The Database Explosion Problem

Toon Calders

The data explosion problem refers to the observation that fully materializing
all possible aggregated values in a data cube requires much more storage space
than storing the base table alone. Even for modest relational tables the size
increase can be enormous. As we will see further on, the effect increases with
dimensionality and sparsity of the data cube.

In the remainder of the document, we will assume a given relational table
R(D,...,Dy, M), where D; is a dimensional attribute, with domain dom(D;)
forallt =1...k, and M is a numerical attribute that will be aggregated; that
is, the measure.

example 1 Consider the following base relation:

Dy | Dy | D3| M
a b c 5
a d e 7
The fully materialized cube for this base relation is the following:
Dy | Dy | D3| M
a b c 5
a b * 5
a * c 5
a * * | 13
* b c |5
* b * 5
* * c 5
* * * | 13
a d e 7
a d * 7
a * e 7
* d e 7
* d * 7
* * e 7

In order to store the fully materialized cube, we need to store 14 aggregates,
whereas the original data table contains 2 tuples.

The sparsity of the base relation R(D;,...,Dy) denotes 1 minus the ratio
between the actual size of R, and the size of R if all possible combinations of
the values of the different attributes would actually occur. That is:

R
ladom(D1)| X ... x |adom(Dy)|

sparsity(R) =1 —

Notice that adom(D;) denotes the active domain of attribute D;, that is, the
set of all values that occur for attribute D; inb the relation R. Hence, sparsity
will be minimal; i.e., equal to 0, if every combination occurs.

example 2 In the example relation given above, the sparsity is equal to:

2

l1—— =05 .
1x2x2 0-5

Of the 4 possible combinations (a,b,c), (a,b,e), (a,d,c), (a,d,e), 2 occur in R.

Dense Base Relation

When looking at the reasons for the database explosion problem, we first inspect
the relation between the size of the datacube, expressed in number of tuples in
the fully aggregated table, and the dimensionality of the relation. To ease the
computation, we will assume that all data attributes D;, ¢ = 1...k have the
same number of values d in their active domain.

Suppose now that relation R is fully dense; i.e., has sparsity 0. Then the
number of tuples in R is d¥, whereas the size of the fully materialized cube
is d+1%. This can easily be seen as follows: we can represent all possible
aggregates of the base relation R by adding one special dedicated symbol “*”
expressing that this attribute is not a grouping attribute. Then, any tuple
t € adom(D1) U {x} x ... x adom(Dy) U {x} denotes a distinct aggregate that
needs to be stored if we choose to fully materialize the datacube. There are
(d + 1)* such tuples, hence the size of the cube.

In conclusion, for a fully dense data cube, the ratio between the size of the
fully materialized data cube and original database equals:

. (d+1)* d+1\"
ratio dense = — =\

Although this ratio is exponential in the number of dimensions k, the base of
the exponential, d%gl is usually fairly small. As an illustration, suppose that
the active domains of the dimensions contain 10 values each, and there are 20
dimensions. In that case, the size of the data cube will be (11/10)20 = 6.7 times
the size of the original table. The larger the active domains, the smaller the
base of the exponential becomes.

When the data is dense, only for very small domains and very high dimen-
sionality the database explosion becomes a problem. Therefore, the dimension-
ality of the base relation alone cannot justify the observed database explosion
problem, because we have shown that in the case of dense data the increase is
relatively modest.

Sparse Base Relation

For dense databases the databaes explosion problem is not such a big problem
as we saw in the previous section. In this section we will show that the problem
is much different when the sparsity of the data is high. Consider, e.g., the
following example.

example 3 Consider the following relation:

Dy | Dy | D3| Dy | M
a b c d | b
e | f |l g | h|T
i j k l 4

m | n 0 p | 3

Our base relation contains 4 tuples. The fully materialized cube will contain 61
tuples; the ratio is hence 15.25. This in comparison with the mazximal ratio of
(5/4)* ~ 2.44 when the base relation is dense (assuming 4 dimensions with 4
values each).

The main reason why the effect is so much higher for sparse relations is as fol-
lows: in the last example, every tuple contributes to 16 aggregates; for example,
(a,b,c,d,5) contributes to (a,b,c,*,5), (a,b,*,d,5), ..., (x,%, %% 19). Of all
these 16 aggregates, only the last one, (x, *, *, x, 19), is shared with other tuples.
The sparser a relation is, the less aggregates will be shared among tuples. For
dense relations the situation is exactly opposite; if the size of the domains is
d, d tuples will contribute to the aggregate (x,b,c,d,), d* to the aggregate
(*,%,¢,d,y), and so on. This “sharing” of aggregates among the tuples in the
base relation makes that the increase is far less than in the sparse case.

Worst Case

The wost case is when any two tuples only share the grand total aggregate. In
that case, with k£ dimensions and r tuples, the size of the data cube becomes
r x d* — (r —1) (the factor 7 — 1 refers to the grand total being counted r times,
which is an excess of r —1). As such, in worst case, the ratio between data cube
size and base relation becomes as big as d*. Obviously this is a pathological
case; it is highly unlikely anyone wants to browse the cube of a base relation
where nothing is common between any two tuples. In the next subsection we
will study the average case.

Average Case

Let us assume that our base relation contains r tuples. We will now compute
the expected ratio between the size of the data cube versus the size of the base
relation under the assumption that every base relation of size v is equally likely.
This will give us some point of reference in case we do not know anything about
the base relation.

The following mathematical analysis has been added for illustrative purposes
only, and is not part of the examination material.

Consider an arbitrary aggregate that is part of the result of a group by ¢
attributes. For example, (a,b,c,*,m) is an aggregate that is part of the group
by D1, Dy, D3; £ equals 3 in this particular case. There are d*~¢ tuples that
contribute to the count of this aggregate (not all are neessarily in our base
relation, though). For our example aggregate (a, b, c, *,m), all d*=* = d tuples
(a,b,c,x,m) with € dom(D,) contribute to this aggregate.

In general, there are C7,,_,._, databases out of C7, in which this aggregate
is not part of the fully materialized cube. Hence, the probability that a random

aggregate of a grouping by £ attributes is not part of the materialized cube
equals

Coe_gr—e (dF —dF=O)(dF —dF=t —1)...(d" —d"* —r+1)
Ch N dé(dd —1)...(dF —r+1)
dk — gk—* r ” p r/d*
B e (T
< efr/d['

In other words, the probability that a cell of the data cube is empty, decreases
exponentially fast with r. The approximation is reasonably accurate under the
condition that r is much smaller than d*, which is the case since R is sparse,
and d’ has moderate size; say at least 50.

As an illustration, assume a relation with 500 000 tuples, the dimensionality
k is 10, and the domain size of every dimension is 10. Hence, the relation is
extremely sparse. The probability that an aggregate resulting from a group by
with 4 attributes is empty, is less than e %" ~ 2.2510722. There are 10*CY, =
2100000 such aggregate cells, and most likely all of them wil be non-zero. The
following table lists for this particular case, for every number ¢ of attributes in
the group by, what is the probability that a random cell holding a tuple of such
a group by is empty, and how many of such cells there are:

¢ | P(empty) # cells Exp. number non-empty

1 ~0 100 100

2 ~0 4500 4500

3 ~ 0 120000 12104

4 ~ 0 2100000 2110°

5 ~ 0.8% 25200000 ~ 25106

6 ~ 60% 210000000 ~ 84106

7 ~ 94% 1200 000000 ~ 72108

8 ~1 4 500 000 000 > 500000

9 ~ 1 10000 000 000 > 500000

10 ~ 1 10000 000 000 500000
total > 17510°

For this example, the expected ratio between the fully materialized cube and
the base relation is at least 350. This is what is meant by the database explo-
sion problem when fully materializing all aggregations. The effect strengthens
with increasing domain size d (more possible values hence less overlap between
aggregates), and dimensionality k.

Conclusion

The database explosion problem refers to the observation that a fully materi-
alized data cube can be many times bigger than the original base table. This
observation makes that in most practical cases it is impossible to fully materi-
alize the data cube. Therefore, alternative methods, such as only partially ma-
terializing a well-chosen subset of the aggregates have been developped, trading
in space for storing pre-computed aggregates for higher performance at query
time.

