~ o o l
per workload **°° [s) i I '
A
\\ l A
o3 A .
\ 4 4 ?] N
[] A H H
A : P . « H
6 different best static ° T +——workload
assignments (sa) : : : : o :
for 8 different workloads : _ _ _
saA saB saC saD 3 E sa F

mec UV

Static Assignment Problem 2: scaling

* experiment (previous graph):
- 1 to 8 streams

— 2 resolutions
— 8 different load distributions over GPU and CPU

— # static assignments ~ 100 (points in the graph)

e professional video processing
- 1 to 64 streams

- 4 resolutions
— 64 different load distributions over GPU and CPU

— # static assignments ~108

|

static assignment problem 3: heterogeneit

variations in configurations of processors have different best static assignments for same workloads

best static assigments on
1 GPU and 2x 4-core CPU:

> 4 tasks: sa A

/ < 4 tasks: sa B
450 /

/ /

/

350

/

250 =

200 _

—/
300 i77x\ /
 ———— ——3

100

50

150 /
£

best static assignment on

1 GPU and 4-core CPU:

sa A

AN

N\

—*sl

52

s3

—*—g5

—*-s6

—s7

ARES’ Adaptive runtime resource manage

speed
250
®

ARES run-time load 200 ’
balancing for all
workloads is almost .
always better than 150
the best static o

T L
\\Q L -l-

0 1 2 3 4 5 6 7 8 workload

mec P

ARES’ approach is portable across platform

900 1

ARES run-time load
balancing is portable
to different
configurations of
heterogeneous
processors:

exact same software
stack adapts to
underlying
heterogeneous
processors and
achieves best
performance all the
time

(horizontal lines)

800 1
700 1
600

500

run-time load balancing on

1 GPU and 2x 4-core CPU:

400

300 1
1 to 8 streams %
100

720p resolution

508

450 1

400 1

run-time load balancing on

1 GPU and 4-core CPU

350 1
: 300 1
25 1
00 1
150
100 1

50 1

°
°
@
@
°
L) @
[
°
° °
™
Y [
™
[] ° L
® °
° —_—
° g °
° N L —
L4 o —
° —
\ f—
\-
q 1 4 5 6 7 8
°
° °
. .
. L4 i
@ . $ °
. . b
. b 4
° *
L4 e ¢ —
—

ARES Runtime Resource Management: pal

e Monitor
resource assignment and usage

e Represent
monitored information

e Decide assignment at runtime
- use monitored information

- predict, learn, adapt, ...

- Pluggable strategies with different trade-offs

Monitoring and Representation Examples

e We monitor:
- execution time of a component on a processing element

— data transfer times between two connected components executing
on different type of processing element

* We represent:

- Average time + standard deviation per component and per
processing element

Task PE time Dev.
t1 cpul 50 9,3%
t1 cpu?2 52 5,6%
t1 gpul 2. 4,1%
tl ->gpu 13 12,8%
t1 gpu-> 32 8,4%
t2 cpul 134 3,6%

mec DU

Assignment Strategies

* Can use the following information:
— Hardware metadata: static and runtime

— Software metadata: static and runtime

» Have to respond to assignment requests
— Fast response is required

» Different algorithms are possible
— Static (up-front) decision: no runtime adaptation (SoA)

- Generic: fastest available, first finished
- Domain-specific: prefer-GPU-sequence

— Machine learning

e v - o 200

20

Example: First Finish Strategy

t1 cpul 50 9,3%
11 + 14 + 50 t1 cpu2 52 5,6%
_575 +4 4+ 13 +22|t1 gpul 4 RN
t1 ->gpu 13 12,8%
tl gpu-> 32 8,4%
t2 cpul 134 3,6%
t3 cpul 14 6,2%

cpul cpu?2 gpul

2.1

Implementation

e ARES Runtime resource manager

implementation:
— Dynamic library for Unix (Linux, OS-X) and Windows

— C and C++ header for integrating with applications
— Uses Boost shared memory to store values
— Low-overhead (0,01%)

o Used with:

— AVC Encoder (CUDA-accelerated motion estimation)
— GStreamer applications

— Imec in-house multimedia framework in .Net on Windows

Making the AVC Encoder runtime managed

//ask RRM to decide between GPU or CPU
proc_type = rrm_get_processor(encID); 2 lines
1f (. RRM_PROC_TYPE(proc_type) == RRM_PROC_GPU)
cuda_me = 1;
else
cuda_me = 0;

start2 = RDTSC O;
if (cuda_me == 1) {
start = RDTSC);

GPUinit(Q);
cuda_motion_estimation();
GPUEXit(Q);
g_total_MEtime = (RDTSC () - start);
ks
else {
(CARMVCM4P10_MESpec *)encInfo.params.meSpec)->no_gpu_data();

}

//update RRM execution time _
update_kernel_timing(encID, proc_type, g_total_MEtime); 1 line

mec ST

City + Space: runtime managed

File Edit View Share Window Help (M Stop Recording (W03:02h @ [@MEC-nra D (O £ [3 = «4) (0:13) Wed 16:01 Q
O O O ares@Barco: ~/users/roel/trunk/H.264/build/li... |))) ares@Barco: ~/users/roel /trunk/H.264/build/li...
ares@Barco: $./Av Bl [2] Segmentation fault ./Av¥Cencoder.out -g -f

: Cencoder.out -m/|-f city.cfg b space.cfg
Screen Recording [3]1- Segmentation fault ./RvCencoder.out -g -f

space.cfg

o [4]+ Segmentation fault ./AvCencoder.out -g -f
space.cfg
ires@Barco: $./Av
Cencoder.out -m| |-f space.cfg &

! 1x] ares@Barco: ~ — ssh

Tasks: 155 total, 1 running
Load average: a.71 8.75
Uptime: 8 days, 81:26:49

g8 [
temL| [[LTTTEEITTILTT
‘f‘mp[

11655 ares 28 @ 2568 1284 948 S 2.8 B.1 46:42.63 htop
F1 F2 F3 F¢ FS F6 F7 F8 Fo

4 May 2010 24

But...

* ... what runtime management strategy works
best for my application ?

o ... will my existing application benefit from
runtime management ?

e ... will my new application benefit from runtime
resource management?

e ... what if my clients use a dualcore CPU and 2
GPU’s ?

Exploration Tool

o Compare different runtime resource
management strategies

e How?
— Model software at high-level (connected components).
— Decorate nodes with timing information:

e Average execution times per processing element supported;
e Data transfer Times between different processing elements.

e These timings come from the runtime manager, from other
profiling tools, from experience, or even from guestimates.

— Model kind and number of processing elements.

— Select the strategies you want to compare.

e Result?

— Exploration tool simulates the execution for each strategy and

outputs information that can be plotted (dropped frames, late
frames, platform utilization)

e v - o 200

26

—Application 1

Source Demux Scaler Sink

Execution time: Execution time: Execution time: Execution time:
CPU: 0.011ms CPU: 0.00163ms CPU: 0.115ms CPU: 0.51ms
GPU: 0.0129ms
Data Transfer Time:
CPU->GPU: 0.079ms
GPU->CPU: 0.17ms

—Application 2 — —Hardware Description
E.nc.oder 3 CPU
S 1 GPU
GPU: 0.074ms 2 DMA

Data Transfer Time:
CPU->GPU: 0.085ms
GPU->CPU: 0.46ms

Roel wuyts - 4 May 2010

27

Plotted outputresult

©g0I0111 txt: Droppod Yame Fercemages va. “wrbers o Xpeines

. ‘ -+ m -

* 51
0.5 p o k2 2

- S3

i
0e - 55 . e

g;
I 3 [- o
S10 - ‘
06 X . g
u.s - ° - 4
0a} 3 4
03 B
0.2 N
0.1 .

Device-level adaptive resource manageme

o Static assignments exhibit problems

— Different solutions for different workloads or other runtime
variability

— Do not scale (exploration space explosion)

— Different solutions for different platforms

 Runtime resource managed solution adapts to

different conditions
— Runtime variability

- Heterogeneous platforms

e v - o 200

29

Context: Networked Video Processing

video wall

) =,

= E‘J%F :mbledded |
« WS i t
u:_g‘a_, = = isplay controllers
e Sa '

desktop computer

video
processing
device

30

Network: Connected heterogeneous de

server video wall

desktop pc -)
> g with

S, Qr@ o embedded

mobile

&

31

System-wide Resource Allocation

RRM (decision)

1

Server I

Screen 1
111 B 10 Gbps Ol |

4CPU’s + 1GPU Network Switch

COOEE S
N IO T][I0 <
SAGEaE
Si|Sal=u|=w|=x "

1 Gbps
1 Gbps

]
T
O
N |

Server II /‘

HE B 10 Gbps Screen 2
2CPU’s + 1GPU L]

/

Scheduling
Latency Strategy
Simulation

mec T

L
ol
U'l'l
SEESE

T
o
N [N]

0O
—
M

Possibility: Everything decoded at server,

data to client

RRM (decision)

1

Server |22
iintt Screen 1

LO Gbps
Network Switch an

4CPU’'s + 1 o

1 Gbps
1 Gbps

Server 11

T N 10 Gbps Screen 2
2CPU’s + 1GPU .

=<
]] o)
T (WO]||T i |Wv|0O <
OO |m|P OlFIC|IO|F]| =
(D
N [N NN NN R n

|
0O
—
M
N |

(-) Increases Bandwidth and network latency
(+) No processing cost at client

mec T

Possibility: Everything trans-coded at serve

lower resolution sent to client

RRM (decision)

Movies
CIF (1 '_'_CIF .
Server S 1
creen
S O W (10 Gops " .
4CPU’s + Network Switch
SD Sb—12
e 1 Gbps
1 Gbps
Server II
HEH B 10 Gbps Screen 2
2CPU’s + 1GPU i

|
0O
—
M
N |

(+) Reduces Bandwidth and network latency
(+) Lower processing cost at client
(-) Increases processing cost at server

|

Possibility 4: Everything fully decoded at

client

RRM (decision)

1

Server I CIE 1

Scre¢—————
00 B |10 Gbps SDiE

4CPU'’s + 1GPU Network Switch HD g

I-- <
niolxxTllnlio] O
diiaEE
NN P 8

|
T
O
N |
|—I.
)
o
O
)]

ServerIll ———3 |

2CPU’s + 1GPU ‘

L
ol
U'l'l
SEESE

d
O
Si|SH

i

)

S

0O
—
M

(-) All processing at client, might miss deadlines
(+) No BW or latency increase

mec T

network-level: first results

o distributed processing of video processing applications on
server or client

o trade-off between processing at server, processing at client or
transcoding to lower quality

* adaptive run-time resource management - using a mixture of
the above - gives good results:

[Mixed
Processing

Processed at |[Processed at |Transcode

Server Client

Medium-High

Resolution/Quality High High

Missed Streams 6
(limited bw)

BW (Gbps)

33

Latency (ms)

May 2010 36

Networked Video Processing: Future Work

» Discover Distributed Processing Strategies
— Trading of bandwidth, processing power and quality

» Implement
— Currently extending the device-level manager

Conclusion

* Problem: how to develop software that runs on

heterogeneous devices
— At SoC level

— At Device level

— AtNetwork Level

e Solution: runtime decision strategies decide
what software component uses what resource

o Meta Remark: versatility of your studies make
you valuable assets

» Meta Meta Remark: Choose according to
Flexibility versus Pay

38

