
Architecture &
UML analysis

How to develop your
SOA to empower your

IT strategy ?

Frédéric Vermaut,
Hermès IT Architecture Director

2

Who am I ?

 Frédéric Vermaut
 41 years
 IT Architecture Director
 Architecture & Methodology specialist
 Project Manager
 IT Experience since 17 years

 Ducroire, ING, Fortis, TUC Rail, AXA, Dexia…

 Civil Engineer

3 December 2009 3

What is Architecture ?

4

What is Architecture ?
 What is IT architecture ?

 « set of significant decisions about the organization
of a software system »(Booch, Rumbaugh, Jacobson)

 « Set of statements describing software
components and assigning the functionality of the
system to them »

 “Breakdown of a system into its parts & decisions
that are hard to change” (Fowler)

 Blueprint for a system, the implicit high level plan
for its construction

 "set of design decisions which, if made incorrectly,
may cause your project to be cancelled.“ (Eoin Woods)

What is Architecture ?

 The software architecture of a program
is the structure of the system, which
comprises
 software elements
 the externally visible properties of those

elements
 and the relationships among them.

6

What is SOA ?

Architectures : historics

 Central systems : mainframes
dumb terminals ...

 Client-server (2-tier) (screenscraping)

PB, Natstar,
VB, TFM,
Delphi

Mainframe

Presentation

Processing

Data

Server (DB)

Data

Client (fat)

Presentation

Processing

Architectures : historics
 2-tier client-server : many problems

 PCs must be regularly replaced
 Maintaining PCs
 Software distribution + updates
 Hell if installation at the clients : support, multitude

of configs to support, soft distribution ...
 Security : everybody has access to the DB, ex :

homebank software
 Network traffic
 Integration after merges
 …

Architectures : historics

 Distributed Architectures : 3-tier, n-tier

 Components approach : n-tier
 Thin client : well adapted for internet, e-

commerce... But not only

App Server

Processing

Client (thin)

Presentation

Back-end
Server

Data (DB)

Architectures : historics
 Typical internet architecture

 Standardisation wish

Back-end
Server

Data (DB)

App Server

Processing

Browser
Presentation

Internet/
Intranet
Internet/
Intranet

Standard !

Inter/Intra-net Standards

 Client
 HTML browser
 Add-ons for + user-friendly : javascript, applets

(+/- std) + to reduce network traffic (local ctrls
before sending to the server)

 Internet : Http on TCP/IP protocol
 DB server : Relational DB, SQL +/-

standard
 Application servers : JSP, Servlets,

EJB…
 All this defines J2EE

Back-end
Server

Data (DB)

App Server

Processing

Browser

Présentation

InternetInternet

12

What is SOA ?

 SOA is
 Software architecture,
 Based on 4 key elements

 Application front-end (owner of the business process)

 Service (business functionality, structure of SOA)

 Service repository (catalog of services)

 Service bus (interconnection)

 Business services (not technical) :
 No impact from technology on the high-level structure
 Technology cannot cause dependencies between components

Example

 An application which gives you the meteo.
 A first page asks you a place

 On click : http request getMeteo(city)

Meteo requestMeteo request

MeteoWEB @Hermès 2008

Paris
Bruxelles
Mons
Amsterdam
Gran Canaria
Madrid
Rome
Nice
Monaco
Genève
Munich

Choose the place

Get météo

Example

 Server
 receives the request
 determines which page must be built
 calls a new (html) page and…
 fills it

Example

 Meteo_text can come from whatever
other specialized site

 Mix GUI and business code : BAD !

 Create a “service” to obtain the
information

Example

Service

getMeteo(city)

Internet

or Database

Example

Service

Internet

MeteoText

or Database

Generalizing example

Service

Service

Service

Service

Why is it bad to mix GUI and business ?

 Gui can change due to :
 Process reengineering
 Restructuration, acquisition…
 Relooking, revamping

 Business process will change over time
 But the business services do not

change !
 Ex : approval of mortgage credits in banks

Other advantage : reusable services

Service

Service

Service

Service

Database

Mainframe

21

SOA concepts

SOA

Application
Front-end Service Service Repository Service Bus

Contract Implementation Interface

Business Logic Data

22

Services

 Software component of functional meaning
 Encapsulates a high-level business concept
 Much more stable than processes or applications
 does not depend on the context or state of other

services (stateless, as much as possible)

Appl front-end

Services

Data/content

0 5 10 15 20 25

Appl front-end

Services

Data/content

23

Application Front-ends

 Web applications
 Rich clients
 But also batch
 Delegate the functionality to Services
 Initiate the business process
 Receive the results

SOA

Application
Front-end Service Service Repository Service Bus

24

Services

Application
Front-end Service

Before

System

Data Functionality

Now

System

Data Functionality Data Functionality

OR

Object Component Object Component

SOA

Application
Front-end Service Service Repository Service Bus

25

Service Repository

 Facility to discover services and acquire
information to use them

 Contains the content of the contract
 May also contain informations as

 Physical location
 Contact persons
 SLA
 Security issue
 Special constraints…

 Necessary for long term enterprise SOA
 Organization : under responsibility of an architecture board

SOA

Application
Front-end Service Service Repository Service Bus

26

Enterprise Service Bus

 Connects
 Services
 Application front-ends

 Provides
 Connectivity (intelligent routing)
 Heterogeneity of technology (e.g. data transformation)

 Heterogeneity of communication concepts (more
asynchronous if possible, uncoupling is the master word)

 Technical services : logging, auditing, security,
transactions…

SOA

Application
Front-end Service Service Repository Service Bus

27

Enterprise Service Oriented Architecture

Process control
logic

Core business
logic

Application
Front-end

Service

Particular case :
WebServices
 Definition :

 Business components
 Self sufficient
 Self descriptive
 Called via internet/intranet
 Respecting quality agreements
 Based on XML

SOA

Application
Front-end Service Service Repository Service Bus

29

Why SOA ?

30

SOA Benefits

 SOA main drivers
 Agility
 Efficiency (cost saving)

AgilityAgility

ReuseReuse

SOA

Efficient
dev

process

Efficient
dev

process
Flexible
infrastru

cture

Flexible
infrastru

cture

Ease of
maintenance

Ease of
maintenance Independence

from techno
Independence
from techno

Ready to
evolve

Ready to
evolve

31

SOA benefits for people

 CEO
 Better reaction for business demands
 Shorter term planning (step by step app.)
 Budget : less maintenance
 Techno independence

 CIO
 Techno independence
 IT becomes “enabler” to the business
 Manageable project size
 Manage heterogeneity

32

SOA benefits for people

 Architect
 Very interesting tasks
 Opens real opportunities to build
 Loose coupling
 Code reuse

 Project Manager
 Smaller & shorter projects
 Parallel development
 Reduced risk
 Easier testing & integration

33

SOA benefits for people

 Software developer
 Reduction in dependency
 Rapid prototyping
 Better defined requirements
 Simplified testing (loose coupling)

34

Implement the architecture

SOA Architecture : ESB

Enterprise Service Bus

Service
Service

Service

E
S

B
 M

anager

What is ESB ?

 Message broker
 Enables the implementation of SOA
 Tries to remove the coupling between

the service called and the transport
medium

 Brings transportation and routing
 Provides an abstraction for endpoints

3 December 2009

JBI : Java Business Integration

Benefits of an ESB

 Allows Pluggable Component (with data
transformation)

 JBI mediator : isolates the services that don’t have to
know each other = Normalized Message Router

 Un-coupling applications to services and
service to service

 Suppresses the multiple point to point
connections (not scalable & hard to maintain; impact
analysis easier)

 OpenSolution : vendor independent, no lock-in for small
providers

Capabilities of an ESB
Invocation Synchronous & asynchronous, service

locating

Routing Addressing, static/content- or rules- or
policy-based routing

Mediation Adapters, protocol transformation

Messaging Message processing, transformation

Aggregator Multiple implementations of a service,
exposed as a single one

QoS Security (encrypt, sign), guaranteed delivery,
transaction management

Management Monitoring, auditing, logging, …

Common characteristics of ESB

 OS & language agnostic
 Often uses XML
 Should support WebServices
 Multiple messaging patterns : synchronous &

asynchronous request/reply, fire & forget,
publish/subscribe…

 Transformation services : e.g. XSLT
 Message validation against “schema”
 Supports queuing, holding messages if apps

unavailable

ESB = glue between services

 BPEL : Business Process Execution
Language : defines the workflow of
services (orchestrator)

 Services : provide the business rules
and the business basic behavior, are
(possibly) reusable

 BPEL + services = an application for
the user

Process control
logic

Core business
logicSESE

SESE

SQL
SE

SQL
SE

BPEL

Service Engines &
Binding Components

ESB

BC BC

SAPCICS
Oracle

ESB conclusions

 New technology based on experience from
the past (Middleware, EAI, stable architectures…)

 Open products exist & are well adopted
 JBI & ESB receive strong support from SUN
 Based on solid architectural principles
 Perfect addition for a sound SOA

implementation
 Facilitates the integration & future evolution

by providing a very open architecture

44

SOA Analysis

45

How to analyze for SOA ?

46

SOA Analysis

 Modeling is really important
 Analysis world : ONE standard

 Basis for services repartition
 Model inter-dependencies
 Know what to develop first
 Ensure services are reusable
 Build the SO Architecture !

47

SOA and UML

 Modeling Services :
SOA

Application
Front-end Service Service Repository Service Bus

Contract Implementation Interface

Class & Component
diagram

Sequence diagram

48

UML class & component diagram

 Services <-> UML packages

 Interfaces <-> Interface classes

 Contracts : documentation

 Dependency betw. Services
<-> UML dependency

Service1Service1

«Interface»
-method1
-method2

depends on

49

Example

Service1Service1
Service2Service2

Service3Service3

Service4Service4

«Interface»
-method1
-method2

«Interface»
-method1
-method2
-method3

«Interface»
-method1«Interface»

-method1
-method2

GUI comp.

ESB

50

UML class & component diagram

Service Repository

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Sed non risus. Suspendisse
lectus tortor, dignissim sit amet, adipiscing
nec, ultricies sed, dolor. Cras elementum
ultrices diam. Maecenas ligula massa,
varius a, semper congue, euismod non, mi.

 May also be used for the

 You can organize your services in a
hierarchy

 In a CASEtool, the whole
documentation of the services is just
one-click away

51

UML Sequence Diagram

 Model the dynamic part, the
interactions

 What will happen on the bus

xxx

yyy

zzz

ttt

52

UML conclusions

 Class & component diagrams (static)
 View of what services are available
 Documentation of the interface
 Shows the dependencies between services

 Sequence diagrams (dynamic)
 View on how the services communicate
 View on how the appl. uses the services

 UML analysis is very well suited to SOA

53

Conclusions

54

Conclusions

 SOA can bring BENEFITS
 SOA is an evolution, not a Revolution
 SOA does not require technology change !
 SOA adapts to all technologies (including

legacy)
 You can transition smoothly to SOA

 … but SOA needs a clear decision &
management support !

55

Conclusions

 To implement SOA, you need good
modeling :
 Analysis
 Architectural process

 UML is the ideal candidate to support
this modeling

 SOA is maturity after C/S, n-tier,
CBD…

56

QUESTIONS ?

E-mail: frederic.vermaut@hermes-ecs.com
Web site: http://www.hermes-ecs.com

