
Data Warehousing
Conclusion

Esteban Zimányi

ezimanyi@ulb.ac.be

Slides by Toon Calders

Motivation for the Course

• Database = a piece of software to handle data:

– Store, maintain, and query

• Most ideal system situation-dependent

– data type: simple / semi-structured / complex / …

– types of queries: simple lookup / analytical / …

– type of usage: multi-user / single-user /
distributed / …

Example Question

• What are the ACID properties? Illustrate these
properties with your own examples. Why are
they important for OLTP?

– Atomicity

– Consistency

– Isolation

– Durability

What About Decision Support?

• Concurrent access

→not really

→read-only

• Data consistency, non-redundancy

→data comes from consistent sources (sort of)

→data does not change during analysis; once clean,
always clean

What About Decision Support?

• Ad-hoc Querying

→No longer true;

→Spread-sheet like queries

→Long-running queries, touching large parts of the
database

→In combination with transactions, kills the database

• Efficiency

→ Relational DBMS optimized for other types of queries

What About Decision Support?

• OLTP systems not very efficient for data
analysis tasks

– analysis queries might stall operational systems

– architecture suboptimal

• different indexing stuctures

• denormalization

– need of historical data versus only current data

Three-Tier Architecture

Data

Warehouse

Extract

Transform

Load

Refresh

OLAP Engine

Monitor

&

Integrator

Metadata

Data Sources Front-End Tools

Serve

Data Marts

Operational

DBs

other

sources

Data Storage

OLAP

Server

Analysis

Query/Reporting

Data Mining

ROLAP

Server

Storing the data; general-
purpose computer
- ROLAP & MOLAP
- Indexing, view-

materialization,
partitioning, column-stores

Special purpose applicances
- IBM Pure Data for Analytics
- Teradata

Analyzing data:
- Conceptually a cube
- MDX as a cube-

oriented query
languages

Supporting complex
analytical SQL queries
- Usually not as ad-hoc

as regular queries

Parallelization to speed up
querying:
- E.g., map-reduce

Getting the
data inside
- Extract
- Transform
- Load

Problems:
- Noisy data
- Data not

consistent

Data mining

Three-Tier Architecture

Data

Warehouse

Extract

Transform

Load

Refresh

OLAP Engine

Monitor

&

Integrator

Metadata

Data Sources Front-End Tools

Serve

Data Marts

Operational

DBs

other

sources

Data Storage

OLAP

Server

Analysis

Query/Reporting

Data Mining

ROLAP

Server

Analyzing data:
- Conceptually a cube
- MDX as a cube-

oriented query
languages

Supporting complex
analytical SQL queries
- Usually not as ad-hoc

as regular queries

Data Cubes as the Conceptual Model

Date

sum

sum
TV

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr

C
o
u

n
tr

y

Ireland

France

Germany

sum

Aggregated over all

Querying the Cube

• Slice, Dice, Roll-up, Drill- Down

– Cube browsing tools

• MDX as the SQL for OLAP

– Select dimensions for display

– Define new aggregates

– Select slices

– …

Example Question

• Explain the meaning of the following MDX query:

select
[Customer].[Gender].members on columns,
({ [France], [Germany] }, education.members) on
rows

from [Adventure Works]
where ([Customer Count],

{[Commute Distance].[0-1 Miles],
[Commute Distance].[1-2 Miles]})

Result

Three-Tier Architecture

Data

Warehouse

Extract

Transform

Load

Refresh

OLAP Engine

Monitor

&

Integrator

Metadata

Data Sources Front-End Tools

Serve

Data Marts

Operational

DBs

other

sources

Data Storage

OLAP

Server

Analysis

Query/Reporting

Data Mining

ROLAP

Server

Storing the data; general-
purpose computer
- ROLAP & MOLAP
- Indexing, view-

materialization,
partitioning, column-stores

Special purpose applicances
- IBM Netezza
- Teradata

Logical Model - ROLAP

• Modeling your data

– Dimensional modeling

• Fact, dimension, measure

• Cubes and pre-materialized views need to be
stored in a convenient format

– ROLAP

• Star schema / snowflake schema

• Dimensional modeling

– MOLAP

Dimensional Fact Model

15

Sale

quantity
unitPrice
VAT-rate

date

day-of-week

monthyear

customer

age-category

city

country

product

brand

type

Corresponding Star-Schema

16

Sale

CustKey
DateKey
ProdKey

Quantity
UnitPrice
VATrate

Customer

CustKey

OLTP_Custkey
City
Country
Age-Cat

Product

ProdKey

OLTP_Prodkey
Brand
Type

Date

DateKey

Date
DayOfWeek
Month
Year

Dimensional Modeling

• Different ways to deal with

– Slowly changing dimensions

– Unbalanced hierarchies; non-covering hierarchies

– Junk dimensions

• These are best-practices for storing dimensional
data in a relational database

– New technologies may change the rules of the game

Slowly Changing Dimension – Type 2

• Whenever there is a change, create a new
version of the affected row

– Need for surrogate key!

18

SID CID Name Address

1 001 John Dallas

2 002 Mary Dallas

3 003 Pete New York

SID CID Name Address

1 001 John Dallas

2 002 Mary Dallas

3 003 Pete New York

4 001 John New York

5 002 Mary New York

6 004 Mark Dallas

John and Mary move to New York
Mark is a new client

Exam Question

• Explain the concept of a mini-dimension and
illustrate this concept with an original
example.

Mini-dimension

Customer

SKey CID status child car
1 1 single 0 no
2 1 married 0 no
3 1 single 0 no
4 1 single 0 yes
5 1 married 0 yes
6 1 married 1 yes
7 1 married 1 no
8 1 married 2 no
9 1 married 2 yes

Facts

Skey Date sum
1 D1 5
1 D2 6
2 D3 8
2 D4 3
3 D5 6
4 D6 3
5 D7 6
6 D8 4
7 D9 8
8 D10 9
9 D11 3
… … …

Mini-dimension
Customer

SKey CID status
1 1 single
2 1 married
3 1 single
4 1 married

Facts

Skey Dkey Date sum
1 1 D1 5
1 1 D2 6
2 1 D3 8
2 1 D4 3
3 1 D5 6
3 2 D6 3
4 2 D7 6
4 4 D8 4
4 3 D9 8
4 5 D10 9
4 6 D11 3
… … … …

Demography
DKey child car
1 0 no
2 0 yes
3 1 no
4 1 yes
5 2 no
6 2 yes

Exam question

Three-Tier Architecture

Data

Warehouse

Extract

Transform

Load

Refresh

OLAP Engine

Monitor

&

Integrator

Metadata

Data Sources Front-End Tools

Serve

Data Marts

Operational

DBs

other

sources

Data Storage

OLAP

Server

Analysis

Query/Reporting

Data Mining

ROLAP

Server

Storing the data; general-
purpose computer
- ROLAP & MOLAP
- Indexing, view-

materialization,
partitioning, column-stores

Special purpose applicances
- IBM Netezza
- Teradata

Physical Level

• Speeding up typical data warehousing queries

– Data Explosion Problem

– Materialization

– Indices

• bitmap index, Join index, bitmap-join index

– Partitioning tables

Example Question

• Explain why in general it is not possible to store
fully materialized data cubes.

– High dimensionality, sparse data
→ Cube exponentially larger than original data

– No problem if cube is dense

– Less of a problem if dimensionality is low

Inherent problem; impossible to pre-compute all
possible ways to aggregate the data

Database Explosion Problem

1 1 1

1 1

1 1

2D: adding 1 tuple → affecting 4 cells of the cube

Database Explosion Problem

2D: adding 1 tuple → affecting 4 cells of the cube
3D: adding 1 tuple → affecting 8 cells of the cube
…
kD: adding 1 tuple → affecting 2k cells of the cube

Data Explosion Problem

0

500000

1000000

1500000

2000000

2500000

3000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Size of cube w.r.t. number of dimensions (500 data points)

C
u

b
e

si
ze

 (

en
tr

ie
s)

dimensions

Storing the Data

• Want quick answers → pre-computation

• Straightforward solution, however, does not
work → Data explosion problem

• Therefore, partially materialize the cube
+ smart indexing and storage structures

• ROLAP and MOLAP

– Often hybrid form

Materialization

Example:

SELECT customer, part, sum(sales)
FROM Sales
GROUP BY customer, part

(part, customer)

SELECT part, sum(sales)
FROM Sales
GROUP BY part

(part)

| Sales |

| Sales |

Materialization

Example:

SELECT customer, part, sum(sales)
FROM Sales
GROUP BY customer, part

(part, customer)

SELECT part, sum(sales)
FROM Sales
GROUP BY part

(part)

materialized as PC

| Sales |PC |PC|

| Sales ||PC|

Example: some materialized

Query Answer Cost

• (part,supplier,customer) 6M 6M

• (part,customer) 6M 6M

• (part,supplier) 0.8M 0.8M

• (supplier,customer) 6M 6M

• (part) 0.2M 0.8M

• (supplier) 0.01M 0.8M

• (customer) 0.1M 0.1M

• () 1 0.1M

Total cost: 20.6M

Example
• Base table a, table b, and f are materialized

– Total: 2 x 100 + 4 x 50 + 2 x 40 = 480

• Additional benefit of materializing f
= 70 = 1 x (100-40) + 1 x (50-40)

a

b c

d e f

g h

Query Size Uses? Cost Benefit

a 100 a 100 -

b 50 b 50 -

c 75 a 100 -

d 20 b 50 -

e 30 b 50 -

f 40 f 40 60

g 1 b 50 -

h 10 f 40 10

Example
• Benefit for materializing the other tables:

a

b c

d e f

g h

a 100

b 50

c 75

d 20

e 30

f 40

g 1

h 10

query Materialized view

c d e f g h

a - - - - - -

b - - - - - -

c 25 - - - - -

d - 30 - - - -

e - - 20 - - -

f 25 - - 60 - -

g - 30 20 - 49 -

h - - 20 10 - 40

Total 50 60 60 70 49 40

Exam Question

Bitmap-Join Index: Example

Date pID Client

10/5/12 1 Jack

10/5/12 1 Pete

13/5/12 3 John

14/5/12 2 Mary

Category Bitmap

Non-food 1100

Food 0011

SP_category_bjidx

City Bitmap

Brussels 1001

Eindhoven 0110

SC_city_bjidx

SELECT date

FROM Sales S join Product P
join Customer C on ...

WHERE

P.Category = “Food” and

C.City = “Brussels”;

Bitmap-Join Index: Example

Date pID Client

10/5/12 1 Jack

10/5/12 1 Pete

13/5/12 3 John

14/5/12 2 Mary

Category Bitmap

Non-food 1100

Food 0011

SP_category_bjidx

City Bitmap

Brussels 1001

Eindhoven 0110

SC_city_bjidx

SELECT date

FROM Sales S join Product P
join Customer C on ...

WHERE

P.Category = “Food” and

C.City = “Brussels”;

0011 & 1001 → 0001

Partitioning

• Separate database/tables/indices over
different partitions

– Horizontal partitioning: every partition holds a
subset of the tuples

E.g., partition fact table by month

– Vertical partitioning: every partition holds a subset
of the attributes

Three-Tier Architecture

Data

Warehouse

Extract

Transform

Load

Refresh

OLAP Engine

Monitor

&

Integrator

Metadata

Data Sources Front-End Tools

Serve

Data Marts

Operational

DBs

other

sources

Data Storage

OLAP

Server

Analysis

Query/Reporting

Data Mining

ROLAP

Server

Getting the
data inside
- Extract
- Transform
- Load

Problems:
- Noisy data
- Data not

consistent

ETL

• Extract – Transform – Load

• Many existing tools

– Data Stage

– Informatica

• Importance of metadata

– Which reports cannot be trusted?

– Impact analysis

– Data lineage

IBM invited lecture
on DataStage

ETL

• Important step in transformation: linking
different tables

• Often difficult

– Different keys

– Small variations/errors

Exam Question

Compute the edit distance between the
following two strings:

“Mr Smyth” and “M.Smit”

M r S m y t h

0 1 2 3 4 5 6 7 8

M 1 0 1 2 3 4 5 6 7

. 2 1 1 2 3 4 5 6 7

S 3 2 2 2 2 3 4 5 6

m 4 3 3 3 3 2 3 4 5

i 5 4 4 4 4 3 3 4 5

t 6 5 5 5 5 4 4 3 4

Load

• Bulk-loading data

• Typically rebuild (hard-to-update) indices

• Computing pre-aggregations

– Sort-based

– Hash-based

Sort-Based Aggregation

A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8

SELECT A, B, C, sum(count)
FROM R
GROUP BY A, B, C;

Sort-Based Aggregation

A B C count

1 5 6 8

2 6 6 9

1 8 6 10

1 7 5 6

3 3 3 5

2 1 4 8

SELECT A, B, C, sum(count)
FROM R
GROUP BY A, B, C;

SORT

Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)
FROM R
GROUP BY A, B, C;

SCAN

Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)
FROM R
GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 8

Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)
FROM R
GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 14

Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)
FROM R
GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 14

1 8 6 10

Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)
FROM R
GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 14

1 8 6 10

2 1 4 8

Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)
FROM R
GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 14

1 8 6 10

2 1 4 17

Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)
FROM R
GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 14

1 8 6 10

2 1 4 17

3 3 3 5

Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)
FROM R
GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 14

1 8 6 10

2 1 4 17

3 3 3 5

Pipe-Sort

• Key problem: divide materialized views lattice
into “pipes”, minimizing sorts

A B D

BC

BCD

AB

BCDA

()

sort

sort

sort

Hash-Based Aggregation

• If aggregated table fits into memory

→ Hash on grouping attributes, update
measure

• Multiple hash tables fit together into the
memory

→ Compute in one run

• Hash-based algorithm: selects optimal sets to
be processed at the same time

Example Question

Suppose that we need to compute the
aggregations Average and Min of attribute cost
for the following groups of attributes:

AB, C, BC, ABC

Give an efficient way to do this, assuming none
of the aggregated tables fits into memory.

Solution

• Average and Min:

– Average is not distributive:
AVG(A B) AVG({AVG(A), AVG(B)})

• AVG can be computed from SUM and COUNT

• SUM and COUNT are distributive

– Min is distributive:

min(A B) = min({min(A), min(B)})

(Why is it important that measures are distributive?)

Solution

CBA

C

CB AB

sort

sort

Three-Tier Architecture

Data

Warehouse

Extract

Transform

Load

Refresh

OLAP Engine

Monitor

&

Integrator

Metadata

Data Sources Front-End Tools

Serve

Data Marts

Operational

DBs

other

sources

Data Storage

OLAP

Server

Analysis

Query/Reporting

Data Mining

ROLAP

Server

Storing the data; general-
purpose computer
- ROLAP & MOLAP
- Indexing, view-

materialization,
partitioning, column-stores

Special purpose applicances
- IBM Netezza
- Teradata

Different
architectures

Rules of the game
change

Parallelization to speed up
querying:
- E.g., map-reduce

Different Architectures

• Problems:

– Disk access is slow

– Full table scan is faster than random read, but is
slow if only part of the table is needed

Move processor close to the data;
Compress data on disk = trade in

slow I/O for fast processing
Multiple processors responsible

for smaller part of the data

Implement select-project into the
hardware

Zone-maps could be considered as a
form of indexing

Vertical partitioning avoids access to
attributes that are not needed

Obviously, query
optimizer needs

to be able to
deal with new

reality!

Slide taken from IBM presentation on Netezza

Slide taken from IBM presentation on Netezza

Slide taken from IBM presentation on Netezza

Different Architectures

• Challenges

– Distribute data in an intelligent way

• Hash-based; preferably on join-keys

– In this way: truly distribute work

• What kills performance?

– Excessive communication between nodes

• E.g., poor distribution; non-selective self-joins

Three-Tier Architecture

Data

Warehouse

Extract

Transform

Load

Refresh

OLAP Engine

Monitor

&

Integrator

Metadata

Data Sources Front-End Tools

Serve

Data Marts

Operational

DBs

other

sources

Data Storage

OLAP

Server

Analysis

Query/Reporting

Data Mining

ROLAP

Server

Data mining

Example Question

Suppose that the police force wants to develop
a system to automatically monitor the Twitter
stream in order to quickly identify potential
outbreaks of violence (e.g., soccer hooligans
gathering for a clash with the “enemy” or party
visitors tweeting about a fight). Explain how
data mining could be used to support this task.

Solution

• Spam-detection like system
– Based on labeled examples, identify words in

tweets that are correlated with this type of
messages

– Based upon propagation pattern
• E.g., how often re-tweeted;

– Based upon geography
• co-locality with event

• Learn a classifier
– Main difficulty: very unbalanced data

Conclusion

• Different ways to support data analysis

– Traditional view

• ETL;

• ROLAP/MOLAP storage;

• Logical optimizations:
– materialized views

• Physical optimizations:
– indices; partitioning

• OLAP/Data mining to do the analysis

Conclusion

– New hardware/appliances

• Restrictions change

• Multi processor

• New game; different optimization strategies

Remember: 100 processors make a task at most 100
times faster; getting to this factor 100, however, is
non-trivial!

