
Data Warehousing
ETL

Esteban Zimányi

ezimanyi@ulb.ac.be

Slides by Toon Calders

1



Overview Picture

Data

Warehouse

Extract

Transform

Load

Refresh

OLAP Engine

Monitor

&

Integrator

Metadata

Data Sources Front-End Tools

Serve

Data Marts

Operational

DBs

other

sources

Data Storage

OLAP 

Server
Analysis

Query/Reporting

Data Mining

ROLAP

Server



Until now

Data

Warehouse

Extract

Transform

Load

Refresh

OLAP Engine

Monitor

&

Integrator

Metadata

Data Sources Front-End Tools

Serve

Data Marts

Operational

DBs

other

sources

Data Storage

OLAP 

Server
Analysis

Query/Reporting

Data Mining

ROLAP

Server

Conceptual 
modeling (DFM)

Logical model (star, 
snowflake)

Indices; view 
materialization

Data cube; 
slice & dice; 

cube 
browsing



This lecture

Data

Warehouse

Extract

Transform

Load

Refresh

OLAP Engine

Monitor

&

Integrator

Metadata

Data Sources Front-End Tools

Serve

Data Marts

Operational

DBs

other

sources

Data Storage

OLAP 

Server
Analysis

Query/Reporting

Data Mining

ROLAP

Server
Data cube; 

slice & dice; 
cube 

browsing

How to fill 
the DW?

How keep it 
up to date?

Conceptual 
modeling (DFM)

Logical model (star, 
snowflake)

Indices; view 
materialization



Summary

• Data Warehouse architectures

– Single-, two-, and three-layer architectures

• ETL process

– Extract

– Transform/Cleanse

– Load

Sec. 1.3, 1.4; Ch. 10 of Golfarelli and Rizzi book
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Single Layer Architecture
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Single Layer Architecture

• Not frequently used

• Reconciled data is not materialized

– Middleware makes heterogeneity transparent to 
the user

+ No data duplication

- No separation of analytical and transactional 
processing
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Two-Layer Architecture
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Two-Layered Architecture

• Introduction of data warehouse layer

– Data is materialized

• Historical data management

• ETL runs regularly to keep data warehouse up-
to-date

- Data duplication

+ Separation of analytics and operations
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Three-Layer 
Architecture
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Three-Layer Architecture

• Data from different sources needs to be 
reconciled

– Different schemas need to be integrated

– Source data needs to be cleansed

• In 3-tier architecture the reconciled data is 
materialized as well

– Useful in its own respect

– Makes ETL more transparent

– Neither historical, nor dimensional
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Data Staging

• Often the data staging area is materialized as 
well

– Store helper tables

– Take burden away from source systems
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Summary

• Data Warehouse architectures

– Single-, two-, and three-layer architectures

• ETL process

– Extract

– Transform/Cleanse

– Load

13



Extract

• Relevant data obtained from data sources

– First load: extract all data

– Subsequent loads: extract changes

• In 3-Tier infrastructure:

– From source data to reconciled database

• Schema integration, transformation, cleansing

– From reconciled database to data warehouse

• De-normalization, introduction of surrogate keys

• Calculation of derived data
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Extract

• Static vs incremental extraction

• Incremental & immediate

– Application-assisted

– Trigger-based extraction

– Log-based

• Incremental & delayed

– Timestamp-based

– File Comparison
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Application-Assisted

• Update of data warehouse deeply integrated 
into the application software

– Immediate

– Requires adaptation of existing applications

– Hard to maintain
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Trigger-Based

• Closely related to application-based

– Triggers to store updates

– Huge performance hit for database

– More transparent for application layer

– Only possible for data maintained in database
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Log-Based

• Many database systems keep change logs

– To ensure durability; in-between checkpoints all 
transactions to the database are logged

– Use these change logs for updating data warehouse

– Transparent to the user
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Timestamp-Based

• Operational database can be changed to keep 
whole history

– Different levels of timestamps

• Timestamp per tuple → Temporal database
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Timestamp-Based

• Only last update date may lose information
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Timestamp-Based

• Only last update date may lose information
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Timestamp-Based

• Only last update date may lose information
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Timestamp-Based

• Only last update date may lose information
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Timestamp-Based

• Based on the application field and update 
frequency, one timestamp per tuple may be 
acceptable

– Type-2 change for attributes that change several 
times between updates?!

• If more fine-grained behavior is required we 
can go to full temporal database

– Register valid time (start-end)
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File Comparison

• Easy; works even for flat files

• Does not capture intermediate changes
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Extraction Methods - Overview
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Method Maintain
full 
history?

Impact on 
performance 
operational 
level

Complexity
extraction 
procedures

DBMS 
dependent

Requires 
changes to
application 
layer

Maintenance

Static No No Low No None Easy

Application 
assisted

Yes Medium High No Many Difficult

Trigger 
based

Yes Medium Medium Yes None Medium

Log based Yes No Low Limited None Easy

Timestamp 
based

(yes) Some Low Limited Some Medium

File 
comparison

Not all No Medium No None Easy



Summary

• Data Warehouse architectures

– Single, two-, and three-layer architectures

• ETL process

– Extract

– Transform/Cleanse

– Load
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Transform/Cleanse

• Conversion

– Different date types

• Enrichment

– Combine information of different attributes to 
create a new one

• Joining data without key;

– Entity resolution

• Correcting errors

– De-duplication
28



De-duplication & Entity Resolution

• De-duplication

– Recognize duplicate entries

• Entity resolution

– Recognize if two entities from different sources 
are actually referring to the same object

• Not always obvious if there is no key shared between 
different data sources

– In most extreme case need for methods to directly 
compare strings
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Example: Cleansing customer data
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John White

Downing St. 10

TW1A 2AA London (UK) Fname: John

Sname: White

Adress:   Downing St. 10

ZIP: TW1A 2AA 

City: London

Country: UK

normalizing

Fname: John

Sname: White

Adress:   10, Downing St.

ZIP: TW1A 2AA 

City: London

Country: United Kingdom

standardizing

correcting

Fname: John

Sname: White

Adress:   10, Downing St.

ZIP: SW1A 2AA 

City: London

Country: United Kingdom

Example from Golfarelli and Rizzi book



Comparing Strings

• How to compare strings?

Patrick Smith vs. Patrik Smyth

• Popular distance measure: edit distance

– Insert, Delete, Overwrite

– Shortest sequence of operations to turn one string 
into another

Patrick Smith →D Patrik Smith →R Patrik Smyth
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Edit Distance

• Relatively easy to compute via dynamic 
programming

Smyth vs Simte

S m y t h

0 1 2 3 4 5

S 1 0 1 2 3 4

i 2 1 1 2 3 4

m 3 2 1 2 3 4

t 4 3 2 2 2 3

e 5 4 3 3 3 3

d(S,S)

d(Smyt,Si)

d(Smyt,Simt)

d(Smyth,Simte)
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Edit Distance

• Compute content of a cell as follows:

Example:

d(Smyth,Simte):

d(Smyth,Simt) + insert e at the end

or delete h + d(Smyt,Simte)

or d(Smyt,Simt) + overwrite h with e
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Edit Distance

• Compute content of a cell as follows:

Example:

d(Smyth,Simte) = min(

d(Smyth,Simt) + 1

d(Smyt,Simte) + 1,

d(Smyt,Simt) + 1

)
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Edit Distance

• Compute content of a cell as follows:

Example:

d(Smyt,Simt):

d(Smyt,Sim) + insert t at the end

or delete t + d(Smy,Simt)

or d(Smy,Sim)
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Edit Distance

• Compute content of a cell as follows:

Example:

d(Smyt,Simt) = min(

d(Smyt,Sim) + 1

d(Smy,Simt) + 1,

d(Smy,Sim) + 0

)
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Edit Distance

• Compute content of a cell as follows:

if string1[k] = string2[l]

M[k,l] = min(M[k-1,l-1], M[k-1,l]+1, M[k,l-1]+1)

else:
M[k,l] = min(M[k-1,l-1]+1, M[k-1,l]+1, M[k,l-1]+1)
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Summary

• Data Warehousing architectures

– Single, two-, and three-layer architectures

• ETL process

– Extract

– Transform/Cleanse

– Load
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Populating Dimension Tables

• Type 1 and type 2 changes

– May require dimension table to be loaded in the 
data staging area

• Introduction of surrogate keys

– Permanently maintain mapping tables in the 
staging area

• In case of a type-1 change: change the value in the 
dimension table

• In case of a type-2 change: introduce a new tuple with 
a new surrogate key
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Populating Fact Tables

• Always update dimension tables before fact 
table (if possible)

– Referential integrity

– Not always possible: introduce “dummy” value in 
dimension tables if dimension key lookup fails

• Update materialized views

– Can be optimized if measures are distributive
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Computation of Aggregations

• Part of the data warehouse loading involves 
computation of aggregations →materialized 
views
– Order in which they are computed can be 

important

– Sort-based or Hash-based

See, e.g.: Agarwal et al. On the computation of 
multidimensional aggregates. VLDB 1996
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Sort-Based Aggregation

A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;
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Sort-Based Aggregation

A B C count

1 5 6 8

2 6 6 9

1 8 6 10

1 7 5 6

3 3 3 5

2 1 4 8

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

SORT
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Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

SCAN
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Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 8
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Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 14
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Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 14

1 8 6 10
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Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 14

1 8 6 10

2 1 4 8
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Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 14

1 8 6 10

2 1 4 17
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Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 14

1 8 6 10

2 1 4 17

3 3 3 5
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Sort-Based Aggregation

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5

SELECT A, B, C, sum(count)

FROM R

GROUP BY A, B, C;

SCAN

A B C SUM

1 5 6 14

1 8 6 10

2 1 4 17

3 3 3 5
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Sort-Based Aggregation

• Observation:

– Table sorted on ABC

= sorted on AB

= sorted on A

– One sort supports 3 
aggregations

A B C count

1 5 6 8

1 5 6 6

1 8 6 10

2 1 4 8

2 1 4 9

3 3 3 5
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Pipe-Sort

• Sort on ABC

• Scan sorted relation

– As long as next tuple is the same as previous

• Update aggregated tuple; add count of current

– Else

• Ship aggregated tuple to disk

• Pipe tuple to procedure computing aggregation on AB

53



Pipe-Sort

• Key problem: divide materialized views lattice 
into “pipes”, minimizing sorts

A B D

BC

BCD

AB

ABCD

()
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Pipe-Sort

• Key problem: divide materialized views lattice 
into “pipes”, minimizing sorts

A B D

BC

BCD

AB

BCDA

()

sort

sort

sort
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Hash-Based Optimization

• If aggregate tables fit into memory
A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8
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Hash-Based Optimization

• If aggregate tables fit into memory
A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8

A B C SUM

1 5 6 8

57
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Hash-Based Optimization

• If aggregate tables fit into memory
A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8

SCAN

A B C SUM

1 5 6 8

2 1 4 9
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Hash-Based Optimization

• If aggregate tables fit into memory
A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8

SCAN

A B C SUM

1 5 6 8

2 1 4 9

1 8 6 10
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Hash-Based Optimization

• If aggregate tables fit into memory
A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8

SCAN

A B C SUM

1 5 6 14

2 1 4 9

1 8 6 10
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Hash-Based Optimization

• If aggregate tables fit into memory
A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8

SCAN

A B C SUM

1 5 6 14

2 1 4 9

1 8 6 10

3 3 3 5
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Hash-Based Optimization

• If aggregate tables fit into memory
A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8

SCAN

A B C SUM

1 5 6 14

2 1 4 17

1 8 6 10

3 3 3 5
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Hash-Based Optimization

• Multiple hash tables may fit at the same time
A B C count

1 5 6 8

2 1 4 9

1 8 6 10

1 5 6 6

3 3 3 5

2 1 4 8

A B C SUM

1 5 6 14

2 1 4 17

1 8 6 10

3 3 3 5

A C SUM

1 6 24

2 4 17

3 3 5

C SUM

6 24

4 17

3 5
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Conclusion

• ETL is often the most time consuming parts of 
a datawarehousing project

– Reported to take up to 80% of time

• Different ways to capture changes

– Application-assisted

– Trigger-based extraction

– Log-based

– Timestamp-based

– File Comparison
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Conclusion

• Transform/Cleanse involves

– Normalization

– Standardization

– De-duplication

– Entity resolution

• Load

– Surrogate keys (lookup tables in staging area)

– First update dimension tables, only then fact table

65


