
Data Warehousing
ETL

Esteban Zimányi

ezimanyi@ulb.ac.be

Slides by Toon Calders

1

Overview Picture

Data

Warehouse

Extract

Transform

Load

Refresh

OLAP Engine

Monitor

&

Integrator

Metadata

Data Sources Front-End Tools

Serve

Data Marts

Operational

DBs

other

sources

Data Storage

OLAP

Server
Analysis

Query/Reporting

Data Mining

ROLAP

Server

Until now

Data

Warehouse

Extract

Transform

Load

Refresh

OLAP Engine

Monitor

&

Integrator

Metadata

Data Sources Front-End Tools

Serve

Data Marts

Operational

DBs

other

sources

Data Storage

OLAP

Server
Analysis

Query/Reporting

Data Mining

ROLAP

Server

Conceptual
modeling (DFM)

Logical model (star,
snowflake)

Indices; view
materialization

Data cube;
slice & dice;

cube
browsing

This lecture

Data

Warehouse

Extract

Transform

Load

Refresh

OLAP Engine

Monitor

&

Integrator

Metadata

Data Sources Front-End Tools

Serve

Data Marts

Operational

DBs

other

sources

Data Storage

OLAP

Server
Analysis

Query/Reporting

Data Mining

ROLAP

Server
Data cube;

slice & dice;
cube

browsing

How to fill
the DW?

How keep it
up to date?

Conceptual
modeling (DFM)

Logical model (star,
snowflake)

Indices; view
materialization

Summary

• Data Warehouse architectures

– Single-, two-, and three-layer architectures

• ETL process

– Extract

– Transform/Cleanse

– Load

Sec. 1.3, 1.4; Ch. 10 of Golfarelli and Rizzi book
5

Single Layer Architecture

6Reporting tool OLAP tool

Operational data

Middleware

Source layer

Data
warehouse

layer

Analysis

Single Layer Architecture

• Not frequently used

• Reconciled data is not materialized

– Middleware makes heterogeneity transparent to
the user

+ No data duplication

- No separation of analytical and transactional
processing

7

Two-Layer Architecture

8
Reporting tool OLAP tool

Operational data

ETL tools

Data Warehouse

Source layer

Data
warehouse

layer

Analysis

Data marts

Data staging

Meta-data

Two-Layered Architecture

• Introduction of data warehouse layer

– Data is materialized

• Historical data management

• ETL runs regularly to keep data warehouse up-
to-date

- Data duplication

+ Separation of analytics and operations

9

Three-Layer
Architecture

10Reporting tool OLAP tool

Operational data

Data Warehouse

Source layer

Data
warehouse

layer

Analysis

Data marts

Data staging

Meta-dataReconciled data

ETL tools

ETL tools

Reconciled layer

Loading

Three-Layer Architecture

• Data from different sources needs to be
reconciled

– Different schemas need to be integrated

– Source data needs to be cleansed

• In 3-tier architecture the reconciled data is
materialized as well

– Useful in its own respect

– Makes ETL more transparent

– Neither historical, nor dimensional
11

Data Staging

• Often the data staging area is materialized as
well

– Store helper tables

– Take burden away from source systems

12

Summary

• Data Warehouse architectures

– Single-, two-, and three-layer architectures

• ETL process

– Extract

– Transform/Cleanse

– Load

13

Extract

• Relevant data obtained from data sources

– First load: extract all data

– Subsequent loads: extract changes

• In 3-Tier infrastructure:

– From source data to reconciled database

• Schema integration, transformation, cleansing

– From reconciled database to data warehouse

• De-normalization, introduction of surrogate keys

• Calculation of derived data

14

Extract

• Static vs incremental extraction

• Incremental & immediate

– Application-assisted

– Trigger-based extraction

– Log-based

• Incremental & delayed

– Timestamp-based

– File Comparison

15

Application-Assisted

• Update of data warehouse deeply integrated
into the application software

– Immediate

– Requires adaptation of existing applications

– Hard to maintain

16

Database

Application

DBMS

List of
Updates

ET
L

to
o

ls
Data warehouse

Trigger-Based

• Closely related to application-based

– Triggers to store updates

– Huge performance hit for database

– More transparent for application layer

– Only possible for data maintained in database

17

Application

DBMS

ET
L

to
o

ls

Data warehouse

trigger

DB

Extract
Delta
Tables

Delta
tables

Log-Based

• Many database systems keep change logs

– To ensure durability; in-between checkpoints all
transactions to the database are logged

– Use these change logs for updating data warehouse

– Transparent to the user

18

Database

Application

DBMS

DB log

ET
L

to
o

ls

Data warehouse

Timestamp-Based

• Operational database can be changed to keep
whole history

– Different levels of timestamps

• Timestamp per tuple → Temporal database

19

Temporal
Database

Application

DBMS

ET
L

to
o

ls

Data warehouse
Timestamp

Based
extraction

Timestamp-Based

• Only last update date may lose information

20

Customer Gender Age Segment Date

John M 36 1 D1

Karl M 52 2 D1

Betty F 18 1 D1

Capture D1

Timestamp-Based

• Only last update date may lose information

21

Customer Gender Age Segment Date

John M 36 1 D1

Karl M 52 2 D1

Betty F 18 1 D1

Customer Gender Age Segment Date

John M 36 2 D2

Betty F 18 1 D1

Capture D1

D2

Timestamp-Based

• Only last update date may lose information

22

Customer Gender Age Segment Date

John M 36 1 D1

Karl M 52 2 D1

Betty F 18 1 D1

Customer Gender Age Segment Date

John M 36 2 D2

Betty F 18 1 D1

Customer Gender Age Segment Date

John M 36 3 D3

Betty F 18 1 D1

Martin M 64 2 D3

Capture D1

D2

D3

Timestamp-Based

• Only last update date may lose information

23

Customer Gender Age Segment Date

John M 36 1 D1

Karl M 52 2 D1

Betty F 18 1 D1

Customer Gender Age Segment Date

John M 36 2 D2

Betty F 18 1 D1

Customer Gender Age Segment Date

John M 36 3 D3

Betty F 18 1 D1

Martin M 64 2 D3

Capture

Capture

Karl?
John’s

segment
?

D1

D2

D3

Timestamp-Based

• Based on the application field and update
frequency, one timestamp per tuple may be
acceptable

– Type-2 change for attributes that change several
times between updates?!

• If more fine-grained behavior is required we
can go to full temporal database

– Register valid time (start-end)

24

File Comparison

• Easy; works even for flat files

• Does not capture intermediate changes

25

Database

Application

DBMS

Data warehouse

Previous
Copy

ET
L

to
o

ls

C
o

m
p

ar
e

Changes

1.

2.

Extraction Methods - Overview

26

Method Maintain
full
history?

Impact on
performance
operational
level

Complexity
extraction
procedures

DBMS
dependent

Requires
changes to
application
layer

Maintenance

Static No No Low No None Easy

Application
assisted

Yes Medium High No Many Difficult

Trigger
based

Yes Medium Medium Yes None Medium

Log based Yes No Low Limited None Easy

Timestamp
based

(yes) Some Low Limited Some Medium

File
comparison

Not all No Medium No None Easy

Summary

• Data Warehouse architectures

– Single, two-, and three-layer architectures

• ETL process

– Extract

– Transform/Cleanse

– Load

27

Transform/Cleanse

• Conversion

– Different date types

• Enrichment

– Combine information of different attributes to
create a new one

• Joining data without key;

– Entity resolution

• Correcting errors

– De-duplication
28

De-duplication & Entity Resolution

• De-duplication

– Recognize duplicate entries

• Entity resolution

– Recognize if two entities from different sources
are actually referring to the same object

• Not always obvious if there is no key shared between
different data sources

– In most extreme case need for methods to directly
compare strings

29

Example: Cleansing customer data

30

John White

Downing St. 10

TW1A 2AA London (UK) Fname: John

Sname: White

Adress: Downing St. 10

ZIP: TW1A 2AA

City: London

Country: UK

normalizing

Fname: John

Sname: White

Adress: 10, Downing St.

ZIP: TW1A 2AA

City: London

Country: United Kingdom

standardizing

correcting

Fname: John

Sname: White

Adress: 10, Downing St.

ZIP: SW1A 2AA

City: London

Country: United Kingdom

Example from Golfarelli and Rizzi book

Comparing Strings

• How to compare strings?

Patrick Smith vs. Patrik Smyth

• Popular distance measure: edit distance

– Insert, Delete, Overwrite

– Shortest sequence of operations to turn one string
into another

Patrick Smith →D Patrik Smith →R Patrik Smyth

31

Edit Distance

• Relatively easy to compute via dynamic
programming

Smyth vs Simte

S m y t h

0 1 2 3 4 5

S 1 0 1 2 3 4

i 2 1 1 2 3 4

m 3 2 1 2 3 4

t 4 3 2 2 2 3

e 5 4 3 3 3 3

d(S,S)

d(Smyt,Si)

d(Smyt,Simt)

d(Smyth,Simte)

32

Edit Distance

• Compute content of a cell as follows:

Example:

d(Smyth,Simte):

d(Smyth,Simt) + insert e at the end

or delete h + d(Smyt,Simte)

or d(Smyt,Simt) + overwrite h with e

33

Edit Distance

• Compute content of a cell as follows:

Example:

d(Smyth,Simte) = min(

d(Smyth,Simt) + 1

d(Smyt,Simte) + 1,

d(Smyt,Simt) + 1

)

34

Edit Distance

• Compute content of a cell as follows:

Example:

d(Smyt,Simt):

d(Smyt,Sim) + insert t at the end

or delete t + d(Smy,Simt)

or d(Smy,Sim)

35

Edit Distance

• Compute content of a cell as follows:

Example:

d(Smyt,Simt) = min(

d(Smyt,Sim) + 1

d(Smy,Simt) + 1,

d(Smy,Sim) + 0

)

36

Edit Distance

• Compute content of a cell as follows:

if string1[k] = string2[l]

M[k,l] = min(M[k-1,l-1], M[k-1,l]+1, M[k,l-1]+1)

else:
M[k,l] = min(M[k-1,l-1]+1, M[k-1,l]+1, M[k,l-1]+1)

37

Summary

• Data Warehousing architectures

– Single, two-, and three-layer architectures

• ETL process

– Extract

– Transform/Cleanse

– Load

38

Populating Dimension Tables

• Type 1 and type 2 changes

– May require dimension table to be loaded in the
data staging area

• Introduction of surrogate keys

– Permanently maintain mapping tables in the
staging area

• In case of a type-1 change: change the value in the
dimension table

• In case of a type-2 change: introduce a new tuple with
a new surrogate key

39

Populating Fact Tables

• Always update dimension tables before fact
table (if possible)

– Referential integrity

– Not always possible: introduce “dummy” value in
dimension tables if dimension key lookup fails

• Update materialized views

– Can be optimized if measures are distributive

40

Computation of Aggregations

• Part of the data warehouse loading involves
computation of aggregations →materialized
views
– Order in which they are computed can be

important

– Sort-based or Hash-based

See, e.g.: Agarwal et al. On the computation of
multidimensional aggregates. VLDB 1996

41

Sort-Based Aggregation

A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

42

Sort-Based Aggregation

A B C count

1 5 6 8

2 6 6 9

1 8 6 10

1 7 5 6

3 3 3 5

2 1 4 8

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

SORT

43

Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

SCAN

44

Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 8

45

Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 14

46

Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 14

1 8 6 10

47

Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 14

1 8 6 10

2 1 4 8

48

Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 14

1 8 6 10

2 1 4 17

49

Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 14

1 8 6 10

2 1 4 17

3 3 3 5
50

Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 14

1 8 6 10

2 1 4 17

3 3 3 5
51

Sort-Based Aggregation

• Observation:

– Table sorted on ABC

= sorted on AB

= sorted on A

– One sort supports 3
aggregations

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

52

Pipe-Sort

• Sort on ABC

• Scan sorted relation

– As long as next tuple is the same as previous

• Update aggregated tuple; add count of current

– Else

• Ship aggregated tuple to disk

• Pipe tuple to procedure computing aggregation on AB

53

Pipe-Sort

• Key problem: divide materialized views lattice
into “pipes”, minimizing sorts

A B D

BC

BCD

AB

ABCD

()
54

Pipe-Sort

• Key problem: divide materialized views lattice
into “pipes”, minimizing sorts

A B D

BC

BCD

AB

BCDA

()

sort

sort

sort

55

Hash-Based Optimization

• If aggregate tables fit into memory
A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8

56

Hash-Based Optimization

• If aggregate tables fit into memory
A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8

A B C SUM

1 5 6 8

57

SCAN

Hash-Based Optimization

• If aggregate tables fit into memory
A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8

SCAN

A B C SUM

1 5 6 8

2 1 4 9

58

Hash-Based Optimization

• If aggregate tables fit into memory
A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8

SCAN

A B C SUM

1 5 6 8

2 1 4 9

1 8 6 10
59

Hash-Based Optimization

• If aggregate tables fit into memory
A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8

SCAN

A B C SUM

1 5 6 14

2 1 4 9

1 8 6 10
60

Hash-Based Optimization

• If aggregate tables fit into memory
A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8

SCAN

A B C SUM

1 5 6 14

2 1 4 9

1 8 6 10

3 3 3 5
61

Hash-Based Optimization

• If aggregate tables fit into memory
A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8

SCAN

A B C SUM

1 5 6 14

2 1 4 17

1 8 6 10

3 3 3 5
62

Hash-Based Optimization

• Multiple hash tables may fit at the same time
A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8

A B C SUM

1 5 6 14

2 1 4 17

1 8 6 10

3 3 3 5

A C SUM

1 6 24

2 4 17

3 3 5

C SUM

6 24

4 17

3 5

63

Conclusion

• ETL is often the most time consuming parts of
a datawarehousing project

– Reported to take up to 80% of time

• Different ways to capture changes

– Application-assisted

– Trigger-based extraction

– Log-based

– Timestamp-based

– File Comparison
64

Conclusion

• Transform/Cleanse involves

– Normalization

– Standardization

– De-duplication

– Entity resolution

• Load

– Surrogate keys (lookup tables in staging area)

– First update dimension tables, only then fact table

65

