
Creating your first SSIS project
1. Start Business Intelligence Development Studio

2. Start a new SSIS project

3. You can use the wizard to define your data sources etc., but we won’t do that, so chose cancel in

the wizard. Normally you should now see the following layout (if not, double click on

package.dtsx on the right-hand side):

Your ETL flow will consist of multiple “data flows” and your control flow will define the order in which

the data flow tasks and other simpler data manipulation tasks need to be executed. For instance, filling

the dimension table “dimCustomer” will be done with one data flow, as well as filling the fact table

factSales. However, it is important that the dimCustomer table is filled before the factSales. This order

will be enforced in the control flow. Also tasks like creating table statements etc. will be done in the

control flow. The databases and other data sources and sinks you will be using can be connected

through the connection manager.

Main canvas in which

you will construct

your ETL flow

“building blocks” to

construct your ETL

process

The connection

manager allows you

to connect to the data

sources you want to

integrate or write

output to

4. We will construct a very simple ETL flow that uses the Northwind database as input. The schema

of this database is as follows:

Hence, we have a situation in which we can start from a clean database, and we will be using only one

source database. You can think of this as the reconciled data layer in a three-tier architecture. So, we

first need to make a connection to the database. Do this by right-click on “Connection Managers”

(bottom) and selecting OLE DB connecting.

Navigate to the Northwind database on the CS-MSSQL database server:

This is the connection to the input database. We also have to make a connection to our destination

database. For this purpose, either create a new database using the SQL Server Management studio, or

use an existing database that belongs to you (important: you need write permission and permission to

create tables in this database). For this demo I have created my own new database W7-DW, and created

a connection to it, in the exact same way as was done for the Northwind database:

To avoid confusions later on the datasources were renamed (right-click on name - rename):

5. We are now ready to start creating our flow. We will start with a simple flow to create the

dimension dimProduct for which we will need the following two tables:

For reasons of simplicity we won’t consider the supplier of a product, but only the category. The

dimension table we create will contain the ProductID, ProductName, CategoryID, and CategoryName.

Furthermore, we need to be able to store type-2 changes, hence we will add a surrogate key, and a start

and end field.

The table to which we will be writing has to be created in the data warehouse. So, before we start

defining all control flows, create the dimProduct table in the data destination with the following create

table statement:

CREATE TABLE [dbo].[dimProduct](

 [PID] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,

 [ProductID] [int] NOT NULL,

 [ProductName] [nvarchar](40) NULL,

 [CategoryID] [int] NULL,

 [CategoryName] [nvarchar](15) NULL,

 [start] [datetime] NULL,

 [end] [datetime] NULL

)

So, you should see the following table structure in SQL Server Management Studio:

PID will be the surrogate key and by defining it as IDENTITY(1,1) it is an auto-increment number.

We are now ready to introduce a data flow task in the control flow canvas (drag and drop from the

control-flow elements on the left):

Rename the data flow task to “load dimProduct”, and open it in the data flow tab by double clicking on

it. Notice that on the left the set of available elements has changed as we are now in the data flow tab.

In this tab construct now the following ETL flow:

You can connect the different element by dragging the edge to the destination. This workflow expresses

a pipeline where we first load a table from a source, then add attributes via a lookup, and finally write

the table out to a destination table.

We will now configure the 4 elements from the top to the bottom. The first element will read the

product table from our data source. The second operation is a lookup, looking up the category name in

the category table with the category ID for every tuple in the product table. The derived column will

introduce two now columns: one with the current date and one with NULL. These derived columns will

respectively become the start and end of the introduced tuples. All configurations are shown on the

next page.

The first component, OLE DB source will read the source table from the source database. Hence, we

need to initialize it such that it will read the right table from the source database:

The second component is responsible for looking up the category code for the product. There are

different ways to achieve this:

 Join the two tables in the data source and load the joined table instead of the product table.

Disadvantage: burden on your source system and every time one of the tables change you will

have to recompute the join

 Create a virtual view in your source table that expresses the join of these two tables. This is

actually a popular method; creating virtual views in the source database to facilitate the export

to the datawarehouse.

Advantage: if the query result is much smaller than the tables on which the query is run, there

may be far less data transfer between the two databases.

Disadvantage: as the query is run on the source database this solution comes with a

performance penalty at the data source side.

 Use a node that executes a query (join) on the source database and captures the result.

Disadvantages are the same as previous bullet.

In this exercise we have chosen for a fourth approach:

 For every product in the product table, do a lookup for the category in the category table. There

are different way to do this: multiple queries to the data source for instance (not desirable) or

loading the categories table in memory (the default approach and preferable if table is small)

Hence in the lookup transformation node we need to set in which table the categories can be found:

And on what key we will join and which attributes to retain from the lookup table (Drag and drop to

connect CategoryID of Product with CategoryID of the lookup table):

For the third component: in this component we introduce two new attributes start and end that take

respectively values the current date and NULL. These will be the versioning attributes:

And finally for the fourth component: we need to set the destination database and table:

And set the mappings:

Now you are ready to run the package:

If the package was successfully executed you will indeed see that the table has been filled with

the appropriate values.

