Data Warehousing
Conclusion

Esteban Zimanyi
ezimanyi@ulb.ac.be
Slides by Toon Calders

Motivation for the Course

* Database = a piece of software to handle data:

— Store, maintain, and query

* Most ideal system situation-dependent
— data type: simple / semi-structured / complex / ...
— types of queries: simple lookup / analytical / ...

— type of usage: multi-user / single-user /
distributed / ...

Example Question

 What are the ACID properties? Illustrate these
properties with your own examples. Why are
they important for OLTP?

— Atomicity

— Consistency
— Isolation

— Durability

What About Decision Support?

* Concurrent access
-2 not really
—read-only

e Data consistency, non-redundancy
—>data comes from consistent sources (sort of)

—>data does not change during analysis; once clean,
always clean

What About Decision Support?

* Ad-hoc Querying
—>No longer true;
—Spread-sheet like queries

- Long-running queries, touching large parts of the
database

—In combination with transactions, kills the database

e Efficiency
— Relational DBMS optimized for other types of queries

What About Decision Support?

* OLTP systems not very efficient for data
analysis tasks

— analysis queries might stall operational systems

— architecture suboptimal
 different indexing stuctures

* denormalization

— need of historical data versus only current data

Three-Tier Architecture

i y Storing the data; general- 4 Analyzing data:

Ml purpose computer | - Conceptually a cube
- ROLAP & MOLAP | - MDX as a cube-
|
I

Getting the .
data inside - Indexing, view- oriented query

Extract materialization, languages
Transform partitioning, column-stores { Supporting complex
Load Special purpose applicances analytical SQL queries
- IBM Pure Data for Analytics | - Usually not as ad-hoc
Problems: - Teradata as regular queries

ting

- Noisy data
- Data not

Parallelization to speed up

consistent querying: —
8 - E. g map -reduce = =
|
| Data Marts : Server .
. 7 e’ \\ A -
Y gl Y Y

Data Sources Data Storage OLAP Engine Front-End Tools

Three-Tier Architecture

other
sources

- Monitor
Metadata &
Integrator

Analyzing data:

- Conceptually a cube

- MDX as a cube-
oriented query
languages

|
|
|
|
|
|
|
|
|
I—

@ : ! Supporting complex
Operational | Extract ! analytical SQL queries
DBs | Transform Data | - Usually not as ad-hoc

 Load \Warehouse | as regular queries
: Refresh ! |
: . i i Data Mining
; g g g :
1 1 1
| |
S s
|
! Data Marts : Server .
@ ~ J N s \ v J N\. ~ -

Data Sources Data Storage

OLAP Engine Front-End Tools

Data Cubes as the Conceptual Model

\ 201 Date
3 10tr I 30tr 40tr sum
N4
&& PCTV Lt L L Ireland
) "/ 7 / 4 7
Ve 7 7 7 7
sum =/ E\
/]| | France +
LA | Germany O
/
sum

Aggregated over all

Querying the Cube

* Slice, Dice, Roll-up, Drill- Down

— Cube browsing tools

e MDX as the SQL for OLAP

— Select dimensions for display
— Define new aggregates
— Select slices

Example Question

* Explain the meaning of the following MDX query:

select
[Customer].[Gender].members on columns,

({ [France], [Germany] }, education.members) on
rows

from [Adventure Works]

where ([Customer Count],
{[Commute Distance].[0-1 Miles],
[Commute Distance].[1-2 Miles]})

Result

Al Custorners | Female | b ale |

France

Al Customers

France

Bachelors

France

Graduate Deqgres

France

High 5chool

France

Fartial College

France

Fartial High School

Germany

Al Customers

ermaty

Bachelars

Germaty

Graduate Deqgres

G ermany

High Schoaol

ermaty

Fartial College

G ermany

Fartial High 5choal

1,161 a3 il
282 132 150
160 83 7
139 108 91
229 158 171
131 = 33
1.245 B3z B33
243 175 168
165 82 ah
153 B4 e
53 185 138
178 a1 92

Three-Tier Architecture

other
sources

2 >

Operational

DBs

\ . >4

Ext

‘ Storing the data; general-
purpose computer

- Indexing, view-
materialization,

partitioning, column-stores
Special purpose applicances

IBM Netezza
Teradata

Data Marts

Query/Reporting

el

Data Mining

2
D
-
<
@D

ROLAP!
Server |

\ & A 4

Y

Data Sources

-~

Data Storage

Y Y

OLAP Engine Front-End Tools

Logical Model - ROLAP

* Modeling your data

— Dimensional modeling

* Fact, dimension, measure

* Cubes and pre-materialized views need to be
stored in a convenient format
— ROLAP

* Star schema / snowflake schema
* Dimensional modeling

— MOLAP

Dimensional Fact Model

age-category

brand

country
city
customer
day-of-week
Sale
Veca}r month quantity
\J
=~ date unitPrice
VAT-rate

product:<z

type

15

Corresponding Star-Schema

CustKey

OLTP_Custkey
City

Country
Age-Cat

<€

Sale

CustKey
DateKey

ProdKey

Quantity
UnitPrice
VATrate

ProdKey

? OLTP_Prodkey

Brand

Type

DateKey

Date
DayOfWeek
Month

Year

16

Dimensional Modeling

* Different ways to deal with
— Slowly changing dimensions
— Unbalanced hierarchies; non-covering hierarchies
— Junk dimensions

* These are best-practices for storing dimensional
data in a relational database

— New technologies may change the rules of the game

Slowly Changing Dimension — Type 2

* Whenever there is a change, create a new
version of the affected row

— Need for surrogate key! mm
001 John Dallas
mm

002 Mary Dallas
001 John Dallas 003 Pete New York
2 002 Mary Dallas :

001 John New York
3 003 Pete New York 002 Mary New York

004 Mark Dallas

AV 4
(@)) ul B w N

John and Mary move to New York
Mark is a new client

18

Exam Question

* Explain the concept of a mini-dimension and
illustrate this concept with an original
example.

Solution 4: Dimension Splitting

Customer dimension (original) CustlD Customer
CustID Name dimension (new):
Name PostalAddress
PostalAddress Gender relatwetl}y static

. attributes
Gender DateofBirth
DateofBirth Customerside
Customerside
oK DemographyID Demographics
. NOKids dimension:
MaritialStatus —
CreditScore Ma“t'm______s.t_a:@i_ often-changing
| CreditScoreGroup attributes
BuyingStatus _
BuyingStatusGroup
Income
: IncomeGroup
Education
\Ed\ucationGroup

Mini-dimension

Customer

Facts

SKey CID status | child car
Skey Date sum 1 1 single 0 no
1 D1 5 2 1 married] O no
1 D2 6 3 1 single 0 no
2 D3 3 4 1 single 0 yes
2 D4 3 5 1 married] O yes
3 D5 6 6 1 married] 1 yes
4 D6 3 7 1 married] 1 no
5 D7 6 8 1 married] 2 no
6 D8 4 9 1 married] 2 yes
7 D9 8
8 D10 9
9 D11 3

Mini-dimension

Customer
SKey CiD status
Facts 1 1 single
2 1 married
Skey Dkey Date sum 3 1 single
1 1 D1 5 4 1 married
1 1 D2 6
2 1 D3 8
2 1 D4 3
3 1 D5 6 Demography
3 2 D6 3 DKey child car
4 2 D7 6 1 0 no
4 4 D8 4 2 0 yes
4 3 D9 8 3 1 no
4 5 D10 9 4 1 yes
4 6 D11 3 5 2 no
6 2 yes

Exam question

4. (2 points)
Consider a data cube with dimensions Student, Course, Semester, and Lec-
turer, and measure attributes Grade and Number_of_attempts. The following

hierarchies are present:
— Student — Home_town — Country,

— Semester — Year, and

— Lecturer — Degree (e.g. full/associate/assistant professor, postdoc, ...)

(a) Give a snowflake scheme for this data cube.

(b) Use the schema of (a) to give an example of a join index and explain
which queries would benefit from this example join index.

Three-Tier Architecture

other
sources

2 >

Operational

DBs

\ . >4

Storing the data; general-

‘ purpose computer

Ext

- ROLAP & MOLAP

Special purpose applicances

IBM Netezza

Teradata

R s

Data Marts

OLAP
Server

2
D
-
<
@D

Query/Reporting

el

Data Mining

A\ - 4

Y

Data Sources

-~

Data Storage

~"

OLAP Engine Front-End Tools

Physical Level

e Speeding up typical data warehousing queries
— Data Explosion Problem
— Materialization
— Indices

* bitmap index, Join index, bitmap-join index

— Partitioning tables

Example Question

* Explain why in general it is not possible to store
fully materialized data cubes.

— High dimensionality, sparse data
— Cube exponentially larger than original data

— No problem if cube is dense
— Less of a problem if dimensionality is low

Inherent problem; impossible to pre-compute all
possible ways to aggregate the data

Database Explosion Problem
]

|

|

2D: adding 1 tuple - affecting 4 cells of the cube

Database Explosion Problem

Y4

2D: adding 1 tuple - affecting 4 cells of the cube
3D: adding 1 tuple - affecting 8 cells of the cube

kD: adding 1 tuple = affecting 2k cells of the cube

Cube size (# entries)

Data Explosion Problem

Size of cube w.r.t. number of dimensions (500 data points)

3000000

2500000 /

2000000 /

1500000 /

1000000 /

500000
OOOOOOOtﬂy//

dimensions

Storing the Data

Want quick answers = pre-computation

Straightforward solution, however, does not
work = Data explosion problem

Therefore, partially materialize the cube
+ smart indexing and storage structures

ROLAP and MOLAP
— Often hybrid form

Materialization

Example:

(part, customer)

SELECT customer, part, sum(sales)
FROM Sales | Sales |
GROUP BY customer, part

(part)

SELECT part, sum(sales)
FROM Sales | Sales |
GROUP BY part

Materialization

Example:

(part, customer)

SELECT customer, part, sum(sales)

GROUP BY customer, part

materialized as PC

(part)
SELECT part, sum(sales)

FROM Sales _

Frow SJIRE ok

GROUP BY part

Example: some materialized

Query
(part,supplier,customer)

(part,customer)
(part,supplier)

(supplier,customer)

(part)

(supplier)
(customer)

()

Answer

6M

6M
0.8M

6M
0.2M

0.01M

0.1M
1

Total cost: 20.6M

Cost
6M

o O
==
< <

Example

 Base table a, table b, and f are materialized
— Total: 2 x 100+ 4 x50 + 2 x40 =480

a 100 a 100

b 50 b 50

C 75 a 100

d 20 b 50

e 30 b 50

f 40 f 40 60
g 1 b 50

h 10 f 40 10

e Additional benefit of materializing f
=70=1x(100-40) + 1 x (50-40)

Examp

* Benefit for materializing the other tables:

a
b
C 25
d
e
f 25
g
h -

100

50

le

75

20

30

30
20
60
30 20 - 49

- 20 10 - 40
60 60 70 49 40

40

> | 0Q — | Qo (on Q

10

Exam Question

3. (3p) Consider the following lattice of views along with a representation of
the number of rows in each view where A is the base cuboid:

A : 219 000

e

B:2600 C:17000 D:1 100
]

]

E : 300 F:49 G: 165
h\ /
H: 105 I:7
J:1

(a) Apply the greedy method described by Harinarayan, Rajaraman, and
Ullman in their seminal paper “Implementing Data Cubes Efficiently”
(SIGMOD 1996) to select 2 views from the views B-J to materialize.

(b) What is the total benefit of materializing these two views? (You can give
a formula involving parentheses, multiplications, divisions, additions,

subtractions, powers)

Bitmap-Join Index: Example

one Lo Laien

10/5/12 Jack
10/5/12 1 Pete
13/5/12 3 John
14/5/12 2 Mary

SP_category_bjidx

Non-food 1100
Food 0011
SC_city bjidx

Brussels 1001
Eindhoven 0110

SELECT date
FROM Sales S join Product P

W

join Customer Con.

HERE
P.Category = “Food” and

C.City = “Brussels”;

Bitmap-Join Index: Example

bate | o0 | clent

10/5/12 1 Jack
10/5/12 1 Pete
13/5/12 3 John

14/5/12 2 Mary
SP_category_bjidx

Non-food 1100
Food 0011
SC_city bjidx

Brussels 1001
Eindhoven 0110

SELECT date

FROM Sales S join Product P
join Customer Con.

WHERE
P.Category = “Food” and

C.City = “Brussels”;

0011 & 1001 -» 0001

Partitioning

* Separate database/tables/indices over
different partitions

— Horizontal partitioning: every partition holds a
subset of the tuples

E.g., partition fact table by month

— Vertical partitioning: every partition holds a subset
of the attributes

Three-Tier Architecture

Getting the
data inside

Extract
Transform

Monitor
&
Integrator

Query/Reporting

Load :
o | Serve >
|
Problems: ; H ﬂ H
- Noisy data ; -
- Data not ! Data Mining
consistent !
|
T o
|
' Data Marts ' Server |
“ ~ J — — \ v J g D"

Data Sources Data Storage

OLAP Engine Front-End Tools

ETL

e Extract — Transform — Load
* Many existing tools

IBM invited lecture

— Data Stage on DataStage

— Informatica

* Importance of metadata
— Which reports cannot be trusted?
— Impact analysis
— Data lineage

ETL

* Important step in transformation: linking
different tables

e Often difficult

— Different keys
— Small variations/errors

Exam Question

Compute the edit distance between the
following two strings:

“Mr Smyth” and “M.Smit”

Load

* Bulk-loading data
* Typically rebuild (hard-to-update) indices

* Computing pre-aggregations
— Sort-based
— Hash-based

Sort-Based Aggregation

A | B | Cc |count SELECT A, B, C, sum(count)

8 FROMR

9 GROUP BY A, B, C;
10

6

5

8

N W R RN R
= W U1 00 +— WU
A W oo o b o lg

Sort-Based Aggregation

A | B | Cc |count SELECT A, B, C, sum(count)

FROM R
GROUP BY A, B, C;

SORT

Sort-Based Aggregation

A | B | Cc |count SELECT A, B, C, sum(count)

8 FROM R
GROUP BY A, B, C;

(@)

10

3 SCAN
9

5

w NN R R R
W L, L 00 U1 U
w B M O O O

Sort-Based Aggregation

- - - count SELECT A, B, C, sum(count)
1 5 6 8 FROM R
1 5 6 6 GROUP BY A, B, C;
1 8 6 10
2 1 4 8 SCAN
2 1 4 9
3 3 3 5

Sort-Based Aggregation

A | B | Cc |count SELECT A, B, C, sum(count)

(@)

1 5 6 8 FROM R

1 5 6 6 GROUP BY A, B, C;
1 8 6 10

2 1 4 8 SCAN

2 1 4 9

3 3 3 5

Sort-Based Aggregation

A | B | Cc |count SELECT A, B, C, sum(count)

(@)

1 5 6 8 FROM R
1 5 6 6 GROUP BY A, B, C;
1 8 6 10
2 1 4 8 SCAN
2 1 4 9
3 3 3 5
A | B | C | sum_
1 5 6 14

Sort-Based Aggregation

A | B | Cc |count SELECT A, B, C, sum(count)

(@)

1 5 6 8 FROM R
1 5 6 6 GROUP BY A, B, C;
1 8 6 10
2 1 4 8 SCAN
2 1 4 9
3 3 3 5
A | B | C | sum_
1 5 6 14

1 8 6 10

Sort-Based Aggregation

A | B | Cc |count SELECT A, B, C, sum(count)

(@)

1 5 6 8 FROM R
1 5 6 6 GROUP BY A, B, C;
1 8 6 10
2 1 4 8 SCAN
2 1 4 9
3 3 3 5
A | B | C | sum_
1 5 6 14

1 8 6 10

Sort-Based Aggregation

A | B | Cc |count SELECT A, B, C, sum(count)
1 5 6 8 FROM R
1 5 6 6 GROUP BY A, B, C;
1 8 6 10
2 1 4 8 SCAN
2 1 4 9
3 3 3 5

(@]

1 5 14

1 8 10

6
6
4

17

2 1

Sort-Based Aggregation

(@)

A | B | Cc |count SELECT A, B, C, sum(count)

1 5 6 8 FROM R

1 5 6 GROUP BY A, B, C;
1 8 6 10

2 1 4 8 SCAN

2 1 4 9

3 3 3

5

(@]

14
10
17

W N R e
W L 00 WU
w b o O

Pipe-Sort

e Key problem: divide materialized views lattice
into “pipes”, minimizing sorts

sort

BCDA
BCD
L,’/, / \“
sort AB BC “‘
/ / Y sort

Hash-Based Aggregation

* |f aggregated table fits into memory

- Hash on grouping attributes, update
measure

 Multiple hash tables fit together into the
memory

— Compute in one run

 Hash-based algorithm: selects optimal sets to
be processed at the same time

Example Question

Suppose that we need to compute the
aggregations Average and Min of attribute cost
for the following groups of attributes:

AB, C, BC, ABC

Give an efficient way to do this, assuming none
of the aggregated tables fits into memory.

Solution

* Average and Min:

— Average is not distributive:
AVG(A U B) # AVG({AVG(A), AVG(B)})
* AVG can be computed from SUM and COUNT
* SUM and COUNT are distributive

— Min is distributive:
min(A U B) = min({min(A), min(B)})

(Why is it important that measures are distributive?)

Solution

sort
CBA
/ s sort
CB AB

/

Three-Tier Architecture

Storing the data; general-
| purpose computer OLAB

other
sources

ROLAP & MOLAP Different

- Indexing, view- architectures
materialization, Rules of the game

|
|
|
|
|
|
|
|
|

::Z: I)
| partitioning, column-st change sorting

Operational :
I a

P8 | >
’ !
|
: Data Mining
: —————
|
: —_— =
| — =
| .
! Data Marts Server !

|\ ~" o - A v O g -,

Data Sources Data Storage OLAP Engine Front-End Tools

Different Architectures

Move processor close to the data;
Compress data on disk = trade in

slow 1/0O for fast processing
 Problems: Multiple processors responsible

for smaller part of the data

— Disk access is slow

— Full table scan is faster than random read, but is
slow if only part of the table is needed

Implement select-project into the
hardware Obviously, query
Zone-maps could be considered as a optimizer needs
form of indexing to be able to

Vertical partitioning avoids access to deal with new
attributes that are not needed reality!

Slide taken from IBM presentation on Netezza

Information Management

Asymmetric Massively Parallel Processing™

m “ Netezza TwinFin Appliance

e IS

High-Speed
Loader/Unloader 920 58lade
— -
sy I
L ’
Network Massively Parallel
SMP Host Fabric Intelligent Storage

& 2011 IBM Corporaton AT e Cormpa

Slide taken from IBM presentation on Netezza

Information Management

Our Secret Sauce

select DISTRICT,
PRODUCTGRP.,
sum(NRX)

from MTHLY_RX_TERR_DATA

where MONTH = '20091201"

and MARKET = 509123 FPGA Core

and SPECIALTY = 'GASTRO'

Restrict, Complex >

Uncompress | Project | ysisinility M Joins, Aggs, etc.

where MONTH ='20091201"
and MARKET = 509123

and SPECIALTY =
'GASTRO'

Slice of table select DISTRICT,
MTHLY_RX_TERR_DATA PRODUCTGRP,

(compressed) sum(NRX)

sum({NRX)

© 2012 1BM Corporation

Slide taken from IBM presentation on Netezza
Information Management

Clustered Base Tables
Accelerating Multi-Dimensional Queries Date

Data Extents for Table ZoneMap™

JO00ORONOO0
ONOOO0N0
ORO000000 .
00000000
O0000ON000 .
ORONOORON.
000000000
NOOROOOOC
o o
ONO000000

For Mid-September

* If Symbol = ‘NZ’ then scan 8
extents of 100 (8%)

*If Firm = ‘Credit Suisse’ then
scan 12 extents of 100 (12%)

*If Symbol = ‘NZ’ And Firm =
‘Credit Suisse’ then scan just
2 of 100 extents (2%)

9/16

Create table

[]
[]
L]
[]
[]
[]
[]
L]

Col 1: Col 2:
Symbol Firm

Distribute on{....)

Organize on (....)

il Y75 ot ™Y

Different Architectures

* Challenges

— Distribute data in an intelligent way
* Hash-based; preferably on join-keys

— In this way: truly distribute work

* What kills performance?

— Excessive communication between nodes

e E.g., poor distribution; non-selective self-joins

Three-Tier Architecture

|
- Monitor i OLAP
& | Server

:

|

|

|

other
sources

Integrator

|
|
|
|
|
|
|
|
|
|
5 D — Query/Reporting
Operational | Extract
DBs ! Transform Serve
: Load H
: Refresh
: | | Data MiHing
: | |
I | |
! : :
’ 888 oL
|
' Data Marts : Server |
N ~ J N v J \L ~ -y

Data Sources Data Storage OLAP Engine Front-End Tools

Example Question

Suppose that the police force wants to develop
a system to automatically monitor the Twitter
stream in order to quickly identify potential
outbreaks of violence (e.g., soccer hooligans
gathering for a clash with the “enemy” or party
visitors tweeting about a fight). Explain how
data mining could be used to support this task.

Solution

* Spam-detection like system

— Based on labeled examples, identify words in
tweets that are correlated with this type of
messages

— Based upon propagation pattern
* E.g., how often re-tweeted;

— Based upon geography
e co-locality with event
e Learn a classifier

— Main difficulty: very unbalanced data

Conclusion

Different ways to support data analysis

— Traditional view

* ETL;
ROLAP/MOLAP storage;
Logical optimizations:

— materialized views

Physical optimizations:

— indices; partitioning

OLAP/Data mining to do the analysis

Conclusion

— New hardware/appliances
* Restrictions change
* Multi processor
* New game; different optimization strategies

Remember: 100 processors make a task at most 100

times faster; getting to this factor 100, however, is
non-trivial!

