
Database Systems Architecture

Stijn Vansummeren

1

General Course Information

Objective:

To obtain insight into the internal operation and implementation of systems de-
signed to manage and process large amounts of data (“database management
systems”).

• Storage management

• Query processing

• Transaction management

2

General Course Information

Examples of data management systems:

• Relational DBMSs

• NoSQL DBMS

• Graph databases

• Stream processing systems/Complex event processing systems

• Distributed compute engines, e.g. Spark, Flink, . . . (to some extent)

Focus on relational DBMS, with discussion on how the foundational
ideas of relational DBMSs are modified in other systems

3

General Course Information

Why is this interesting?

• Understand how typical data management systems work

• Predict data management system behavior, tune its performance

•Many of the techniques studied transfer to settings other than data manage-
ment systems
(MMORPGs, Financial market analysis, distributed computation, . . .)

What this course is not:

• Introduction to databases

• Focused on particular DBMS (Oracle, IBM,. . .)

4

General Course Information

Organisation

• Combination of lectures; exercise sessions; guided self-study; and project work.

• Evaluation: project and written exam

Course material

• Database Systems: The Complete Book (H. Garcia-Molina, J. D. Ullman, and J.
Widom) second edition

• Course notes (available on website)

Contact information

• Email: stijn.vansummeren@ulb.ac.be

• Office: UB4.125

•Website: http://cs.ulb.ac.be/public/teaching/infoh417

5

Course Prerequisites

An introductory course on relational database systems

• Understanding of the Relational Algebra

• Understanding of SQL

Background on basic data structures and algorithms

• Search trees

• Hashing

• Analysis of algorithms: worst-case complexity and big-oh notation (e.g., O(n3))

• Basic knowledge of what it means to be NP-complete

Proficiency in Programming (Java or C/C++)

• Necessary for completing the project assignment

6

Query processing: overview

SQL

Query Compiler

Logical
query plan

Optimized
logical query plan

Physical
query planLogical plan

optimization
Physical plan

selection
Translation

Execution
Engine

Result

Physical
Data Storage

Statistics
and

Metadata

7

Query processing: overview

SQL

Query Compiler

Logical
query plan

Optimized
logical query plan

Physical
query planLogical plan

optimization
Physical plan

selection
Translation

Execution
Engine

Result

Physical
Data Storage

"Intermediate code" "Machine code"

Statistics
and

Metadata

8

Translation of SQL into Relational Algebra
From SQL text to logical query plans

9

Translation of SQL into relational algebra: overview

SQL

Query Translation

Stream
of tokens

Abstract
Syntax Tree

Logical
query planSyntactic

analysis
TransformationLexical

Analysis "Intermediate
 code"

We will adopt the following simplifying assumptions:

We will only show how to translate SQL-92 queries

And we adopt a set-based semantics of SQL. (In contrast, real SQL is bag-based.)

What will we use as logical query plans?

The extended relational algebra (interpreted over sets).

Prerequisites

• SQL: see chapter 6 in TCB

• Extended relational algebra: chapter 5 in TCB

10

Refreshing the Relational Algebra

Relations are tables whose columns have names, called attributes

A B C D

1 2 3 4
1 2 3 5
3 4 5 6
5 6 3 4

The set of all attributes of a relation is called the schema of the relation.

The rows in a relation are called tuples.

A relation is set-based if it does not contain duplicate tuples. It is called
bag-based otherwise.

11

Refreshing the Relational Algebra

Unless specified otherwise, we assume that relations are set-based.

Each Relational Algebra operator takes as input 1 or more relations, and
produces a new relation.

12

Refreshing the Relational Algebra

Union (set-based)

A B

1 2
3 4
5 6

∪ A B

3 4
1 5

= A B

1 2
3 4
5 6
1 5

Input relations must have the same schema (same set of attributes)

13

Refreshing the Relational Algebra

Intersection (set-based)

A B

1 2
3 4
5 6

∩ A B

3 4
1 5

= A B

3 4

Input relations must have same set of attributes

14

Refreshing the Relational Algebra

Difference (set-based)

A B

1 2
3 4
5 6

− A B

3 4
1 5

= A B

1 2
5 6

Input relations must have same set of attributes

15

Refreshing the Relational Algebra

Selection

σA>=3


A B

1 2
3 4
5 6

 =

A B

3 4
5 6

16

Refreshing the Relational Algebra

Projection (set-based)

πA,C


A B C D

1 2 3 4
1 2 3 5
3 4 5 6
5 6 3 4

 =

A C

1 3
3 5
5 3

17

Refreshing the Relational Algebra

Cartesian product

A B

1 2
3 4

×
C D

2 6
3 7
4 9

=

A B C D

1 2 2 6
1 2 3 7
1 2 4 9
3 4 2 6
3 4 3 7
3 4 4 9

Input relations must have disjoint schema (set of attributes)

18

Refreshing the Relational Algebra

Natural Join

A B

1 2
3 4

1

B D

2 6
3 7
4 9

=

A B D

1 2 6
3 4 9

19

Refreshing the Relational Algebra

Natural Join

A B

1 2
3 4

1

C D

2 6
3 7
4 9

=

A B C D

1 2 2 6
1 2 3 7
1 2 4 9
3 4 2 6
3 4 3 7
3 4 4 9

20

Refreshing the Relational Algebra

Theta Join

A B

1 2
3 4

1B=C

C D

2 6
3 7
4 9

=

A B C D

1 2 2 6
3 4 4 9

21

Refreshing the Relational Algebra

Renaming

ρT

 A B

1 2
3 4

 =

T.A T.B

1 2
3 4

Renaming specifies that the input relation (and its attributes) should be given a
new name.

22

Refreshing the Relational Algebra

Relational algebra expressions:

• Built using relation variables

• And relational algebra operators

σlength≥100(Movie) 1title=movietitle StarsIn

23

Refreshing the Relational Algebra

The extended relational algebra

Adds some operators to the algebra (sorting, grouping, . . .) and extends others
(projection).

Grouping:

γA,min(B)→D



A B C

1 2 a
1 3 b
2 3 c
2 4 a
2 5 a

 =

A D

1 2
2 3

24

Refreshing the Relational Algebra

The extended relational algebra

Adds some operators to the algebra (sorting, grouping, . . .) and extends others
(projection).

Extend projection to allow renaming of attributes:

πA,C→D


A B C D

1 2 3 4
1 2 3 5
3 4 5 6
5 6 3 4

 =

A D

1 3
3 5
5 3

25

Refreshing the Relational Algebra

On the difference between sets and bags

• Historically speaking, relations are defined to be sets of tuples: duplicate tuples
cannot occur in a relation.

• In practical systems, however, it is more efficient to allow duplicates to occur
in relations, and only remove duplicates when requested. In this case relations
are bags.

Union (bag-based)

A B

1 2
3 4
5 6

∪ A B

3 4
1 5

= A B

1 2
3 4
5 6
3 4
1 5

26

Refreshing the Relational Algebra

On the difference between sets and bags

• Historically speaking, relations are defined to be sets of tuples: duplicate tuples
cannot occur in a relation.

• In practical systems, however, it is more efficient to allow duplicates to occur
in relations, and only remove duplicates when requested. In this case relations
are bags.

Intersection (bag-based)

A B

1 2
3 4
1 2
1 2

∩ A B

1 2
3 4
3 4
5 6

= A B

1 2
3 4

27

Refreshing the Relational Algebra

On the difference between sets and bags

• Historically speaking, relations are defined to be sets of tuples: duplicate tuples
cannot occur in a relation.

• In practical systems, however, it is more efficient to allow duplicates to occur
in relations, and only remove duplicates when requested. In this case relations
are bags.

Difference (bag-based)

A B

1 2
3 4
1 2
1 2

− A B

1 2
3 4
3 4
5 6

= A B

1 2
1 2

28

Refreshing the Relational Algebra

On the difference between sets and bags

• Historically speaking, relations are defined to be sets of tuples: duplicate tuples
cannot occur in a relation.

• In practical systems, however, it is more efficient to allow duplicates to occur
in relations, and only remove duplicates when requested. In this case relations
are bags.

Projection (bag-based)

πA,C


A B C D

1 2 3 4
1 2 3 5
3 4 5 6
5 6 3 4

 =

A C

1 3
1 3
3 5
5 3

29

Refreshing the Relational Algebra

On the difference between sets and bags

• Historically speaking, relations are defined to be sets of tuples: duplicate tuples
cannot occur in a relation.

• In practical systems, however, it is more efficient to allow duplicates to occur
in relations, and only remove duplicates when requested. In this case relations
are bags.

The other operators are straightforwardly extended to bags: simply do
the same operation, taking into account duplicates

30

Translation of SQL into relational algebra: overview

SQL

Query Translation

Stream
of tokens

Abstract
Syntax Tree

Logical
query planSyntactic

analysis
TransformationLexical

Analysis "Intermediate
 code"

We will adopt the following simplifying assumptions:

We will only show how to translate SQL-92 queries

And we adopt a set-based semantics of SQL. (In contrast, real SQL is bag-based.)

What will we use as logical query plans?

The extended relational algebra (interpreted over sets).

Prerequisites

• SQL: see chapter 6 in TCB

• Extended relational algebra: chapter 5 in TCB

31

Translation of SQL into the relational algebra

In the examples that follow, we will use the following database:

•Movie(title: string, year: int, length: int, genre: string, studioName: string,
producerC#: int)

•MovieStar(name: string, address: string, gender: char, birthdate: date)

• StarsIn(movieTitle: string, movieYear: string, starName: string)

•MovieExec(name: string, address: string, CERT#: int, netWorth: int)

• Studio(name: string, address: string, presC#: int)

32

Translation of SQL into the relational algebra

Select-from-where statements without subqueries

SQL: SELECT movieTitle

FROM StarsIn S, MovieStar M

WHERE S.starName = M.name AND M.birthdate = 1960

Algebra: ???

33

Translation of SQL into the relational algebra

Select-from-where statements without subqueries

SQL: SELECT movieTitle

FROM StarsIn S, MovieStar M

WHERE S.starName = M.name AND M.birthdate = 1960

Algebra: πmovieTitleσ S.starName=M.name
∧M.birthdate=1960

(ρS(StarsIn)× ρM(MovieStar))

34

Translation of SQL into the relational algebra

Select statements in general contain subqueries

SELECT movieTitle FROM StarsIn S

WHERE S.starName IN (SELECT name

FROM MovieStar

WHERE birthdate=1960)

Subqueries in the where-clause

Occur through the operators =, <, >, <=, >=, <>; through the quantifiers ANY, or
ALL; or through the operators EXISTS and IN and their negations NOT EXISTS

and NOT IN.

35

Translation of SQL into the relational algebra

We can always normalize subqueries to use only EXISTS and NOT EXISTS

SELECT movieTitle FROM StarsIn

WHERE starName IN (SELECT name

FROM MovieStar

WHERE birthdate=1960)

⇒ SELECT movieTitle FROM StarsIn

WHERE EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name=starName)

36

Translation of SQL into the relational algebra

We can always normalize subqueries to use only EXISTS and NOT EXISTS

SELECT name FROM MovieExec

WHERE netWorth >= ALL (SELECT E.netWorth

FROM MovieExec E)

⇒ SELECT name FROM MovieExec

WHERE NOT EXISTS(SELECT E.netWorth

FROM MovieExec E

WHERE netWorth < E.netWorth)

37

Translation of SQL into the relational algebra

We can always normalize subqueries to use only EXISTS and NOT EXISTS

SELECT C FROM S

WHERE C IN (SELECT SUM(B) FROM R

GROUP BY A)

⇒ ???

38

Translation of SQL into the relational algebra

We can always normalize subqueries to use only EXISTS and NOT EXISTS

SELECT C FROM S

WHERE C IN (SELECT SUM(B) FROM R

GROUP BY A)

⇒ SELECT C FROM S

WHERE EXISTS (SELECT SUM(B) FROM R

GROUP BY A

HAVING SUM(B) = C)

39

Translation of SQL into the relational algebra

Translating subqueries - First step: normalization

• Before translating a query we first normalize it such that all of the subqueries that
occur in a WHERE condition are of the form EXISTS or NOT EXISTS.

•We may hence assume without loss of generality in what follows that all subqueries
in a WHERE condition are of the form EXISTS or NOT EXISTS.

40

Translation of SQL into the relational algebra

Correlated subqueries

A subquery can refer to attributes of relations that are introduced in an outer
query.

SELECT movieTitle

FROM StarsIn S

WHERE EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name=S.starName)

Definition

•We call such subqueries correlated subqueries.

• The “outer” relations from which the correlated subquery uses some attributes
are called the context relations of the subquery.

• The set of all attributes of all context relations of a subquery are called the
parameters of the subquery.

41

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

42

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

1. We first translate the EXISTS subquery.

πnameσ birthdate=1960∧name=S.starName
(MovieStar)

43

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

1. We first translate the EXISTS subquery.

πnameσ birthdate=1960∧name=S.starName
(MovieStar))

Since we are translating a correlated subquery, however, we need to add the
context relations and parameters for this translation to make sense.

πS.movieTitle,S.movieYear,S.starName,nameσ birthdate=1960∧name=S.starName
(MovieStar×ρS(StarsIn))

44

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

2. Next, we translate the FROM clause of the outer query. This gives us:

ρS(StarsIn)× ρM(Movie)

45

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

3. We “synchronize” these subresults by means of a join. From the subquery we
only need to retain the parameter attributes.

(ρS(StarsIn)× ρM(Movie)) 1

πS.movieTitle,S.movieYear,S.starNameσ birthdate=1960∧name=S.starName
(MovieStar× ρS(StarsIn))

46

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

4. We can simplify this by omitting the first ρS(StarsIn)

ρM(Movie) 1

πS.movieTitle,S.movieYear,S.starNameσ birthdate=1960∧name=S.starName
(MovieStar× ρS(StarsIn))

47

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

5. Finally, we translate the remaining subquery-free conditions in the WHERE clause,
as well as the SELECT list

πS.movieTitle,M.studioName σS.movieYear>=2000∧S.movieTitle=M.title(
ρM(Movie) 1 πS.movieTitle,S.movieYear,S.starName

σ birthdate=1960∧name=S.starName
(MovieStar× ρS(StarsIn))

)

48

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

49

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

1. We first translate the NOT EXISTS subquery.

πnameσ birthdate=1960∧name=S.starName
(MovieStar)

50

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

1. We first translate the NOT EXISTS subquery.

πnameσ birthdate=1960∧name=S.starName
(MovieStar)

Since we are translating a correlated subquery, however, we need to add the
context relations and parameters for this translation to make sense.

πS.movieTitle,S.movieYear,S.starName,nameσ birthdate=1960∧name=S.starName
(MovieStar×ρS(StarsIn))

51

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

2. Next, we translate the FROM clause of the outer query. This gives us:

ρS(StarsIn)× ρM(Movie)

52

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

3. We then “synchronize” these subresults by means of an antijoin. From the
subquery we only need to retain the parameter attributes.

(ρS(StarsIn)× ρM(Movie)) 1

πS.movieTitle,S.movieYear,S.starNameσ birthdate=1960∧name=S.starName
(MovieStar× ρS(StarsIn))

Here, the antijoin R1S ≡ R− (R 1 S).

Simplification is not possible: we cannot remove the first ρS(StarsIn).

53

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

4. Finally, we translate the remaining subquery-free conditions in the WHERE clause,
as well as the SELECT list

πS.movieTitle,M.studioName σS.movieYear>=2000∧S.movieTitle=M.title(
(ρS(StarsIn)× ρM(Movie))1πS.movieTitle,S.movieYear,S.starName

σ birthdate=1960∧name=S.starName
(MovieStar× ρS(StarsIn))

)

54

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

In the previous examples we have only considered queries of the following form:

SELECT Select-list FROM From-list

WHERE ψ AND EXISTS(Q) AND · · · AND NOT EXISTS(P) AND · · ·

How do we treat the following?

SELECT Select-list FROM From-list

WHERE A=B AND NOT(EXISTS(Q) AND C<6)

55

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

In the previous examples we have only considered queries of the following form:

SELECT Select-list FROM From-list

WHERE ψ AND EXISTS(Q) AND · · · AND NOT EXISTS(P) AND · · ·

How do we treat the following?

SELECT Select-list FROM From-list

WHERE A=B AND NOT(EXISTS(Q) AND C<6)

1. We first transform the condition into disjunctive normal form:

SELECT Select-list FROM From-list

WHERE (A=B AND NOT EXISTS(Q)) OR (A=B AND C>=6)

56

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

In the previous examples we have only considered queries of the following form:

SELECT Select-list FROM From-list

WHERE ψ AND EXISTS(Q) AND · · · AND NOT EXISTS(P) AND · · ·

How do we treat the following?

SELECT Select-list FROM From-list

WHERE A=B AND NOT(EXISTS(Q) AND C<6)

2. We then distribute the OR

(SELECT Select-list FROM From-list

WHERE (A=B AND NOT EXISTS(Q)))
UNION

(SELECT Select-list FROM From-list

WHERE (A=B AND C>=6))

57

Translation of SQL into the relational algebra

Union, intersection, and difference

SQL: (SELECT * FROM R R1) INTERSECT (SELECT * FROM R R2)

Algebra: ρR1
(R)∩ρR2

(R)

SQL: (SELECT * FROM R R1) UNION (SELECT * FROM R R2)

Algebra: ρR1
(R)∪ρR2

(R)

SQL: (SELECT * FROM R R1) EXCEPT (SELECT * FROM R R2)

Algebra: ρR1
(R)−ρR2

(R)

58

Translation of SQL into the relational algebra

Union, intersection, and difference in subqueries

Consider the relations R(A,B) and S(C).

SELECT S1.C, S2.C

FROM S S1, S S2

WHERE EXISTS (

(SELECT R1.A, R1.B FROM R R1

WHERE A = S1.C AND B = S2.C)

UNION

(SELECT R2.A, R2.B FROM R R2

WHERE B = S1.C)

)

In this case we translate the subquery as follows:

πS1.C,S2.C,R1.A→A,R1.B→B σ A=S1.C
∧B=S2.C

(ρR1
(R)× ρS1(S)× ρS2(S))

∪πS1.C,S2.C,R2.A→A,R2.B→B σB=S1.C (ρR2
(R)× ρS1(S)×ρS2(S))

59

Translation of SQL into the relational algebra

Join-expressions

SQL: (SELECT * FROM R R1) CROSS JOIN (SELECT * FROM R R2)

Algebra: ρR1
(R)×ρR2

(R)

SQL: (SELECT * FROM R R1) JOIN (SELECT * FROM R R2)

ON R1.A = R2.B

Algebra: ρR1
(R) 1

R1.A=R2.B
ρR2

(R)

60

Translation of SQL into the relational algebra

Join-expressions in subqueries

Consider the relations R(A,B) and S(C).

SELECT S1.C, S2.C

FROM S S1, S S2

WHERE EXISTS (

(SELECT R1.A, R1.B FROM R R1

WHERE A = S1.C AND B = S2.C)

CROSS JOIN

(SELECT R2.A, R2.B FROM R R2

WHERE B = S1.C)

)

In this case we translate the subquery as follows:

πS1.C,S2.C,R1.A,R1.B σ A=S1.C
∧B=S2.C

(ρR1
(R)× ρS1(S)× ρS2(S))

1πS1.C,R2.A,R2.B σB=S1.C (ρR2
(R)× ρS1(S))

61

Translation of SQL into the relational algebra

GROUP BY and HAVING

SQL: SELECT name, SUM(length)

FROM MovieExec, Movie

WHERE cert# = producerC#

GROUP BY name

HAVING MIN(year) < 1930

Algebra:
πname,SUM(length)σMIN(year)<1930 γname,MIN(year),SUM(length)

σcert#=producerC#(MovieExec× Movie)

62

Translation of SQL into the relational algebra

Subqueries in the From-list

SQL: SELECT movieTitle

FROM StarsIn, (SELECT name FROM MovieStar

WHERE birthdate = 1960) M

WHERE starName = M.name

Algebra:
πmovieTitleσstarName=M.name(StarsIn

× ρMπnameσbirthdate=1960(MovieStar))

63

Translation of SQL into the relational algebra

Lateral subqueries in SQL-99

SELECT S.movieTitle

FROM (SELECT name FROM MovieStar

WHERE birthdate = 1960) M,

LATERAL

(SELECT movieTitle

FROM StarsIn

WHERE starName = M.name) S

1. We first translate the first subquery

E1 = πnameσbirthdate=1960(MovieStar).

2. We then translate the second subquery, which has E1 as context relation:

E2 = ρSπname,movieTitleσstarName=M.name(StarsIn× E1).

3. Finally, we translate the whole FROM-clause by means of a join due to the
correlation:

πmovieTitle(E1 1 E2).

64

Translation of SQL into the relational algebra

Lateral subqueries in SQL-99

SELECT S.movieTitle

FROM (SELECT name FROM MovieStar

WHERE birthdate = 1960) M,

LATERAL

(SELECT movieTitle

FROM StarsIn

WHERE starName = M.name) S

4. In this example, however, all relevant tuples of E1 are already contained in the
result of E2, and we can hence simplify:

πmovieTitle(E2).

65

Translation of SQL into the relational algebra

Subqueries in the select-list

Consider again the relations R(A,B) and S(C), and assume that A is a key for
R. The following query is then permitted:

SELECT C, (SELECT B FROM R

WHERE A=C)

FROM S

Such queries can be rewritten as queries with LATERAL subqueries in the from-list:

SELECT C, T.B

FROM (SELECT C FROM S),

LATERAL

(SELECT B FROM R

WHERE A=C) T

We can hence first rewrite them in LATERAL form, and subsequently translate the
rewritten query into the relational algebra.

66

Optimization of logical query plans
Eliminating redundant joins

67

Optimization of logical query plans

SQL

Query Compiler

Logical
query plan

Optimized
logical query plan

Physical
query planLogical plan

optimization
Physical plan

selection
Translation

Execution
Engine

Result

Physical
Data Storage

"Intermediate code" "Machine code"

Statistics
and

Metadata

68

Optimization of logical query plans

Logical plans = execution trees

A logical query plan like

πA,B(σA=5(R) ∪ (S 1 T))

is essentially an execution tree

π

∪

σ

R

on

S T

A physical query plan is a logical query plan in which each node is
assigned the algorithm that should be used to evaluate the
corresponding relational algebra operator. (There are multiple ways to
evaluate each algebra operator)

69

Optimization of logical query plans

The need to optimize

• Every internal node (i.e., each occurrence of an operator) in the plan must be
executed.

• Hence, the fewer nodes we have, the faster the execution

Definition

A relational algebra expression e is optimal if there is no other expression e′ that
is both (1) equivalent to e and (2) “shorter” than e (i.e., has fewer occurrence of
operators than e).

The optimization problem:

Input: a relational algebra expression e

Output: an optimal relational algebra expression e′ equivalent to e.

70

Optimization of logical query plans

The optimization problem is undecidable:

It is known that the following problem is undecidable:

Input: relational algebra expressions e1 and e2 over a single relation R(A,B)

Output: e1 ≡ e2?

Proof: Suppose that we can compute e′, the optimal expression for (e1 − e2) ∪
(e2 − e1). Note that e1 ≡ e2 if, and only if, e′ is either σfalse(R) or R−R.

Conclusion: the optimization problem is undecidable

Question: can we optimize plans that are of a particular form?

71

Optimization of select-project-join expressions

In practice, most SQL queries are of the following form:

SELECT ...

FROM R1, R2, ..., Rm

WHERE A1 = B1 AND A2 = B2 AND ... AND An = Bn

The corresponding logical query plans are of the form:

π... σA1=B1∧A2=B2∧···∧An=Bn (R1 ×R2 × · · · ×Rm).

We call such relational algebra expressions select-project-join
expressions (SPJ expressions for short)

72

Optimization of select-project-join expressions

Removing redundant joins:

A careless SQL programmer writes the following query:

SELECT movieTitle FROM StarsIn S1

WHERE starName IN (SELECT name

FROM MovieStar, StarsIn S2

WHERE birthdate = 1960

AND S2.movieTitle = S1.movieTitle)

This query is equivalent to the following one, which has one join less to execute!

SELECT movieTitle FROM StarsIn

WHERE starName IN (SELECT name

FROM MovieStar

WHERE birthdate = 1960)

73

Optimization of select-project-join expressions

Here are the corresponding logical query plans:

πS1.movieTitle(ρS2(StarsIn) 1
S2.movieTitle=S1.movieTitle

ρS1(StarsIn)

1
S1.starName=name

σbirthdate=1960(MovieStar))

versus

πS1.movieTitle(ρS1(StarsIn) 1
S1.starName=name

σbirthdate=1960(MovieStar)).

Redundant joins may also be introduced because of view expansion

Can we optimize select-project-join expressions? (And hence remove
redundant joins?)

74

Optimization of select-project-join expressions

Definition

A conjunctive query is an expression of the form

Q (x1, . . . , xn)︸ ︷︷ ︸
head

← R(t1, . . . , tm), . . . , S(t
′
1, . . . , t

′
k)︸ ︷︷ ︸

body

Here t1, . . . , t
′
k denote variables and constants, and x1, . . . , xn must be variables

that occur in t1, . . . , t
′
k. We call an expression like R(t1, . . . , tm) an atom. If an

atom does not contain any variables, and hence consists solely of contstants, then
it is called a fact.

75

Optimization of select-project-join expressions

Semantics of conjunctive queries

Consider the following toy database D:

R
1 2
2 3
2 5
6 7
7 5
5 5

S
2
7

as well as the following conjunctive query over the relations R(A,B) and S(C):

Q(x, y)← R(x, y), R(y, 5), S(y).

Intuitively, Q wants to retrieve all pairs of values (x, y) such that (1) this pair
occurs in relation R; (2) y occurs together with the constant 5 in a tuple in R;
and (3) y occurs as a value in S. The formal definition is as follows.

76

Optimization of select-project-join expressions

Semantics of conjunctive queries

Consider the following toy database D:

R
1 2
2 3
2 5
6 7
7 5
5 5

S
2
7

as well as the following conjunctive query over the relations R(A,B) and S(C):

Q(x, y)← R(x, y), R(y, 5), S(y).

A substitution f of Q into D is a function that maps variables in Q to constants
in D. For example:

f : x 7→ 1
y 2

77

Optimization of select-project-join expressions

Semantics of conjunctive queries

Consider the following toy database D:

R
1 2
2 3
2 5
6 7
7 5
5 5

S
2
7

as well as the following conjunctive query over the relations R(A,B) and S(C):

Q(x, y)← R(x, y), R(y, 5), S(y).

A matching is a substitution that maps the body of Q into facts in D. For
example:

f : x 7→ 1
y 2

78

Optimization of select-project-join expressions

Semantics of conjunctive queries

Consider the following toy database D:

R
1 2
2 3
2 5
6 7
7 5
5 5

S
2
7

as well as the following conjunctive query over the relations R(A,B) and S(C):

Q(x, y)← R(x, y), R(y, 5), S(y).

The result of a conjunctive query is obtained by applying all possible matchings
to the head of the query. In our example:

Q(D) = {(1, 2), (6, 7)}.

79

Optimization of select-project-join expressions

Translation of SPJ expressions into conjunctive queries

Schema:

•Movie(title: string, year: int, length: int, genre: string, studioName:
string, producerC#: int)

•MovieStar(name: string, address: string, gender: char, birthdate: date)

• StarsIn(movieTitle: string, movieYear: string, starName: string)

SPJ: πtitle(Movie 1
title=movieTitle

StarsIn 1
starName=name

σbirthdate=1960(MovieStar))

CQ: Q1(t)← Movie(t, y, `, i, s, p), StarsIn(t, y2, n), MovieStar(n, a, g, 1960)

80

Optimization of select-project-join expressions

Translation of conjunctive queries into SPJ expressions

Schema:

• R(A,B)

• S(C)

CQ: Q(x, y)← R(x, y), R(y, 5), S(y)

SPJ: πR1.A,R1.B σR1.B=R2.AσR2.B=5σR1.B=C(ρR1
(R)× ρR2

(R)× S)

81

Optimization of select-project-join expressions

Translation of SPJ expressions into conjunctive queries

SPJ: πtitle(Movie 1
title=movieTitle

StarsIn 1
starName=name

σbirthdate=1960(MovieStar))

CQ: Q1(t)← Movie(t, y, `, i, s, p), StarsIn(t, y2, n), MovieStar(n, a, g, 1960)

Translation of conjunctive queries into SPJ expressions

CQ: Q(x, y)← R(x, y), R(y, 5), S(y)

SPJ: πR1.A,R1.B σR1.B=R2.AσR2.B=5σR1.B=C(ρR1
(R)× ρR2

(R)× S)

Conclusion:

Select-project-join expressions and conjunctive queries are two separate syntaxes
for the same class of queries.

82

Optimization of select-project-join expressions

In-class exercise

Consider the following SQL expression over the relations R(A,B) and S(B,C):

SELECT R1.A, S1.B

FROM R R1, R R2, R R3, S S1, S S2

WHERE

R1.A = R2.A AND R2.B =4 AND R2.A = R3.A

AND R3.B = S1.B AND S1.C = S2.C AND S2.B=4

Exercise: Translate this SQL expression into a logical query plan. If this plan is
an SPJ-expression, then translate this plan into a conjunctive query.

83

Optimization of select-project-join expressions

In-class exercise

Consider the following SQL expression over the relations R(A,B) and S(B,C):

SELECT R1.A, S1.B

FROM R R1, R R2, R R3, S S1, S S2

WHERE

R1.A = R2.A AND R2.B =4 AND R2.A = R3.A

AND R3.B = S1.B AND S1.C = S2.C AND S2.B=4

Here is the logical query plan:

πR1.A,S1.BσR1.A=R2.A∧R2.B=4∧R2.A=R3.A∧R3.B=S1.B∧S1.C=S2.C∧S2.B=4

(ρR1(R)× ρR2(R)× ρR3(R)× ρS1(S)× ρS2(S))

84

Optimization of select-project-join expressions

In-class exercise

Consider the following SQL expression over the relations R(A,B) and S(B,C):

SELECT R1.A, S1.B

FROM R R1, R R2, R R3, S S1, S S2

WHERE

R1.A = R2.A AND R2.B =4 AND R2.A = R3.A

AND R3.B = S1.B AND S1.C = S2.C AND S2.B=4

Here is the logical query plan:

πR1.A,S1.BσR1.A=R2.A∧R2.B=4∧R2.A=R3.A∧R3.B=S1.B∧S1.C=S2.C∧S2.B=4

(ρR1(R)× ρR2(R)× ρR3(R)× ρS1(S)× ρS2(S))

Constructing the conjunctive query: first step

Q(xR1.A, yS1.B)← R(xR1.A, yR1.B), R(xR2.A, yR2.B), R(xR3.A, yR3.B),

S(yS1.B, zS1.C), S(yS2.B, zS2.C)

85

Optimization of select-project-join expressions

In-class exercise

Consider the following SQL expression over the relations R(A,B) and S(B,C):

SELECT R1.A, S1.B

FROM R R1, R R2, R R3, S S1, S S2

WHERE

R1.A = R2.A AND R2.B =4 AND R2.A = R3.A

AND R3.B = S1.B AND S1.C = S2.C AND S2.B=4

Here is the logical query plan:

πR1.A,S1.BσR1.A=R2.A∧R2.B=4∧R2.A=R3.A∧R3.B=S1.B∧S1.C=S2.C∧S2.B=4

(ρR1(R)× ρR2(R)× ρR3(R)× ρS1(S)× ρS2(S))

Constructing the conjunctive query: forcing equalities

Q(xR1.A, yS1.B)← R(xR1.A, yR1.B), R(xR1.A, 4), R(xR1.A, yS1.B),

S(yS1.B, zS1.C), S(4, zS1.C)

86

Optimization of select-project-join expressions

In-class exercise

Consider the following SQL expression over the relations R(A,B) and S(B,C):

SELECT R1.A, S1.B

FROM R R1, R R2, R R3, S S1, S S2

WHERE

R1.A = R2.A AND R2.B =4 AND R2.A = R3.A

AND R3.B = S1.B AND S1.C = S2.C AND S2.B=4

Here is the logical query plan:

πR1.A,S1.BσR1.A=R2.A∧R2.B=4∧R2.A=R3.A∧R3.B=S1.B∧S1.C=S2.C∧S2.B=4

(ρR1(R)× ρR2(R)× ρR3(R)× ρS1(S)× ρS2(S))

Constructing the conjunctive query: renaming variables (optional)

Q(x, y)← R(x, u), R(x, 4), R(x, y), S(y, z), S(4, z)

87

Optimization of select-project-join expressions

Another in-class exercise

Consider the following conjunctive query over the relations

•MovieStar(name: string, address: string, gender: char, birthdate: date)

• StarsIn(movieTitle: string, movieYear: string, starName: string)

Q(t)← MovieStar(n, a, g, 1940), StarsIn(t, y, n)

Translate this conjunctive query into an SPJ expression. What is the corresponding
SQL query?

88

Optimization of select-project-join expressions

Another in-class exercise

Consider the following conjunctive query over the relations

•MovieStar(name: string, address: string, gender: char, birthdate: date)

• StarsIn(movieTitle: string, movieYear: string, starName: string)

Q(t)← MovieStar(n, a, g, 1940), StarsIn(t, y, n)

Translate this conjunctive query into an SPJ expression. What is the corresponding
SQL query?

SPJ expression:

πS.movieTitle(σM.starName=S.starNameσM.birthdate = 1940(ρM(MovieStar)×ρS(StarsIn))

89

Optimization of select-project-join expressions

Another in-class exercise

Consider the following conjunctive query over the relations

•MovieStar(name: string, address: string, gender: char, birthdate: date)

• StarsIn(movieTitle: string, movieYear: string, starName: string)

Q(t)← MovieStar(n, a, g, 1940), StarsIn(t, y, n)

Translate this conjunctive query into an SPJ expression. What is the corresponding
SQL query?

SPJ expression:

πS.movieTitle(σM.starName=S.starNameσM.birthdate = 1940(ρM(MovieStar)×ρS(StarsIn))

SQL query:

SELECT S.movieTitle FROM StarsIn S, MovieStar M

WHERE S.starName = M.name AND M.birthdate = 1960

90

Optimization of select-project-join expressions

Containment of conjunctive queries

Q1 is contained in Q2 if Q1(D) ⊆ Q2(D), for every database D.

Example:

A(x, y)← R(x,w), G(w, z), R(z, y)
B(x, y)← R(x,w), G(w,w), R(w, y)

Then B is contained in A. Proof:

1. Let D be an arbitrary database, and let t ∈ B(D).

2. Then there exists a matching f of B into D such that t = (f (x), f (y)). We
need to show that (f (x), f (y)) ∈ A(D).

3. Let h be the following substitution:

x→ f (x) y → f (y) w → f (w) z → f (w)

4. Then h is a matching of A into D, and hence

t = (f (x), f (y)) = (h(x), h(y)) ∈ A(D)

91

Optimization of select-project-join expressions

Containment of conjunctive queries is decidable

A(x, y)← R(x,w), G(w, z), R(z, y)
B(x, y)← R(x,w), G(w,w), R(w, y)

Golden method to check whether B ⊆ A:

1. First calculate the canonical database D for B:

R
ẋ ẇ
ẇ ẏ

G
ẇ ẇ

2. Then check whether (ẋ, ẏ) ∈ A(D). If so, B ⊆ A, otherwise B 6⊆ A.

92

Optimization of select-project-join expressions

Containment of conjunctive queries is decidable

A(x, y)← R(x,w), G(w, z), R(z, y)
B(x, y)← R(x,w), G(w,w), R(w, y)

Fact: B ⊆ A⇔ (x, y) ∈ A(D) with D the canonical database for B.

First possibility: (ẋ, ẏ) 6∈ A(D)

In this case we have just constructed a counter-example because (ẋ, ẏ) ∈ B(D).

R
ẋ ẇ
ẇ ẏ

G
ẇ ẇ

93

Optimization of select-project-join expressions

Containment of conjunctive queries is decidable

A(x, y)← R(x,w), G(w, z), R(z, y)
B(x, y)← R(x,w), G(w,w), R(w, y)

Fact: B ⊆ A⇔ (x, y) ∈ A(D) with D the canonical database for B.

Second possibility: (ẋ, ẏ) ∈ A(D)

• There hence exists a matching h of A into D such that h(x) = ẋ and h(y) = ẏ

• Let D′ be an arbitrary other database, and pick t ∈ B(D′). There hence exists a
matching f such that t = (f (x), f (y)).

• Then f ◦ h is a matching of A on D′:

A
R
x w
z y

G
w z

h−→ D = B
R
ẋ ẇ
ẇ ẏ

G
ẇ ẇ

f−→ D′

R
. . .
. . .
. . .
. . .

G
. . .
. . .
. . .
. . .

94

Optimization of select-project-join expressions

Containment of conjunctive queries is decidable

A(x, y)← R(x,w), G(w, z), R(z, y)
B(x, y)← R(x,w), G(w,w), R(w, y)

Fact: B ⊆ A⇔ (x, y) ∈ A(D) with D the canonical database for B.

Second possibility: (ẋ, ẏ) ∈ A(D)

• There hence exists a matching h of A into D such that h(x) = ẋ and h(y) = ẏ

• Let D′ be an arbitrary other database, and pick t ∈ B(D′). There hence exists a
matching f such that t = (f (x), f (y)).

• Then f ◦ h is a matching of A on D′:

A
R
x w
z y

G
w z

h−→ D = B
R
x w
w y

G
w w

f−→ D′

R
. . .
. . .
. . .
. . .

G
. . .
. . .
. . .
. . .

95

Optimization of select-project-join expressions

Containment of conjunctive queries is decidable

A(x, y)← R(x,w), G(w, z), R(z, y)
B(x, y)← R(x,w), G(w,w), R(w, y)

Fact: B ⊆ A⇔ (x, y) ∈ A(D) with D the canonical database for B.

Second possibility: (x, y) ∈ A(D)

• There hence exists a matching h of A into D such that h(x) = x and h(y) = y

• Let D′ be an arbitrary other database, and pick t ∈ B(D′). There hence exists a
matching f such that t = (f (x), f (y)).

• Then f ◦ h is a matching of A on D′:

• And hence
t = (f (x), f (y)) = (f (h(x)), f (h(y)) ∈ A(D′)

96

Optimization of select-project-join expressions

Conclusion:

• Containment of conjunctive queries is decidable

• Consequently the equivalence of conjunctive queries is also decidable

97

Optimization of select-project-join expressions

Optimizing conjunctive queries

Input: A conjunctive query Q

Output: A conjunctive query Q′ equivalent to Q that is optimal (i.e., has the
least number of atoms in its body).

For each conjunctive query we can obtain an equivalent, optimal query,
by removing atoms from its body

• Let Q be a CQ and let P be an arbitrary optimal and equivalent query.

• Then Q ⊆ P and hence (ẋ, ẏ) ∈ P (DQ) with DQ the canonical database for Q.
Let f be the matching that ensures this fact.

• Let Q′ be obtained by removing from Q all atoms that are not in the range of f

• Then Q ⊆ Q′

•Moreover, also Q′ ⊆ P (because (ẋ, ẏ) ∈ P (DQ′) still holds) and P ⊆ Q. Hence
Q′ ≡ Q.

• Note that Q′ contains at most the same number of atoms as P . Hence Q′ is
optimal.

98

Optimization of select-project-join expressions

Optimization of conjunctive queries

Input: A conjunctive query Q

Output: A conjunctive query Q′ equivalent to Q that is optimal (i.e., has the
least number of atoms in its body).

Optimization algorithm

• A conjunctive query is given. Consider for example:

Q(x)← R(x, x), R(x, y)

•We check, atom by atom, what atoms in its body are redundant.

In our example we first try to delete R(x, x):

Q1(x)← R(x, y)

Note that Q ⊆ Q1 but Q1 6⊆ Q. We hence cannot remove this atom.

99

Optimization of select-project-join expressions

Optimization of conjunctive queries

Input: A conjunctive query Q

Output: A conjunctive query Q′ equivalent to Q that is optimal (i.e., has the
least number of atoms in its body).

Optimization algorithm

• A conjunctive query is given. Consider for example:

Q(x)← R(x, x), R(x, y)

•We check, atom by atom, what atoms in its body are redundant.

We next try to remove R(x, y):

Q2(x)← R(x, x)

Note that Q ⊆ Q2 and Q2 ⊆ Q.

Q2 is certainly shorter than Q and hence closer to the optimal query. Since there
remain no other atoms to test, our result is Q2.

100

Optimization of select-project-join expressions

Optimization of select-project-join expressions

1. Translate the select-project-join expression e into an conjunctive query Q.

2. Optimize Q.

3. Translate Q back into a select-project-join expression.

101

Optimization of logical query plans

Optimization of complete, arbitrary query plans

1. Detect and optimize the select-project-join sub-expressions in the plan

2. Then use heuristics to further optimize the modified plan.

Heuristic: rewriting through algebraic laws

Consider relations R(A,B) and S(C,D) and the following expression that we
want to optimize

πAσA=5∧B<D(R× S)
Pushing selections:

πAσB<D(σA=5(R)× S)
Recognizing joins:

πA(σA=5(R) 1
B<D

S)

Introduce projections where possible:

πA(σA=5(R) 1
B<D

πD(S))

102

Optimization of logical query plans

An in-class integrated exercise

Recall the relational schema.

•MovieStar(name: string, address: string, gender: char, birthdate: date)

• StarsIn(movieTitle: string, movieYear: string, starName: string)

A careless SQL programmer writes the following query:

SELECT S1.movieTitle FROM StarsIn S1

WHERE S1.starName IN (SELECT name

FROM MovieStar, StarsIn S2

WHERE birthdate = 1960

AND S2.movieTitle = S1.movieTitle)

Translate this query into a logical query plan, remove redundant joins from it, and
then use heuristics to further optimize the obtained logical plan.

103

Optimization of logical query plans

An in-class integrated exercise

SQL

SELECT S1.movieTitle FROM StarsIn S1

WHERE S1.starName IN (SELECT name

FROM MovieStar, StarsIn S2

WHERE birthdate = 1960

AND S2.movieTitle = S1.movieTitle)

Translated logical query plan

πS1.movieTitle πS1.∗,name
σS2.movieTitle=S1.movieTitle∧birthdate=1960∧S1.starName=MovieStar.name

(Moviestar× ρS2(StarsIn)× ρS1(StarsIn))

104

Optimization of logical query plans

An in-class integrated exercise

•MovieStar(name: string, address: string, gender: char, birthdate: date)

• StarsIn(movieTitle: string, movieYear: string, starName: string)

Translated logical query plan

πS1.movieTitle πS1.∗,name
σS2.movieTitle=S1.movieTitle∧birthdate=1960∧S1.starName=MovieStar.name

(Moviestar× ρS2(StarsIn)× ρS1(StarsIn))

Conjunctive query:

Q(t)← MovieStar(n, a, g, 1960), StarsIn(t, y2, n2), StarsIn(t, y, n)

105

Optimization of logical query plans

An in-class integrated exercise

Conjunctive query:

Q(t)← MovieStar(n, a, g, 1960), StarsIn(t, y2, n2), StarsIn(t, y, n)

• the atom MovieStar(n, a, g, 1960) cannot be removed (it is the only atom for
relation MovieStar).

• the atom StarsIn(t, y2, n2) can be removed since Q ⊆ Q1 and Q1 ⊆ Q
where:

Q1(t)← MovieStar(n, a, g, 1960), StarsIn(t, y, n)

106

Optimization of logical query plans

An in-class integrated exercise

We proceed with the conjunctive query:

Q1(t)← MovieStar(n, a, g, 1960), StarsIn(t, y, n)

• the only remaining atom StarsIn(t, y, n) cannot be removed (it is the only
atom for relation StarsIn and it is the only atom containing the head variable
t).

107

Optimization of logical query plans

An in-class integrated exercise

The minimal conjunctive query is hence:

Q1(t)← MovieStar(n, a, g, 1960), StarsIn(t, y, n)

Corresponding relational algebra expression:

πS.movieTitleσM.birthdate=1960∧S.starName=M.name

(ρM(Moviestar)× ρS(StarsIn))

108

Optimization of logical query plans

An in-class integrated exercise

The minimal minimal relational algebra expression is hence:

πS.movieTitleσM.birthdate=1960∧S.starName=M.name

(ρM(Moviestar)× ρS(StarsIn))

Recognize joins:

πS.movieTitleσM.birthdate=1960(ρM(Moviestar)) 1S.starName=M.name ρS(StarsIn)

Push selections:

πS.movieTitle(σM.birthdate=1960(ρM(Moviestar)) 1S.starName=M.name ρS(StarsIn))

Add projections:

πS.movieTitle
(σM.birthdate=1960(πM.birthdate,M.nameρM(Moviestar))

1S.starName=M.name πS.movieTitle,S.starNameρS(StarsIn))

109

Physical data organization
Disks, blocks, tuples, schemas

110

Physical data organization

SQL

Query Compiler

Logical
query plan

Optimized
logical query plan

Physical
query planLogical plan

optimization
Physical plan

selection
Translation

Execution
Engine

Result

Physical
Data Storage

"Intermediate code" "Machine code"

Statistics
and

Metadata

In order to select a physical plan we need to know:

• The physical algorithms available to implement the relational algebra operators

e.g., scan a relation to implement a selection

• The situations in which each algorithm is best applied (situation x calls for algo-
rithm A, situation y calls for algorithm B, . . .).

111

Physical data organization

Physical algorithms depend on

• The representation of data on disk

• The data structures used

We hence need to know how data is physically organized before
studying algorithms

This is the subject of chapters 13 and 14 in the book

112

Physical data organization

Database Management System

• Are responsible for enormous quantities of data (current scale: exabytes = 1
million gigabytes)

•Must query this data as efficiently as possible

•Must store data as reliably as possible

Hence we should wonder:

•What are the available storage media?

• How much “time” does it take to read from/write to these media?

• How can we minimize this costs?

• How can we prevent data loss due to disk crashes?

The answers to these questions may be found in chapter 13

113

Physical data organization

The types of data that we will need to store are:

• Schemas

• Records

• Relations

How can we represent them efficiently “on disk”?

The answer may be found in chapter 13

114

One-dimensional index structures

115

Motivation: The I/O model of computation

The I/O model

• Data is stored on disk, which is divided into blocks of bytes (typically 4 kilobytes)

(each block can contain many data items)

• The CPU can only work on data items that are in memory, not on items on disk

• Therefore, data must first be transferred from disk to memory

• Data is transferred from disk to memory (and back) in whole blocks at the time

• The disk can hold D blocks, at most M blocks can be in memory at the same
time (with M << D).

116

Motivation: The I/O model of computation

However: complexity of algorithms is traditionally analyzed in the RAM
model of computation

• Data is stored in an (infinite) memory

• The CPU works on data items in memory

• Complexity is measured in terms of the number of memory accesses and CPU
operations.

117

Motivation: The I/O model of computation

“The difference in speed between modern CPU and disk technologies is analogous
to the difference in speed in sharpening a pencil using a sharpener on ones desk
or by taking an airplane to the other side of the world and using a sharpener on
someone elses desk.”

(D. Comer)

118

Motivation: The I/O model of computation

• In-memory computation is fast (memory access latency ≈ 10−8s)

• Disk-access is slow (HDD disk access latency: ≈ 10−3s, SSD: ≈ 10−5s)

• Hence: execution time is dominated by disk I/O

We will use the number of I/O operations required as cost metric

119

Intermezzo: Understanding memory and disk performance

The performance of storage devices (including memory) is measured
using three metrics:

• Access latency: How long it takes for a storage device to start an I/O task
(measured in seconds)

• Transfer rate (a.k.a. throughput or bandwidth): The speed at which data is
transferred out of or into the storage device, once it has started (measured in
MB/s)

• For a given block size, how often a storage device can perform I/O tasks of that
block size is measured in Input/Output Operations per Second (IOPS).

120

Intermezzo: Understanding memory and disk performance

Some typical values:

memory HDD SSD
Access latency ≈ 10−8 s ≈ 10−3 s ≈ 10−5 s
Throughput 20 GB/s 100-200 MB/s 500-600 MB/s

121

Motivation: searching in a database

A hypothetical database

• A relation R(A,B,C,D). Each tuple comprises 32 bytes.

• Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

• Hence there are 128 tuples per block, or 106 blocks in total.

Searching for record with C = 10 in case R is arbitrary

• For every block X in R:

◦ Load X from disk in memory

◦ Check whether there is a tuple with A = 10 in X ;

◦ If so output record and terminate loop; otherwise continue

◦ Release X from memory

•Worst case I/O Cost: the total number of blocks in R, or 106 I/O’s.

• At 10−3 s per IO this takes 16.6 minutes. ⇒ Can we do better?

122

Index structures

See corresponding slides

123

Searching in a database with a index (1/2)

The database

• A relation R(A,B,C,D). Each tuple comprises 32 bytes.

• Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

• Hence there are 128 tuples per block, or 106 blocks in total.

The index

• There is a secondary index on attribute C.

• A (key value, ptr) pair in the index takes 16 bytes.

• Question: How many (key, ptr) pairs fit in a block?

• Question: How many blocks does the dense 1st level index take?

• Question: How many blocks does the sparse 2nd level index take?

124

Searching in a database with a index (1/2)

The database

• A relation R(A,B,C,D). Each tuple comprises 32 bytes.

• Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

• Hence there are 128 tuples per block, or 106 blocks in total.

The index

• There is a secondary index on attribute C.

• A (key value, ptr) pair in the index takes 16 bytes.

• Question: How many (key, ptr) pairs fit in a block? 256

• Question: How many blocks does the dense 1st level index take? 5 · 105
• Question: How many blocks does the sparse 2nd level index take? 1954

125

Searching in a database with a index (2/2)

Searching for records with C = 10 using the index

• Algorithm:

◦ Loop through all of the blocks X in sparse index, one, by one, and find the
(key, ptr) pair in X with the largest key value satisfying key <= 10.

◦ Follow ptr to dense index block, and use the information in this block to locate
the block in R containing the record with C = 10 (if it exists).

•Worst case I/O Cost: loading of all blocks of sparse index + 1 block of dense
index + 1 block of R, or 1954 + 1 + 1 = 1956 I/Os.

• At 10−3 s per I/O this takes 2 seconds.

Since the sparse index is sorted, we could perform binary search on it if
it is sequential.

• I/O Cost: binary search in sparse index + 1 block of dense index + 1 block of R,
or log2(1954) + 1 + 1 = 14 I/Os → 0.014 seconds.

126

Searching in a database with a BTree index (1/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index on attribute C.

• A key value takes 8 bytes, a ptr also 8 bytes.

• Question: What is the maximum order n of the BTree, taking into account that
blocks are 4096 bytes large?

127

Searching in a database with a BTree index (2/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index on attribute C.

• A key value takes 8 bytes, a ptr also 8 bytes.

• Question: What is the maximum order n of the BTree, taking into account that
blocks are 4096 bytes large?

• Answer: A BTree of order n stores n + 1 pointers and n key values in each
block. We are hence looking for the largest integer value of n satisfying:

(n + 1) ptrs × 8 bytes/ptr + n keys × 8 bytes/ptr ≤ 4096 bytes

As such, n = 255: we store 256 pointers and 255 keys in a block.

128

Searching in a database with a BTree index (3/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Question: What is the height of the BTree assuming that leaf blocks are full
and internal blocks contain 255 pointers?

129

Searching in a database with a BTree index (4/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Question: What is the height of the BTree assuming that leaf blocks are full
and internal blocks contain 255 pointers?

• Answer: : Observe:

◦ there are
⌈
128·106
255

⌉
leaf blocks (at level 1)

130

Searching in a database with a BTree index (4/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Question: What is the height of the BTree assuming that leaf blocks are full
and internal blocks contain 255 pointers?

• Answer: : Observe:

◦ there are
⌈
128·106
255

⌉
leaf blocks (at level 1)

◦ there are
⌈
128·106
(255)2

⌉
blocks at level 2

131

Searching in a database with a BTree index (4/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Question: What is the height of the BTree assuming that leaf blocks are full
and internal blocks contain 255 pointers?

• Answer: : Observe:

◦ there are
⌈
128·106
255

⌉
leaf blocks (at level 1)

◦ there are
⌈
128·106
(255)2

⌉
blocks at level 2

◦ there are
⌈
128·106
(255)3

⌉
blocks at level 3

132

Searching in a database with a BTree index (4/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Question: What is the height of the BTree assuming that leaf blocks are full
and internal blocks contain 255 pointers?

• Answer: : Observe:

◦ So, there are
⌈
128·106
(255)h

⌉
blocks at level h

Since the root is at the level where there is only one block, we are looking for the

smallest value of h such that
⌈
128·106
(255)h

⌉
= 1.

So, h =
⌈
log255 128 · 106

⌉
= 4 .

133

Searching in a database with a BTree index (5/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Observe: The height of the BTree is the smallest when all blocks are full. It is
the largest when all blocks are only half full (when each block has its minimum
size).

• Question: What is the height of the BTree assuming that all blocks are only
half full?

134

Searching in a database with a BTree index (5/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Observe: The height of the BTree is the smallest when all blocks are full. It is
the largest when all blocks are only half full (when each block has its minimum
size).

• Question: What is the height of the BTree assuming that all blocks are only
half full? Answer: Same reasoning as before:
=
⌈
log128 128 · 106

⌉
= 4

135

Searching in a database with a BTree index (6/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Hence we can store at most 256 pointers; and 255 key values in a block.

• Question: What is the cost of searching for the record with C = 10 using this
BTree, assuming the worst-case scenario that each block in the BTree is half full?

136

Searching in a database with a BTree index (6/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Hence we can store at most 256 pointers; and 255 key values in a block.

• Question: What is the cost of searching for the record with C = 10 using this
BTree, assuming the worst-case scenario that each block in the BTree is half full?

Answer: height of the Bree in which blocks are half full + 1 I/O to access main
file
=
⌈
log128 128 · 106

⌉
+ 1 = 5 → at 10−3s per I/O this takes 0.005 seconds.

137

Inserting in a BTree index

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation.

The index

• There is a BTree index of order 255 on attribute C.

• Hence we can store at most 256 pointers; and 255 key values in a block.

• Question: What is the cost of inserting a new record in this BTree, assuming
the record is already in the main file, and assuming the worst-case scenario where
each block in the BTree is full?

138

Inserting in a BTree index

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation.

The index

• There is a BTree index on attribute C.

• Hence we can store at most 256 pointers; and 255 key values in a block.

• Question: What is the cost of inserting a new record in this BTree, assuming
the record is already in the main file, and assuming the worst-case scenario where
each block in the BTree is full?

Answer: in this scenario, we will need to split an existing block at each level,
and create a new root.

139

Inserting in a BTree index

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation.

The index

• There is a BTree index on attribute C.

• Hence we can store at most 256 pointers; and 255 key values in a block.

• Question: What is the cost of inserting a new record in this BTree, assuming
the record is already in the main file, and assuming the worst-case scenario where
each block in the BTree is full?

Answer: cost of a search + 2 I/O’s per level of the BTree + new root
=
⌈
log255 128 · 106

⌉
+ 2
⌈
log255 128 · 106

⌉
+ 1 = 3

⌈
log255 128 · 106

⌉
+ 1 = 13 →

0.013s

140

Intermezzo: A typical database architecture

141

A typical database architecture

Buffer Manager

Disk Space Manager

File & Access MethodsTransaction
Manager

Lock
Manager

Concurrency
control

Recovery
manager

Query Evaluation Engine

Parser Optimizer Physical operators

SQL SQL SQL SQL SQL

142

A typical database architecture

Main components

• The lowest layer of the DBMS software deals with management of space on disk,
where the data is stored. Higher layers allocate, deallocate, read, and write blocks
through (routines provided by) this layer, called the disk space manager or storage
manager.

• The buffer manager brings blocks in from disk to main memory in response to
read requests from the higher-level layers.

• The file and access methods layer supports the concept of reading and writing files
(as collection of blocks or a collection of records) as well as indexes. In addition
to keeping track of the blocks in a file, this layer is responsible for organizing the
information within a block.

• The query evaluation engine, and more in particular the code that implements
relational operators, sits on top of the file and access methods layer.

• The DBMS supports concurrency and crash recovery by carefully scheduling user
requests and maintaining a log of all changes to the database. These tasks are
managed by the concurrency control manager and the recovery manager.

143

A typical database architecture

Disk Space Manager

• The disk space manager manages space on disk.

• Abstractly, it supports the concept of a block as a unit of data and provides
commands to allocate or deallocate a block and read or write a block.

• A database grows and shrinks when records are inserted and deleted over time.
The disk space manager keeps track of which disk blocks are in use. Although it is
likely that blocks are initially allocated sequentially on disk, subsequent allocations
and deallocations could in general create ’holes.’ One way to keep track of block
usage is to maintain a list of free blocks. When blocks are deallocated, they are
added to the free list for future use.

• The disk space manager hides details of the underlying hardware and operating
system and allows higher levels of the software to think of the data as a collection
of blocks.

• Although it typically uses the file system functionality provided by the OS, it
provides additional features, like the possibility to distribute data on multiple
disks, etc.

144

A typical database architecture

145

1 2 3 4 5 6

7 8 9 10 11 12

6 4 1

8 7

11

Page requests

main
memory

disk

disk block
free frame

Buffer Manager

•Mediates between external storage and main
memory

•Maintains a designated main memory area,
called the buffer pool for this task.

• The buffer pool is a collection of memory slots
where each slot (called a frame or buffer) can
contain exactly one block.

• Disk blocks are brought into memory as needed
in response to higher-level requests.

• A replacement policy decides which block to
evict when the buffer is full.

A typical database architecture

Buffer Manager (continued)

• Higher levels of the DBMS code can be written without worrying about whether
data blocks are in memory or not: they ask the buffer manager for the block, and
the buffer manager loads it into a slot in the buffer pool if it is not already there.

• The higher-level code must also inform the buffer manager when it no longer
needs a block that it has requested to be brought into memory. That way, the
buffer manager can re-use the slot for future requests.

• A buffer whose block contents should remain in memory (e.g., because a routine
from a higher-level layer is working with its contents) is called pinned. The act of
asking the buffer manager to read a disk block into a buffer slot is called pinning
and the act of letting the buffer manager know that a block is no longer needed
in memory is called unpinning.

•When higher-level code unpins a block, it must also inform the buffer manager
whether it modified the requested block; the buffer manager then makes sure that
the change is eventually propagated to the copy of the block on disk.

146

A typical database architecture

Buffer Manager (continued)

•When the buffer manager receives a block pin request, it checks whether the
block is already in memory (because another DBMS component is working on it,
or because it was recently loaded but then unpinned). If so, the corresponding
buffer is re-used and no disk I/O takes place.

• If not, the buffer manager has to decide a buffer frame to load the block into from
disk. If there are no empty frames available, the buffer manager has to select a
frame containing a block that is currently unpinned, write the contents of that
block back to disk if modifications are made, and load the requested block from
disk into the frame.

• The strategy by which the buffer manager chooses the slot to release back to disk
is called the buffer replacement policy. Popular policies are FIFO, Least recently
used, Clock.

147

A typical database architecture

Buffer Management in Reality

• Prefetching

◦ Buffer managers try to anticipate page requests to overlap CPU and I/O op-
erations.

Speculative prefetching Assume sequential scan and automatically read ahead.

Prefetch lists Some database algorithms can inform the buffer manager of a
list of blocks to prefetch.

• Page fixing/hating

◦ Higher-level code may request to fix a page if it may be useful in the near future
(e.g., index pages).

◦ Likewise, an operator that hates a page won’t access it any time soon (e.g.,
table pages in a sequential scan).

•Multiple buffer pools

◦ E.g., separate pools for indexes and tables.

148

Multi-dimensional index structures
Part I: motivation

149

Motivation: Data Warehouse

A definition

“A data warehouse is a repository of in-
tegrated enterprise data. A data ware-
house is used specifically for decision
support, i.e., there is (typically, or ide-
ally) only one data warehouse in an en-
terprise. A data warehouse typically con-
tains data collected from a large number
of sources within, and sometimes also
outside, the enterprise.”

150

Decision support (1/2)

‘Traditional” relational databases were designed for online transaction
processing (OLTP):

• flight reservations; bank terminal; student administration; . . .

OLTP characteristics:

• Operational setting (e.g., ticket sales)

• Up-to-date = critical (e.g., do not book the same seat twice)

• Simple data (e.g., [reservation, date, name])

• Simple queries that only access a small part of the database (e.g., “Give the flight
details of X” or “List flights to Y”)

Decision support systems have different requirements.

151

Decision support (2/2)

Decision support systems have different requirements:

• Offline setting (e.g., evaluate flight sales)

• Historical data (e.g., flights of last year)

• Summarized data (e.g., # passengers per carrier for destination X)

• Integrates different databases (e.g., passengers, fuel costs, maintenance informa-
tion)

• Complex statistical queries (e.g., average percentage of seats sold per month and
destination)

152

Decision support (2/2)

Decision support systems have different requirements:

• Offline setting (e.g., evaluate flight sales)

• Historical data (e.g., flights of last year)

• Summarized data (e.g., # passengers per carrier for destination X)

• Integrates different databases (e.g., passengers, fuel costs, maintenance informa-
tion)

• Complex statistical queries (e.g., average percentage of seats sold per month and
destination)

Taking these criteria into mind, data warehouses are tuned for online
analytical processing (OLAP)

• Online = answers are immediately available, without delay.

153

The Data Cube: Generalizing Cross-Tabulations

Cross-tabulations are highly useful for analysis

• Example: sales June to August 2010

Blue Red Orange Total

June 51 25 128 234

July 58 20 120 198

August 65 22 51 138

Total 174 67 329 570

154

The Data Cube: Generalizing Cross-Tabulations

Cross-tabulations are highly useful for analysis

Data Cubes are extensions of cross-tabs to multiple dimensions

Blue Red Orange Total

June 51 25 128 234

July 58 20 120 198

August 65 22 51 138

Total 174 67 329 570
Aggregated w.r.t. Dimension Y

Aggregated w.r.t
Dimension X

Aggregated w.r.t
Dimension X and Y

Dimension X

Aggregated w.r.t
Dimension X

D
im

e
n

si
o

n
 Y

155

The Data Cube: Generalizing Cross-Tabulations

Cross-tabulations are highly useful for analysis

Data Cubes are extensions of cross-tabs to multiple dimensions

156

OLAP Operations on the CUBE

Roll-up

• Group per semester instead of per quarter

157

OLAP Operations on the CUBE

Roll-up

• Show me totals per semester instead of per quarter

158

OLAP Operations on the CUBE

Roll-up

• Show me totals per semester instead of per quarter

Inverse is drill-down

159

OLAP Operations on the CUBE

Slice and dice

• Select part of the cube by restricting one or more dimensions

• E.g, restrict analysis to Ireland and VCR

160

OLAP Operations on the CUBE

Slice and dice

• Select part of the cube by restricting one or more dimensions

• E.g, restrict analysis to Ireland and VCR

161

Different OLAP systems

Multidimensional OLAP (MOLAP)

• Early implementations used a multidimensional array to store the cube completely:

• In particular: pre-compute and materialize all aggregations

162

Array: cell[product, date, country]

• Fast lookup: to access cell[p,d,c] just
use array indexation

Different OLAP systems

Multidimensional OLAP (MOLAP)

• Early implementations used a multidimensional array to store the cube completely:

• In particular: pre-compute and materialize all aggregations

163

Array: cell[product, date, country]

• Fast lookup: to access cell[p,d,c] just
use array indexation

• Very quickly people realized that this
is infeasible due to the data explosion
problem

The data explosion problem

The problem:

• Data is not dense but sparse

• Hence, if we have n dimensions with each c possible values, then we do not
actually have data for all the cn cells in the cube.

• Nevertheless, the multidimensional array representation realizes space for all of
these cells

164

The data explosion problem

The problem:

• Data is not dense but sparse

• Hence, if we have n dimensions with each c possible values, then we do not
actually have data for all the cn cells in the cube.

• Nevertheless, the multidimensional array representation realizes space for all of
these cells

Example: 10 dimensions with 10 possible values each

• 10 000 000 000 cells in the cube

• suppose each cell is a 64-bit integer

• then the multidimensional-array representing the cube requires ≈ 74.5 gigabytes
to store → does not fit in memory!

• yet if only 1 000 000 cells are present in the data, we actually only need to store
≈ 0.0074 gigabytes

165

Multidimensional OLAP (MOLAP)

In conclusion

• Naively storing the entire cube does not work.

• Alternative representation strategies use sparse main memory index structures:

◦ search trees

◦ hash tables

◦ . . .

• And these can be specialized to also work in secondary memory
→ multidimensional indexes (the main technical content of this lecture).

166

Relational OLAP (ROLAP)

Key Insight [Gray et al, Data Mining and Knowledge Discovery, 1997]

• The n-dimensional cube can be represented as a traditional relation with n + 1
columns (1 column for each dimension, 1 column for the aggregate)

• Use special symbol ALL to represent grouping

167

Product Date Country Sales

TV Q1 Ireland 100

TV Q2 Ireland 80

TV Q3 Ireland 35

...

PC Q1 Ireland 100

...

TV ALL Ireland 215

TV ALL ALL 1459

...

ALL ALL ALL 109290

Relational OLAP (ROLAP)

Key benefits: space usage

• The non-aggregate cells that are not present in the original data are also not
present in the relational cube representation.

•Moreover, it is straightforward to represent only aggregation tuples in which all
dimension columns have values that already occur in the data

168

Product Date Country Sales

TV Q1 Ireland 100

TV Q2 Ireland 80

TV Q3 Ireland 35

...

PC Q1 Ireland 100

...

TV ALL Ireland 215

TV ALL ALL 1459

...

ALL ALL ALL 109290

Relational OLAP (ROLAP)

Key benefits

• By representing the cube as a relation it can be stored in a “traditional” relational
DBMS ...

• ... which works in secondary memory by design (good for multi-terraby data
warehouses) ...

• Hence one can re-use the rich literature on relational query storage and query
evaluation techniques,

But, to be honest, much research was done to get this representation
efficient in practice.

169

Relational OLAP (ROLAP)

Key benefits: use SQL

• Dice example: restrict analysis to Ireland and VCR

170

SELECT Date, Sales

FROM Cube_table

WHERE Product = "VCR"

AND Country = "Ireland"

Date Sales

Q1 100

Q2 80

Q3 35

ALL 215

Relational OLAP (ROLAP)

Key benefits: use SQL

• Dice example: restrict analysis to Ireland and VCR, quarter 2 and quarter 3
→ need to compute a new total aggregate for this sub-cube

171

(SELECT Date, Sales

FROM Cube_table

WHERE Product = "VCR"

AND Country = "Ireland"

AND (Date = "Q2" OR Date = "Q3")

AND SALES <> "ALL")

UNION

(SELECT "ALL" as DATE, SUM(T.Sales) as SALES

FROM Cube_table t

WHERE Product = "VCR"

AND Country = "Ireland"

AND (Date = "Q2" OR Date = "Q3")

AND SALES <> "ALL"

GROUP BY Product, Country)

This actually motivated the extension of SQL with CUBE-specific operators and keywords

Three-tier architecture

172

Multi-dimensional index structures
Part II: index structures

173

Multidimensional Indexes

Typical example of an application requiring multidimensional search
keys:

Searching in the data cube and searching in a spatial database

Typical queries with multidimensional search keys:

• Point queries:

◦ retrieve the Sales total for the product TV sold in Ireland, with an ALL value
for date.

◦ does there exist a star on coordinate (10, 3, 5)?

• Partial match queries: return the coordinates of all stars with x = 5 and z = 3.

• Dicing / Range queries:

◦ return all cube cells with date ≥ Q1 and date ≤ Q3 and sales ≤ 100;

◦ return the coordinates of all stars with x >= 10 and 20 ≤ y ≤ 35.

• Nearest-neighbour queries: return the three stars closest to the star at coordinate
(10, 15, 20).

174

Multidimensional Indexes

Indexes for search keys comprising multiple attributes?

• BTree: assumes that the search keys can be ordered. What order can we put on
multidimensional search keys?

→ Pick the lexicographical order:

(x, y, z) ≤ (x′, y′, z′) ⇔ x < x′

∨(x = x′ ∧ y < y′)
∨(x = x′ ∧ y = y′ ∧ z ≤ z′)

• Hash table: assumes a hash function h : keys→ N. What hash function can we
put on multidimensional search keys?

→ Extend the hash function to tuples:

h(x, y, z) = h(x) + h(y) + h(z)

175

Multidimensional Indexes

Problem with the lexicographical order in BTrees:

Assume that we have a BTree index on (age, sal) pairs.

• age < 20: ok

• sal < 30: linear scan

• age < 20 ∧ sal < 20

age

sal

9 10 11

10

20

30

40

50

60

70

176

Multidimensional Indexes

Problem with hash tables:

Assume that we have a hash table on (age, sal) pairs.

• age < 20: linear scan

• sal < 30: linear scan

• age < 20 ∧ sal < 20: linear scan

Conclusion: for queries with multidimensional search keys we want to
index points by spatial proximity

.

177

Multidimensional Indexes

Grid files: a variant on hashing

40 55 1000

90

255

500

178

Multidimensional Indexes

Grid files: a variant on hashing

40 55 1000

90

255

500

179

Multidimensional Indexes

Grid files: a variant on hashing

40 55 1000

90

255

500

Bucket

Bucket

Bucket

Bucket

Bucket

BucketBuc
ket

Buc
ket

Buc
ket

• Insert: find the corresponding bucket,
and insert.

If the block is full: create overflow
blocks or split by creating new sepa-
rator lines (difficult).

• Delete: find the corresponding bucket,
and delete.

Reorganize if desired

180

Multidimensional Indexes

Grid files: a variant on hashing

40 55 1000

90

255

500

Bucket

Bucket

Bucket

Bucket

Bucket

BucketBuc
ket

Buc
ket

Buc
ket

• Good support for point queries

• Good support for partial match queries

• Good support for range queries

→ Lots of buckets to inspect, but also
lots of answers

• Reasonable support for nearest-
neighbour queries

→ By means of neighbourhood
searching

• But: many empty buckets when the
data is not uniformly distributed

181

Multidimensional Indexes

Partitioned Hash Functions

Assume that we have 1024 buckets available to build a hashing index for (x, y, z).
We can hence represent each bucket number using 10 bits. Then we can determine
the hash value for (x, y, z) as follows:

0 10

f(x) g(y) h(z)

2 7

• Good support for point queries

• Good support for partial match queries

• No support for range queries

• No support for nearest-neighbour queries

• Less wasted space than grid files

182

Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

183

Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

184

Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

185

Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

186

Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

187

Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

188

Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

189

Multidimensional Indexes

kd-Trees

We can look at this as a tree as follows:

X 40

Y 90

X 55

Y 200

X 48

Y 300

40 55 1000

90

255

500

190

Multidimensional Indexes

kd-Trees

We continue splitting after new insertions:

X 40

Y 90

X 55

Y 200

X 48

Y 300

40 55 1000

90

255

500

Y 30

191

Multidimensional Indexes

kd-Trees

• Good support for point queries

• Good support for partial match queries: e.g., (y = 40)

• Good support for range queries (40 ≤ x ≤ 45 ∧ y < 80)

• Reasonable support for nearest neighbour

X 40

Y 90

X 55

Y 200

X 48

Y 300

40 55 1000

90

255

500

192

Multidimensional Indexes

kd-Trees for secondary storage

• Generalization to n children for each interal node (cf. BTree).

But it is difficult to keep this tree balanced since we cannot merge the children

•We limit ourselves to two children per node (as before), but store multiple nodes
in a single block.

193

Multidimensional Indexes

R-Trees: generalization of BTrees

Designed to index regions (where a single point is also viewed as a region). Assume
that the following regions fit on a single block:

road1

ro
a

d
2 pipelinehouse1

house2

school

house1 20,20 30,25

road1 0, 40 50,45

road2 45, 0 50,40

school 20,70 30,75

house2 60,40 80,60

pipeline 30,21 100,24

100

0 100

194

Multidimensional Indexes

R-Trees: generalization of BTrees

A new region is inserted and we need to split the block into two. We create a
tree structure:

road1

ro
a

d
2 pipelinehouse1

house2

theaterschool

house1 20,20 30,25

road1 0, 40 50,45

road2 45, 0 50,40

school 20,70 30,75

house2 60,40 80,60

pipeline 30,21 100,24

60,70 80,75theatre

100

0 100

(0,0),(55,55) (15,24),(100,80)

195

Multidimensional Indexes

R-Trees: generalization of BTrees

Inserting again can be done by extending the “bounding regions”:

house3

road1

ro
a

d
2 pipelinehouse1

house2

theaterschool

house1 20,20 30,25

road1 0, 40 50,45

road2 45, 0 50,40

house3 55,10 70,15

school 20,70 30,75

house2 60,40 80,60

pipeline 30,21 100,24

60,70 80,75theatre

100

0 100

(0,0),(75,55) (15,24),(100,80)

196

Multidimensional Indexes

R-Trees: generalization of BTrees

• Ideal for “where-am-I” queries

• Ideal for finding intersecting regions

e.g., when a user highlights an area of interest on a map

• Reasonable support for point queries

• Good support for partial match queries: e.g., (40 ≤ x ≤ 45)

• Good support for range queries

• Reasonable support for nearest neighbour

• Is balanced

• Often used in practice

197

Physical Operators
Scanning, sorting, merging, hashing

198

Physical Operators

SQL

Query Compiler

Logical
query plan

Optimized
logical query plan

Physical
query planLogical plan

optimization
Physical plan

selection
Translation

Execution
Engine

Result

Physical
Data Storage

"Intermediate code" "Machine code"

Statistics
and

Metadata

199

Physical Operators

A logical query plan is essentially an execution tree

π

∪

σ

R

on

S T

• To obtain a physical query plan we need to assign
to each logical operator a physical implementation
algorithm. We call such algorithms physical oper-
ators.

• In this lecture we study the various physical oper-
ators, together with their cost.

200

Physical Operators

Many implementations

• Each logical operator has multiple possible implementation algorithms

• No implementation is always better the others

• Hence we need to compare the alternatives on a case-by-case basis based on their
costs

201

The I/O model of computation

The I/O model

• Data is stored on disk, which is divided into blocks of bytes (typically 4 kilobytes)

(each block can contain many data items)

• The CPU can only work on data items that are in memory, not on items on disk

• Therefore, data must first be transferred from disk to memory

• Data is transferred from disk to memory (and back) in whole blocks at the time

• The disk can hold D blocks, at most M blocks can be in memory at the same
time (with M << D).

202

The I/O model of computation

• In-memory computation is fast (memory access ≈ 10−8s)

• Disk-access is slow (disk access: ≈ 10−3s)

• Hence: execution time is dominated by disk I/O

We will use the number of I/O operations required as cost metric

203

Physical Operators

To estimate the costs we will use the following parameters:

• B(R): the number of blocks that R occupies on disk

• T (R): the number of tuples in relation R

• V (R,A1, . . . , An): the number of tuples in R that have distinct values for
A1, . . . , An

(i.e., |δ(πA1,...,An(R)|)
•M : the number of main memory buffers available

Statistics and the system catalog

• The first three parameters are statistics that a DBMS stores in its system catalog

• These statistics are regularly collected

(e.g., when required, at a scheduled time, . . .)

204

Physical Operators

Bag union R ∪B S

1 2 3 4 13 9

6 4 8 2 6 12

Relation R = green
Relation S = blue
1 integer per block

205

Physical Operators

Bag union R ∪B S

1 2 3 4 13 9

6 4 8 2 6 12

Relation R = green
Relation S = blue
1 integer per block

• Step 1: reserve 1 buffer frame, call this N

206

Physical Operators

Bag union R ∪B S

1 2 3 4 13 9

6 4 8 2 6 12

Relation R = green
Relation S = blue
1 integer per block

N

• Step 1: reserve 1 buffer frame, call this N

207

Physical Operators

Bag union R ∪B S

1 2 3 4 13 9

6 4 8 2 6 12

Relation R = green
Relation S = blue
1 integer per block

N

• Load 1st block of R into N , output all of its elements

208

Physical Operators

Bag union R ∪B S

1 2 3 4 13 9

6 4 8 2 6 12
1

Relation R = green
Relation S = blue
1 integer per block

• Load 1st block of R into N , output all of its elements

209

Physical Operators

Bag union R ∪B S

1 2 3 4 13 9

6 4 8 2 6 12
1

Relation R = green
Relation S = blue
1 integer per block

Output:
 1

• Load 1st block of R into N , output all of its elements

210

Physical Operators

Bag union R ∪B S

1 2 3 4 13 9

6 4 8 2 6 12
1

Relation R = green
Relation S = blue
1 integer per block

Output:
 1

• Load 2nd block of R into N , output all of its elements

211

Physical Operators

Bag union R ∪B S

1 2 3 4 13 9

6 4 8 2 6 12
2

Relation R = green
Relation S = blue
1 integer per block

Output:
 1

• Load 2nd block of R into N , output all of its elements

212

Physical Operators

Bag union R ∪B S

1 2 3 4 13 9

6 4 8 2 6 12
2

Relation R = green
Relation S = blue
1 integer per block

Output:
 1, 2

• Load 2nd block of R into N , output all of its elements

213

Physical Operators

Bag union R ∪B S

1 2 3 4 13 9

6 4 8 2 6 12
2

Relation R = green
Relation S = blue
1 integer per block

Output:
 1, 2

• . . . and repeat this for every block of R

214

Physical Operators

Bag union R ∪B S

1 2 3 4 13 9

6 4 8 2 6 12
6

Relation R = green
Relation S = blue
1 integer per block

Output:
 1, 2, 3, 4, 6

• . . . and repeat this for every block of R.

215

Physical Operators

Bag union R ∪B S

1 2 3 4 13 9

6 4 8 2 6 12
6

Relation R = green
Relation S = blue
1 integer per block

Output:
 1, 2, 3, 4, 6

• Load 1st block of S into N , output all of its elements

216

Physical Operators

Bag union R ∪B S

1 2 3 4 13 9

6 4 8 2 6 12
13

Relation R = green
Relation S = blue
1 integer per block

Output:
 1, 2, 3, 4, 6

• Load 1st block of S into N , output all of its elements

217

Physical Operators

Bag union R ∪B S

1 2 3 4 13 9

6 4 8 2 6 12
13

Relation R = green
Relation S = blue
1 integer per block

Output:
 1, 2, 3, 4, 6
 13

• Load 1st block of S into N , output all of its elements

218

Physical Operators

Bag union R ∪B S

1 2 3 4 13 9

6 4 8 2 6 12
13

Relation R = green
Relation S = blue
1 integer per block

Output:
 1, 2, 3, 4, 6
 13

• . . . and repeat this until the last block of S

219

Physical Operators

Bag union R ∪B S

1 2 3 4 13 9

6 4 8 2 6 12
12

Relation R = green
Relation S = blue
1 integer per block

Output:
 1, 2, 3, 4, 6
 13, 9, 6, 4, 8,
 2, 12

• . . . and repeat this until the last block of S

220

Physical Operators

Bag union

We can compute the bag union R ∪B S as follows:

for each block BR in R do
load BR into buffer N ;
for each tuple tR in N do

output tR;
for each block BS in S do

load BS into buffer N ;
for each tuple tS in N do

output tS;

• Cost: B(R) +B(S) I/O operations (we never count the output-cost)

• Requires that M ≥ 1 (i.e., it can always be used)

221

Physical Operators

One-pass set union R ∪S S

1 2 3 4 13 9

6 4 8 2 6 12

Relation R = green
Relation S = blue
1 integer per block

Output:

= occupied frame
= free frame

Assumption: we have B(R) + 1 free buffer frames

222

Physical Operators

One-pass set union R ∪S S

1 2 3 4 13 9

6 4 8 2 6 12

Relation R = green
Relation S = blue
1 integer per block

Output:

= occupied frame
= free frame

Assumption: we have B(R) + 1 free buffer frames

• Load all of R’s blocks into memory (using B(R) buffer frames) and output
their elements.

223

Physical Operators

One-pass set union R ∪S S

1 2 3 4 13 9

6 4 8 2 6 12

1 2
6
3 4

Relation R = green
Relation S = blue
1 integer per block

Output:

= occupied frame
= free frame

Assumption: we have B(R) + 1 free buffer frames

• Load all of R’s blocks into memory (using B(R) buffer frames) and output
their elements.

224

Physical Operators

One-pass set union R ∪S S

1 2 3 4 13 9

6 4 8 2 6 12

1 2
6
3 4

Relation R = green
Relation S = blue
1 integer per block

Output:
 1, 2, 3, 4, 6

= occupied frame
= free frame

Assumption: we have B(R) + 1 free buffer frames

• Load all of R’s blocks into memory (using B(R) buffer frames) and output
their elements.

225

Physical Operators

One-pass set union R ∪S S

1 2 3 4 13 9

6 4 8 2 6 12

1 2
6
3 4

Relation R = green
Relation S = blue
1 integer per block

Output:
 1, 2, 3, 4, 6

= occupied frame
= free frame

Assumption: we have B(R) + 1 free buffer frames

• Load 1st block of S (using 1 buffer frame), and output all of its elements that
do not occur in the frames containing R.

226

Physical Operators

One-pass set union R ∪S S

1 2 3 4 13 9

6 4 8 2 6 12

1 2 13
6
3 4

Relation R = green
Relation S = blue
1 integer per block

Output:
 1, 2, 3, 4, 6

= occupied frame
= free frame

Assumption: we have B(R) + 1 free buffer frames

• Load 1st block of S (using 1 buffer frame), and output all of its elements that
do not occur in the frames containing R.

227

Physical Operators

One-pass set union R ∪S S

1 2 3 4 13 9

6 4 8 2 6 12

1 2 13
6
3 4

Relation R = green
Relation S = blue
1 integer per block

Output:
 1, 2, 3, 4, 6
 13

= occupied frame
= free frame

Assumption: we have B(R) + 1 free buffer frames

• Load 1st block of S (using 1 buffer frame), and output all of its elements that
do not occur in the frames containing R.

228

Physical Operators

One-pass set union R ∪S S

1 2 3 4 13 9

6 4 8 2 6 12

1 2 13
6
3 4

Relation R = green
Relation S = blue
1 integer per block

Output:
 1, 2, 3, 4, 6
 13

= occupied frame
= free frame

Assumption: we have B(R) + 1 free buffer frames

• Load 2nd block of S (using 1 buffer frame), and output all of its elements that
do not occur in the frames containing R.

229

Physical Operators

One-pass set union R ∪S S

1 2 3 4 13 9

6 4 8 2 6 12

1 2 9
6
3 4

Relation R = green
Relation S = blue
1 integer per block

Output:
 1, 2, 3, 4, 6
 13

= occupied frame
= free frame

Assumption: we have B(R) + 1 free buffer frames

• Load 2nd block of S (using 1 buffer frame), and output all of its elements that
do not occur in the frames containing R.

230

Physical Operators

One-pass set union R ∪S S

1 2 3 4 13 9

6 4 8 2 6 12

1 2 9
6
3 4

Relation R = green
Relation S = blue
1 integer per block

Output:
 1, 2, 3, 4, 6
 13, 9

= occupied frame
= free frame

Assumption: we have B(R) + 1 free buffer frames

• Load 2nd block of S (using 1 buffer frame), and output all of its elements that
do not occur in the frames containing R.

231

Physical Operators

One-pass set union R ∪S S

1 2 3 4 13 9

6 4 8 2 6 12

1 2 6
6
3 4

Relation R = green
Relation S = blue
1 integer per block

Output:
 1, 2, 3, 4, 6
 13, 9

= occupied frame
= free frame

Assumption: we have B(R) + 1 free buffer frames

• Load 3rd block of S (using 1 buffer frame), and output all of its elements that
do not occur in the frames containing R.

232

Physical Operators

One-pass set union R ∪S S

1 2 3 4 13 9

6 4 8 2 6 12

1 2 6
6
3 4

Relation R = green
Relation S = blue
1 integer per block

Output:
 1, 2, 3, 4, 6
 13, 9

= occupied frame
= free frame

Assumption: we have B(R) + 1 free buffer frames

• . . . and continue doing this for until the end of S is reached.

233

Physical Operators

One-pass set union R ∪S S

1 2 3 4 13 9

6 4 8 2 6 12

1 2 12
6
3 4

Relation R = green
Relation S = blue
1 integer per block

Output:
 1, 2, 3, 4, 6
 13, 9, 8, 12

= occupied frame
= free frame

Assumption: we have B(R) + 1 free buffer frames

• . . . and continue doing this for until the end of S is reached.

234

Physical Operators

One-pass set union

Assume that M − 1 ≥ B(R). We can then compute the set union R ∪S S as
follows (R and S are assumed to be sets themselves)

load R into memory buffers N1, . . . , NB(R);
for each tuple tR in N1, . . . , NB(R) do

output tR
for each block BS in S do

load BS into buffer N0;
for each tuple tS in N0 do

if tS does not occur in N1, . . . , NB(R)

output tS

• Cost: B(R) +B(S) I/O operations (ignoring output-cost)

• Note that it also costs time to check whether tS occurs in N1, . . . , NB(R).
By using a suitable main-memory data structure this can be done in O(n) or
O(n log n) time. We ignore this cost.

• Requires B(R) ≤M − 1

235

Physical Operators

Sort-based set union

We can also alternatively compute the set union R∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S.

5
10

15
20

25
30

35
40

45
50

55
60

25
28

32
35

38
39

40
45

46

Relation R = green
Relation S = blue
2 integers per block

Output:

25
28

= occupied frame
= free frame

236

Physical Operators

Sort-based set union

We can also alternatively compute the set union R∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S.

5
10

15
20

25
30

35
40

45
50

55
60

25
28

32
35

38
39

40
45

46

Relation R = green
Relation S = blue
2 integers per block

Output:

5
10

25
28

25
28

= occupied frame
= free frame

237

Physical Operators

Sort-based set union

We can also alternatively compute the set union R∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S.

5
10

15
20

25
30

35
40

45
50

55
60

25
28

32
35

38
39

40
45

46

Relation R = green
Relation S = blue
2 integers per block

Output:

5
10

25
28

25
28

= occupied frame
= free frame

238

Physical Operators

Sort-based set union

We can also alternatively compute the set union R∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S.

5
10

15
20

25
30

35
40

45
50

55
60

25
28

32
35

38
39

40
45

46

Relation R = green
Relation S = blue
2 integers per block

Output:
 5

5
10

25
28

25
28

= occupied frame
= free frame

239

Physical Operators

Sort-based set union

We can also alternatively compute the set union R∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S.

5
10

15
20

25
30

35
40

45
50

55
60

25
28

32
35

38
39

40
45

46

Relation R = green
Relation S = blue
2 integers per block

Output:
 5

5
10

25
28

25
28

= occupied frame
= free frame

240

Physical Operators

Sort-based set union

We can also alternatively compute the set union R∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S.

5
10

15
20

25
30

35
40

45
50

55
60

25
28

32
35

38
39

40
45

46

Relation R = green
Relation S = blue
2 integers per block

Output:
 5, 10

5
10

25
28

25
28

= occupied frame
= free frame

241

Physical Operators

Sort-based set union

We can also alternatively compute the set union R∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S.

5
10

15
20

25
30

35
40

45
50

55
60

25
28

32
35

38
39

40
45

46

Relation R = green
Relation S = blue
2 integers per block

Output:
 5, 10

15
20

25
28

25
28

= occupied frame
= free frame

242

Physical Operators

Sort-based set union

We can also alternatively compute the set union R∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S.

5
10

15
20

25
30

35
40

45
50

55
60

25
28

32
35

38
39

40
45

46

Relation R = green
Relation S = blue
2 integers per block

Output:
 5, 10, 15

15
20

25
28

25
28

= occupied frame
= free frame

243

Physical Operators

Sort-based set union

We can also alternatively compute the set union R∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S.

5
10

15
20

25
30

35
40

45
50

55
60

25
28

32
35

38
39

40
45

46

Relation R = green
Relation S = blue
2 integers per block

Output:
 5, 10, 15

15
20

25
28

25
28

= occupied frame
= free frame

244

Physical Operators

Sort-based set union

We can also alternatively compute the set union R∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S.

5
10

15
20

25
30

35
40

45
50

55
60

25
28

32
35

38
39

40
45

46

Relation R = green
Relation S = blue
2 integers per block

Output:
 5, 10, 15, 20

15
20

25
28

25
28

= occupied frame
= free frame

245

Physical Operators

Sort-based set union

We can also alternatively compute the set union R∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S.

5
10

15
20

25
30

35
40

45
50

55
60

25
28

32
35

38
39

40
45

46

Relation R = green
Relation S = blue
2 integers per block

Output:
 5, 10, 15, 20

25
30

25
28

25
28

= occupied frame
= free frame

246

Physical Operators

Sort-based set union

We can also alternatively compute the set union R∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S.

5
10

15
20

25
30

35
40

45
50

55
60

25
28

32
35

38
39

40
45

46

Relation R = green
Relation S = blue
2 integers per block

Output:
 5, 10, 15, 20,
 25

25
30

25
28

25
28

= occupied frame
= free frame

247

Physical Operators

Sort-based set union

We can also alternatively compute the set union R∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S.

5
10

15
20

25
30

35
40

45
50

55
60

25
28

32
35

38
39

40
45

46

Relation R = green
Relation S = blue
2 integers per block

Output:
 5, 10, 15, 20,
 25

25
30

25
28

25
28

= occupied frame
= free frame

248

Physical Operators

Sort-based set union

We can also alternatively compute the set union R∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S.

5
10

15
20

25
30

35
40

45
50

55
60

25
28

32
35

38
39

40
45

46

Relation R = green
Relation S = blue
2 integers per block

Output:
 5, 10, 15, 20,
 25, 28

25
30

25
28

25
28

= occupied frame
= free frame

249

Physical Operators

Sort-based set union

We can also alternatively compute the set union R∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S.

5
10

15
20

25
30

35
40

45
50

55
60

25
28

32
35

38
39

40
45

46

Relation R = green
Relation S = blue
2 integers per block

Output:
 5, 10, 15, 20,
 25, 28

25
30

32
35

25
28

= occupied frame
= free frame

250

Physical Operators

Sort-based set union

We can also alternatively compute the set union R∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S.

5
10

15
20

25
30

35
40

45
50

55
60

25
28

32
35

38
39

40
45

46

Relation R = green
Relation S = blue
2 integers per block

Output:
 5, 10, 15, 20,
 25, 28, 30

25
30

32
35

25
28

= occupied frame
= free frame

251

Physical Operators

Sort-based set union

We can also alternatively compute the set union R∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S. Assume that we are
currently at tuple tR in R and tuple tS in S:

• If tR < tS then we output tR and move tR to the next tuple in R (possibly
by loading the next block of R into memory).

• If tR > tS then we output tS and move tS to the next tuple in S (possibly
by loading the next block of S into memory).

• If tR = tS then we output tR and move tR to the next tuple in R and tS to
the next tuple in S (possibly by loading the next block)

252

Physical Operators

Sort-based set union

• Sorting can in principle be done by any suitable algorithm, but is usually done
by Multiway Merge-Sort:

◦ In the first pass we read M blocks at the same time from the input relation,
sort these by means of a main-memory sorting algorithm, and write the sorted
resulting sublist to disk. After the first pass we hence have B(R)/M sorted
sublists of M blocks each.

...

...Relation R
of B(R) blocks

B(R)/M sorted “runs”
of M blocks each

Pass 1

253

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

◦ In the 2nd pass, we merge the first M sublists from the first pass into a
single sublist of M 2 blocks. We do so by iterating synchronously over these
M sublists, keeping 1 block of each list into memory during this iteration.

...

B(R)/M2 sorted “runs”
of M2 blocks each

Pass 2

...

B(R)/M sorted “runs”
of M blocks each

...

...

...

254

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

◦We then merge the next M sublists into a single sublist, and continue until
we have treated each sublist resulting from the first pass.

...

B(R)/M2 sorted “runs”
of M2 blocks each

Pass 2

...

B(R)/M sorted “runs”
of M blocks each

...

...

...

255

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

◦ After the second pass we hence have B(R)/M 2 sorted sublists of M 2 blocks
each.

...

B(R)/M2 sorted “runs”
of M2 blocks each

Pass 2

...

B(R)/M sorted “runs”
of M blocks each

...

...

...

256

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

◦ In the 3rd pass, we merge the first M sublists from the 2nd pass (each
of M 2 blocks) into a single sublist of M 3 blocks. We do so by iterating
synchronously over these M sublists, keeping 1 block of each list into memory
during this iteration.

...

B(R)/M3 sorted “runs”
of M3 blocks each

Pass 3

...

B(R)/M2 sorted “runs”
of M2 blocks each

...

...

...

257

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

◦We then merge the next M sublists into a single sublist, and continue until
we have treated each sublist resulting from the 2nd pass .

...

B(R)/M3 sorted “runs”
of M3 blocks each

Pass 3

...

B(R)/M2 sorted “runs”
of M2 blocks each

...

...

...

258

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

◦ After the 3rd pass we hence have B(R)/M 3 sorted sublists of M 3 blocks
each.

...

B(R)/M3 sorted “runs”
of M3 blocks each

Pass 3

...

B(R)/M2 sorted “runs”
of M2 blocks each

...

...

...

259

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

◦We keep doing new passes until we reach a single sorted list.

1 sorted run of B(R)
blocks

...

At most M sorted
“runs”

...

260

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

1. In the first pass we read M blocks at the same time from the input relation,
sort these by means of a main-memory sorting algorithm, and write the sorted
resulting sublist to disk. After the first pass we hence have B(R)/M sorted
sublists of M blocks each.

2. In the following passes we keep reading M blocks from these sublists and
merge them into larger sorted sublists. (After the second pass we hence have
B(R)/M 2 sorted sublists of M 2 blocks each, after the third pass B(R)/M 3

sorted sublists, . . .)

3. We repeat until we obtain a single sorted sublist.

•What is the complexity of this?

1. In each pass we read and write the entire input relation exactly once.

2. There are dlogM B(R)e passes

3. The total cost is hence 2B(R) dlogM B(R)e I/O operations.

261

Physical Operators

Sort-based set union

• The costs of sort-based set union:

1. Sorting R : 2B(R) dlogM B(R)e I/O’s

2. Sorting S : 2B(S) dlogM B(S)e I/O’s

3. Synchronized iteration: B(R) +B(S) I/O’s

In Total:

2B(R) dlogM B(R)e + 2B(S) dlogM B(S)e +B(R) +B(S)

• Uses M memory-buffers during sorting

• Requires 2 memory-buffers for synchronized iteration

262

Physical Operators

Sort-based set union

Remark: the “synchronized iteration” phase of sort-based set union is very similar
to the merge phase of multiway merge-sort. Sometimes it is possible to combine
the last merge phase with the synchronized iteration, and avoid 2B(R) + 2B(S)
I/Os:

1. Sort R, but do not execute the last merge phase. R is hence still divided in
1 < l ≤M sorted sublists.

2. Sort S, but do not execute the last merge phase. S is hence still divided in
1 < k ≤M sorted sublists.

3. If l + k < M then we can use the M available buffers to load the first block
of each sublist of R and S in memory.

4. Then iterate synchronously through these sublists: at each point search the
“smallest” (according to the sort order) record in the l+ k buffers, and output
that. Move to the next record in the buffers when required. When all records
from a certain buffer are processed, load the next block from the corresponding
sublist.

263

Physical Operators

Sort-based set union

The cost of the optimized sort-based set union algorithm is as follows:

1. Sort R, but do not execute the last merge phase.

2B(R)(dlogM B(R)e − 1)

2. Sort S, but do not execute the last merge phase.

2B(S)(dlogM B(S)e − 1)

3. Synchronized iteration through the sublists: B(R) +B(S) I/O’s

Total:

2B(R) dlogM B(R)e + 2B(S) dlogM B(S)e−B(R)−B(S)

We hence save 2B(R) + 2B(S) I/O’s.

264

Physical Operators

Sort-based set union

Note that this optimization is only possible if k + l ≤M .

Observe that k =
⌈

B(R)

MdlogM B(R)e−1

⌉
and l =

⌈
B(S)

MdlogM B(S)e−1

⌉
.

In other words, this optimization is only possible if:⌈
B(R)

M dlogM B(R)e−1

⌉
+

⌈
B(S)

M dlogM B(S)e−1

⌉
≤M

265

Physical Operators

Sort-based set union

Example: we have 15 buffers available, B(R) = 100, and B(S) = 120.

• Number of passes required to sort R completely: dlogM B(R)e = 2

• Number of passes required to sort S completely: dlogM B(S)e = 2

• Can the optimization be applied?⌈
100

15

⌉
+

⌈
120

15

⌉
= 15 ≤M

• The optimized sort-based set union hence costs:

2× 100× 2 + 2× 120× 2− 100− 120 = 660

266

Physical Operators

Sort-based set union

• The book states that in practice 2 passes usually suffice to completely sort a
relation.

• If we assume that R and S can be sorted in two passes (given the available
memory M) then we can instantiate our cost formula as follows:

◦Without optimization: 5B(R) + 5B(S)

◦With optimization: 3B(R) + 3B(S), but in this case we require sufficient
memory: ⌈

B(R)

M

⌉
+

⌈
B(S)

M

⌉
≤M

or (approximately) B(R) +B(S) ≤M 2.

→ This is the formula that you will find in the book!

• Note that the book focuses on the optimized algorithm in the case where two
passes suffice: the so-called “two-pass, sort-based set union”. It only sketches the
generalization to multiple passes.

267

Physical Operators

Hash-based set union

We can also alternatively compute the set union R∪S S as follows (R and S are
assumed to be sets, and we assume that B(R) ≤ B(S)):

1. Partition, by means of hash function(s), R in buckets of at most M − 1 blocks
each. Let k be the resulting number of buckets, and let Ri be the relation
formed by the records in bucket i.

2. Partition, by means of the same hash function(s) as above, S in k buckets.
Let Si be the relation formed by the records in bucket i.

Observe: the records in Ri and Si have the same hash value! A record t hence
occurs in both R and S if, and only if, there is a bucket i such that t occurs
in both Ri and Si.

3. We can hence compute the set union by calculating the set union of Ri and
Si, for every i ∈ 1, . . . , k. Since every Ri contains at most M − 1 blocks, we
can do so using the one-pass algorithm.

Note: in contrast to the sort-based set union, the output of a hash-based set
union is unsorted!

268

Physical Operators

Hash-based set union

How do we partition R in buckets of at most M − 1 blocks?

1. Using M buffers, we first hash R into M − 1 buckets.

2. Subsequently we partition each bucket separately in M − 1 new buckets, by
using a new hash function distinct from the one used in the previous step (why?)

3. We continue doing so until the obtained buckets consists of at most M − 1
blocks.

269

Physical Operators

Hashing R into M − 1 buckets using M buffers

Relation R = green
2 integers per block

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

270

Physical Operators

Hashing R into M − 1 buckets using M buffers

Relation R = green
2 integers per block

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

Buffer for elements
that hash to bucket 1

M = 3

271

Physical Operators

Hashing R into M − 1 buckets using M buffers

Relation R = green
2 integers per block

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

Buffer for elements
that hash to bucket 2

M = 3

272

Physical Operators

Hashing R into M − 1 buckets using M buffers

Relation R = green
2 integers per block

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

Buffer for loading R
from disk, 1 block at
a time

M = 3

273

Physical Operators

Hashing R into M − 1 buckets using M buffers

Relation R = green
2 integers per block

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10

5
10

274

Physical Operators

Hashing R into M − 1 buckets using M buffers

5

Relation R = green
2 integers per block

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10

5
10

275

Physical Operators

Hashing R into M − 1 buckets using M buffers

5 10

Relation R = green
2 integers per block

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10

5
10

276

Physical Operators

Hashing R into M − 1 buckets using M buffers

5 10

Relation R = green
2 integers per block

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10

15
20

277

Physical Operators

Hashing R into M − 1 buckets using M buffers

5
15

10

Relation R = green
2 integers per block

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10

15
20

278

Physical Operators

Hashing R into M − 1 buckets using M buffers

5
15

10

Relation R = green
2 integers per block
Bucket 1 = Blue

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10

15
20

5
15

279

Physical Operators

Hashing R into M − 1 buckets using M buffers

10

Relation R = green
2 integers per block
Bucket 1 = Blue

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10

15
20

5
15

280

Physical Operators

Hashing R into M − 1 buckets using M buffers

10
20

Relation R = green
2 integers per block
Bucket 1 = Blue

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10

15
20

5
15

281

Physical Operators

Hashing R into M − 1 buckets using M buffers

10
20

Relation R = green
2 integers per block
Bucket 1 = Blue
Bucket 2 = Red

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10

15
20

5
15
10
20

282

Physical Operators

Hashing R into M − 1 buckets using M buffers

Relation R = green
2 integers per block
Bucket 1 = Blue
Bucket 2 = Red

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10
5

15
10
20

25
30

283

Physical Operators

Hashing R into M − 1 buckets using M buffers

25 30

Relation R = green
2 integers per block
Bucket 1 = Blue
Bucket 2 = Red

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10
5

15
10
20

25
30

284

Physical Operators

Hashing R into M − 1 buckets using M buffers

25 30

Relation R = green
2 integers per block
Bucket 1 = Blue
Bucket 2 = Red

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10
5

15
10
20

35
40

285

Physical Operators

Hashing R into M − 1 buckets using M buffers

25 30

Relation R = green
2 integers per block
Bucket 1 = Blue
Bucket 2 = Red

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10
5

15
10
20

35
40

25
35

286

Physical Operators

Hashing R into M − 1 buckets using M buffers

25
35

30

Relation R = green
2 integers per block
Bucket 1 = Blue
Bucket 2 = Red

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10
5

15
10
20

35
40

25
35

25
35

287

Physical Operators

Hashing R into M − 1 buckets using M buffers

25
35

30

Relation R = green
2 integers per block
Bucket 1 = Blue
Bucket 2 = Red

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10
5

15
10
20

35
40

25
35

288

Physical Operators

Hashing R into M − 1 buckets using M buffers

25
35

30
40

Relation R = green
2 integers per block
Bucket 1 = Blue
Bucket 2 = Red

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10
5

15
10
20

35
40

25
35

289

Physical Operators

Hashing R into M − 1 buckets using M buffers

25
35

30
40

Relation R = green
2 integers per block
Bucket 1 = Blue
Bucket 2 = Red

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10
5

15
10
20

35
40

25
35

30
40

30
40

290

Physical Operators

Hashing R into M − 1 buckets using M buffers

25
35

30
40

Relation R = green
2 integers per block
Bucket 1 = Blue
Bucket 2 = Red

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10
5

15
10
20

25
35
30
40

45
50

291

Physical Operators

Hashing R into M − 1 buckets using M buffers

25
35

30
40

Relation R = green
2 integers per block
Bucket 1 = Blue
Bucket 2 = Red

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10
5

15
10
20

45

25
35

50

30
40

45
50

292

Physical Operators

Hashing R into M − 1 buckets using M buffers

25
35

30
40

Relation R = green
2 integers per block
Bucket 1 = Blue
Bucket 2 = Red

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10
5

15
10
20

45

25
35

50

30
40

55
60

293

Physical Operators

Hashing R into M − 1 buckets using M buffers

25
35

30
40

Relation R = green
2 integers per block
Bucket 1 = Blue
Bucket 2 = Red

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10
5

15
10
20

45
55

25
35

50

30
40

55
60

294

Physical Operators

Hashing R into M − 1 buckets using M buffers

25
35

30
40

Relation R = green
2 integers per block
Bucket 1 = Blue
Bucket 2 = Red

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10
5

15
10
20

45
55

25
35

50

30
40

55
60

45
55

295

Physical Operators

Hashing R into M − 1 buckets using M buffers

25
35

30
40

Relation R = green
2 integers per block
Bucket 1 = Blue
Bucket 2 = Red

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10
5

15
10
20

25
35

50
60

30
40

55
60

45
55

296

Physical Operators

Hashing R into M − 1 buckets using M buffers

25
35

30
40

Relation R = green
2 integers per block
Bucket 1 = Blue
Bucket 2 = Red

= occupied frame
= free frame

5
10

15
20

25
30

35
40

45
50

55
60

M = 3

5
10
5

15
10
20

25
35

50
60

30
40

55
60

45
55
50
60

297

Physical Operators

Hash-based set union

What is the cost of partitioning?

1. Assuming that the hash function(s) distribute the records uniformly, we have

M − 1 buckets of B(R)
M−1 blocks after the first pass, (M − 1)2 buckets of B(R)

(M−1)2
blocks after the second pass, and so on. Hence, if we reach buckets of at most
M − 1 blocks after k passes, k must satisfy:

B(R)

(M − 1)k
≤M − 1

The minimal value of k that satisfies this is hence dlogM−1B(R)− 1e
2. In every pass we read and write R once.

Total cost:
2B(R) dlogM−1B(R)− 1e

298

Physical Operators

Hash-based set union

What is the costs of calculating hash-based set union?

1. Partition R: 2B(R) dlogM−1B(R)− 1e I/O’s

2. Partition S: 2B(S) dlogM−1B(R)− 1e I/O’s

Because we “only” need to partition S in as many buckets as R.

3. The one-pass set union of each Ri and Si: B(R) +B(S)

Total:

2B(R) dlogM−1B(R)− 1e + 2B(S) dlogM−1B(R)− 1e +B(R) +B(S)

299

Physical Operators

Hash-based set union

• The book states that in practice one level of partitioning suffices.

• The book hence focuses on the scenario where we only need two passes: “two-pass,
hash-based set union” and only sketches the generalization to multiple passes.

The algorithm is called two-pass because we need 1 pass through the data to
partition it, and another one to do the pairwise single-pass union of the buckets

• Under the assumption that one level of partitioning suffices, our cost formula
hence specializes to the cost: 3B(R) + 3B(S)

• But: one level of partitioning only suffices if B(R)
M−1 ≤ M − 1, or (approximately)

B(R) ≤M 2 (where R is the smaller relation of R and S)

→ These are the formulas introduced in the book!

300

Physical Operators

Other operations on relations

To compute (bag) intersection and (bag) difference we can modify the previous
algorithms. The costs remain the same

Also the removal of duplicates can be done using the same techniques.

→ See book!

301

Physical Operators

One-pass Join

Assume that M − 1 ≥ B(R). We can then compute R(X, Y) 1 S(Y, Z) as
follows:

load R into memory buffers N1, . . . , NB(R);
for each block BS in S do

load BS into buffer N0;
for each tuple tS in N0 do

for each tuple matching tuple tR in N1, . . . , NB(R) do
output tR 1 tS

• Cost: B(R) +B(S) I/O operations

• There is also the cost of finding the matching tuples of tS in N1, . . . , NB(R).
By using a suitable main-memory data structure this can be done in O(n) or
O(n log n) time. We ignore this cost.

• Requires B(R) ≤M − 1

302

Physical Operators

Nested Loop Join

We can also alternatively compute R(X, Y) 1 S(Y, Z) as follows:

for each segment G of M − 1 blocks of R do
load G into buffers N1, . . . , NM−1;
for each block BS in S do

load BS into buffer N0;
for each tuple tR in N1, . . . , NM−1 do

for each tuple tS in N0 do
if tR.Y = tS.Y then output tR 1 tS

Cost:

B(R) +B(S)× B(R)

M − 1

303

Physical Operators

Sort-merge Join

Essentially the same algorithm as sort-based set union:

1. Sort R on attribute Y

2. Sort S on attribute Y

3. Iterated synchronously through R and S, keeping 1 block of each relation in
memory at all times, and at each point inspecting a single tuple from R and
S. Assume that we are currently at tuple tR in R and at tuple tS in S.

• If tR.Y < tS.Y then we advance the pointer tR to the next tuple in R
(possibly loading the next block of R if necessary).

• If tR.Y > tS.Y then we advance the pointer tS to the next tuple in S
(possibly loading the next block of S if necessary)).

• If tR.Y = tS.Y then we output tR 1 t′S for each tuple t′S following tS
(including tS itself) that satisfies t′S.Y = tS.Y . It is possible that we need
to read the following blocks in S. Finally, we advance tR to the next tuple
in R, and rewind our pointer in S to tS.

304

Physical Operators

Sort-merge Join

• The cost depends on the number of tuples with equal values for Y . The worst
case is when all tuples in R and S have the same Y -value. The cost is then
B(R)×B(S) plus the cost for sorting R and S.

• However, joins are often performed on foreign key attributes. Assume for example
that attribute Y in S is a foreign key to attribute Y in R. Then every value for Y
in S has only one matching tuple in R, and there is no need to reset the pointer
in S. → See book

• In this case the cost analysis is similar to the analysis for sort-based set union.
Similarly, it is possible to optimize and gain 2B(R) + 2B(S) I/O operations
(provided there is enough memory).

• The book also focuses on “two-pass sort-merge join”.

• Remark: When R has a BTree index on Y , then it is not necessary to sort R
(why?). The same holds for S.

305

Physical Operators

Hash-Join

Essentially the same algorithm as hash-based set union:

1. Partition, by hashing the Y -attribute, R into buckets of at most M − 1 blocks
each. Let k be the number of buckets required, and let Ri be the relation
formed by the blocks in bucket i.

2. Partition, by hashing the Y -attribute using the same has function(s) as above,
S into k buckets. Let Si be the relation formed by the blocks in bucket i.

Notice: the records in Ri and Si have the same hash value. A tuple tR ∈ R
hence matches the Y attribute of tuple tS ∈ S if, and only if, there is a bucket
i such that tR ∈ Ri and tS ∈ Si.

3. We can therefore compute the join by calculating the join of Ri and Si, for
every i ∈ 1, . . . , k. Since every Ri consists of at most M − 1 blocks, this can
be done using the one-pass algorithm.

Remark: the output of a hash-join is unsorted on the Y attribute, in contrast to
the output of the sort-merge join!

306

Physical Operators

Hash-Join

• The cost analysis is the same as the analysis for hash-based set union

• Again the book focuses on “two-pass hash-join”:

one pass for the partitioning, one pass for the join

307

Physical Operators

Index-Join

Assume that S has an index on attribute Y . We can then alternatively compute
the join R(X, Y) 1 S(Y, Z) by searching, for every tuple t in R, the matching
tuples in S (using the index).

Cost when the index on Y is not clustered:

B(R) + T (R)× dT (S)/V (S, Y)e

Cost when the index on Y is clustered:

B(R) + T (R)× dB(S)/V (S, Y)e

→ See book

General comment

The book often omits the ceiling operations (d·e) when calculating costs. In the
exercises you must always include these operations!

308

Cost-Based Plan Selection
Enumerate, Estimate, Select

309

Cost-Based Plan Selection

SQL

Query Compiler

Logical
query plan

Optimized
logical query plan

Physical
query planLogical plan

optimization
Physical plan

selection
Translation

Execution
Engine

Result

Physical
Data Storage

"Intermediate code" "Machine code"

Statistics
and

Metadata

Components of the query compiler that we already know:

• SQL → relational algebra (i.e., a logical query plan)

• Logical query plan → optimized logical query plan

310

Cost-Based Plan Selection

The next step: logical query plan → physical query plan

π

∪

σ

R

on

S T

• To obtain a physical query plan we need to assign
to each node in the logical query plan a physical
operator.

•We want to obtain the physical plan with the small-
est total execution cost.

• Hence, we need to compare, for every node and
every applicable physical operator, its cost.

• In order to estimate this cost we need (among others) the parameters B(R),
T (R), and V (R,A1, . . . , An)

• These belong to the statistics that a DBMS typically stores in its system catalog

• But these statistics only exist for the relations stored in the database, not for
subresults computed during query evaluation!

311

Cost-Based Plan Selection

Result size estimation

π

∪

σ

R

on

S T

• For every internal node n we hence need
to estimate the parameters B(n), T (n), and
V (n,A1, . . . , Ak)

• Note that we can compute B(n) given (1) T (n);
(2) the size of the tuples output by n; and (3) the
size of a block

• Also note that T (n) and V (n,A1, . . . , Ak) only
depend on the logical query plan, not on the phys-
ical plan that we are computing!

312

Cost-Based Plan Selection

Result size estimation: projection

• General formula: T (πL(R)) = T (R)

• Remember that our version of the projection operator is bag-based and does not
remove duplicates; to remove duplicates we use the operator δ.

•While projection does not change the number of tuples, it does change the number
of blocks needed to store the resulting relation, as illustrated by the following
example.

Example

• R(A,B,C) is a relation with A and B integers of 4 bytes each; C a string of
100 bytes. Tuple headers are 12 bytes. Blocks are 1024 bytes and have headers
of 24 bytes. T (R) = 10000 and B(R) = 1250.

• Question: how many blocks do we need to store πA,B(R)?

313

Cost-Based Plan Selection

Result size estimation: projection

• General formula: T (πL(R)) = T (R)

• Remember that our version of the projection operator is bag-based and does not
remove duplicates; to remove duplicates we use the operator δ.

•While projection does not change the number of tuples, it does change the number
of blocks needed to store the resulting relation, as illustrated by the following
example.

Example

• R(A,B,C) is a relation with A and B integers of 4 bytes each; C a string of
100 bytes. Tuple headers are 12 bytes. Blocks are 1024 bytes and have headers
of 24 bytes. T (R) = 10000 and B(R) = 1250.

• Answer: resulting records need to record the header + A-field + B-field. The
size of these records is hence 12 + 4 + 4 = 20 bytes. We can hence store
(1024−24)/20 = 50 tuples in one block. Thus B(πA,B(R)) = T (πA,B(R))/50 =
10000/50 = 200 blocks.

314

Cost-Based Plan Selection

Result size estimation: selection σP (R) with P a filter predicate

• General formula:
T (σP (R)) = T (R)× selP (R)

where selP (R) is the estimated fraction of tuples in R that satisfy predicate P .

• In other words, selP (R) is the estimated probability that a tuple in R satisfies P .

• selP (R) is usually called the selectivity of filter predicate P .

• How we calculate selP (R) depends on what P is.

315

Cost-Based Plan Selection

Result size estimation: selection σA=c(R) with c a constant

selA=c(R) =
1

V (R,A)

• Intuition: there are V (R,A) distinct A-values in R. Assuming that A-values are
uniformly distributed, the probability that a tuple has A-value c is 1/V (R,A).

•While this intuition assumes that values are uniformly distributed, it can be shown
that this selectivity is a good estimate on average, provided that c is chosen
randomly.

Example

• R(A,B,C) is a relation. T (R) = 10000. V (R,A) = 50.

• Then T (σA=10(R)) is estimated by:

T (σA=10(R)) = T (R)× 1

V (R,A)
=

10000

50
= 200.

316

Cost-Based Plan Selection

Result size estimation: selection σA=c(R) with c a constant

• Better selectivity estimates are possible if we have more detailed statistics

• A DBMS typically collects histograms that detail the distribution of values.

• Such histograms are only available for base relations, however, not for subresults!

Example

• R(A,B,C) is a relation. The DBMS has collected the following equal-width
histogram on A:

range [1, 10] [11, 20] [21, 30] [31, 40] [41, 50]

tuples in range 50 2000 2000 3000 2950

• Then selA=10(R) can be estimated by:

selA=10(R) =
50

10000
× 1

10

317

Cost-Based Plan Selection

Result size estimation: selection σA<c(R)

selA<c(R) =
1
2 or selA<c(R) =

1
3

• This is just a heuristic, without any correctness guarantees.

• (The intuitive rationale is that queries involving an inequality tend to retrieve a
small fraction of the possible tuples.)

Example

• R(A,B,C) is a relation. T (R) = 10000.

• Then T (σB<10(R)) is estimated by:

T (σB<10(R)) = T (R)× 1

3
= 3334.

318

Cost-Based Plan Selection

Result size estimation: selection σA<c(R)

• Again, better estimates are possible if we have more detailed statistics

Example

• R(A,B,C) is a relation. T (R) = 10000. The DBMS statistics show that the
values of the B attribute lie within the range [8, 57], uniformly distributed.

• Question: what would be a reasonable estimate of selB<10(R)?

319

Cost-Based Plan Selection

Result size estimation: selection σA<c(R)

• Again, better estimates are possible if we have more detailed statistics

Example

• R(A,B,C) is a relation. T (R) = 10000. The DBMS statistics show that the
values of the B attribute lie within the range [8, 57], uniformly distributed.

• Question: what would be a reasonable estimate of selB<10(R)?

• Answer: We see that 57− 8 + 1 different values of B are possible; however only
records with values B = 8 or B = 9 satisfy the filter B < 10. Therefore,

selB<10(R) =
2

(57− 8 + 1)
=

2

50
= 4%

and hence
T (σB<10(R)) = T (R)× selB<10(R) = 400.

320

Cost-Based Plan Selection

Result size estimation: selection σA 6=c(R)

selA 6=c(R) =
V (R,A)−1
V (R,A)

• Question: Can you give intuitive meaning to this formula?

321

Cost-Based Plan Selection

Result size estimation: selection σA 6=c(R)

selA 6=c(R) =
V (R,A)−1
V (R,A)

• Question: Can you give intuitive meaning to this formula?

• Answer: 1/V (R,A) is the (estimated) probability that a tuple satisfies A = c.
Therefore

1− selA=c(R) = 1− 1

V (R,A)
=
V (R,A)− 1

V (R,A)

is the (estimated) probability that a tuple does not satisfy A = c.

322

Cost-Based Plan Selection

Result size estimation: selection σNOT P1(R)

selNOT P1(R) = 1− selP1(R)

323

Cost-Based Plan Selection

Result size estimation: selection σP1 AND P2(R)

selP1 AND P2(R) = selP1(R)× selP2(R)

• This implicitly assumes that filter predicates P1 and P2 are independent.

• Hence, in essence we treat σP1 AND P2(R) as σP1(σP2(R))

• The order does not matter, treating this as σP2(σP1(R)) gives the same results.

Example

• R(A,B,C) is a relation. T (R) = 10000. V (R,A) = 50.

• Then we estimate T (σA=10 AND B<10(R) to be:

T (R)× selA=10(R)× selB<10(R) = T (R)× 1

V (R,A)
× 1

3
= 67.

324

Cost-Based Plan Selection

Result size estimation: selection σP1 OR P2(R)

selP1 OR P2(R) = min(selP1(R) + selP2(R), 1)

• The term selP1(R) + selP2(R) implicitly assumes that filter predicates P1 and P2

are independent, and select disjoint sets of tuples.

• Disjointness is often not satisfied and then we count some tuples twice.

• But of course, the selectivity can never be greater than 1.

• Hence, we take the minimum of these two terms.

325

Cost-Based Plan Selection

Result size estimation: selection σP1 OR P2(R)

More complicated: treat this as σNOT(NOT P1 AND NOT P2)(R)).

selP1 OR P2(R) = 1− (1− selP1(R))× (1− selP2(R))

326

Cost-Based Plan Selection

Result size estimation: cartesian product R× S
• General formula:

T (R× S) = T (R)× T (S)

327

Cost-Based Plan Selection

Result size estimation: natural join R 1 S

• Assume the relation schema R(X, Y) and S(Y, Z), i.e., we join on Y .

•Many cases are possible

◦ It is possible that R and S do not have any Y value in common. In that case,
T (R 1 S) = 0.

◦ Y might be the key of S and a foreign key of R, so each tuple of R joins with
exactly one tuple of S. Then T (R 1 S) = T (R).

◦ Almost all of the tuples of R and S could have the same Y -value. Then
T (R 1 S) is approximately T (R)× T (S).

328

Cost-Based Plan Selection

Result size estimation: natural join R 1 S

• Assume the relation schema R(X, Y) and S(Y, Z), i.e., we join on Y .

• To focus on the common cases, we make two simplifying assumptions.

1. Containment of value sets If attribute Y appears in several relations, then
each relation chooses its values from a fixed list of values y1, y2, y3, As
a consequence, if V (R, Y) ≤ V (S, Y) then every Y -value of R will have a
joining tuple Y -value in S.

2. Preservation of value sets When joining two relations, any attribute that is not
a join attribute does not lose values from its set of possible values: for such
attributes V (R 1 S,A) = V (R,A), when A is in R and V (R 1 S,A) =
V (S,A) otherwise.

329

Cost-Based Plan Selection

Result size estimation: natural join R 1 S

• Assume the relation schema R(X, Y) and S(Y, Z), i.e., we join on Y .

• Under these assumptions, we can estimate as follows.

1. Case 1: V (R, Y) ≤ V (S, Y). Then every tuple of R has 1
V (S,Y) chance of

joining with a given tuple of S. Hence

T (R 1 S) = T (R)× 1

V (S, Y)
× T (S)

2. Case 2: V (S, Y) ≤ V (R, Y). Then every tuple of S has 1
V (R,Y) chance of

joining with a given tuple of R. Hence

T (R 1 S) = T (R)× 1

V (R, Y)
× T (S)

330

Cost-Based Plan Selection

Result size estimation: natural join R 1 S

• Assume the relation schema R(X, Y) and S(Y, Z), i.e., we join on Y .

• Under these assumptions, we can estimate as follows.

1. Case 1: V (R, Y) ≤ V (S, Y). Then every tuple of R has 1
V (S,Y) chance of

joining with a given tuple of S. Hence

T (R 1 S) = T (R)× 1

V (S, Y)
× T (S)

2. Case 2: V (S, Y) ≤ V (R, Y). Then every tuple of S has 1
V (R,Y) chance of

joining with a given tuple of R. Hence

T (R 1 S) = T (R)× 1

V (R, Y)
× T (S)

General formula:

T (R 1 S) = T (R)× T (S)× 1
max(V (R,Y),V (S,Y))

331

Cost-Based Plan Selection

Result size estimation: natural join R 1 S

• Now assume the relation schema R(X, Y1, Y2) and S(Y1, Y2, Z), i.e., we join on
Y1 and Y2.

• Under the same assumptions as before, we can estimate as follows.

Case 1: V (R, Y1) ≤ V (S, Y1) and V (R, Y2) ≤ V (S, Y2).

Then a tuple of R has 1
V (S,Y1)

× 1
V (S,Y2)

chance of joining with a given tuple of S.

Hence

T (R 1 S) = T (R)× 1

V (S, Y1)
× 1

V (S, Y2)
× T (S)

332

Cost-Based Plan Selection

Result size estimation: natural join R 1 S

• Now assume the relation schema R(X, Y1, Y2) and S(Y1, Y2, Z), i.e., we join on
Y1 and Y2.

• Under the same assumptions as before, we can estimate as follows.

Case 2: V (S, Y1) ≤ V (R, Y1) and V (S, Y2) ≤ V (R, Y2).

Then a tuple of S has 1
V (R,Y1)

× 1
V (R,Y2)

chance of joining with a given tuple of R.

Hence

T (R 1 S) = T (R)× 1

V (R, Y1)
× 1

V (R, Y2)
× T (S)

333

Cost-Based Plan Selection

Result size estimation: natural join R 1 S

• Now assume the relation schema R(X, Y1, Y2) and S(Y1, Y2, Z), i.e., we join on
Y1 and Y2.

• Under the same assumptions as before, we can estimate as follows.

Case 3: V (R, Y1) ≤ V (S, Y1) and V (S, Y2) ≤ V (R, Y2).

Then a tuple of R has 1
V (S,Y1)

× 1
V (R,Y2)

chance of joining with a given tuple of S.

Hence

T (R 1 S) = T (R)× 1

V (S, Y1)
× 1

V (R, Y2)
× T (S)

334

Cost-Based Plan Selection

Result size estimation: natural join R 1 S

• Now assume the relation schema R(X, Y1, Y2) and S(Y1, Y2, Z), i.e., we join on
Y1 and Y2.

• Under the same assumptions as before, we can estimate as follows.

Case 4: V (S, Y1) ≤ V (R, Y1) and V (R, Y2) ≤ V (S, Y2).

Then a tuple of R has 1
V (R,Y1)

× 1
V (S,Y2)

chance of joining with a given tuple of S.

Hence

T (R 1 S) = T (R)× 1

V (R, Y1)
× 1

V (S, Y2)
× T (S)

335

Cost-Based Plan Selection

Result size estimation: natural join R 1 S

• Now assume the relation schema R(X, Y1, Y2) and S(Y1, Y2, Z), i.e., we join on
Y1 and Y2.

• General formula:

T (R 1 S) = T (R)×T (S)
max(V (R,Y1),V (S,Y1))max(V (R,Y2),V (S,Y2))

• This generalizes straightforwardly to the case where we are joining on more than
2 attributes.

336

Cost-Based Plan Selection

Result size estimation

• Intersection R ∩ S, Difference R − S, duplicate elimination δ(R), Grouping
and aggregation γ(R)

→ see section 16.4 in the book

• A DBMS often also collects more detailed statistics

→ see sections 16.5.1 and 16.5.2 in the book

• As should be clear by now, result size estimation is not an exact art

• For commercial DBMSs, the software component that estimates result sizes is
intricate and advanced!

337

Cost-Based Plan Selection

Join ordering

During the optimization of the logical query plan we:

• remove redundant joins;

• push selections and projections; recognize joins.

The order in which the joins are to be executed is not yet fixed, however!

338

Cost-Based Plan Selection

Join ordering

Example: relations R(A,B), S(B,C), T (C,D), U(D,A) and the query

SQL: SELECT * FROM R,S,T,U

WHERE R.B = S.B AND S.C = T.C AND T.D = U.D

Algebra: R 1 S 1 T 1 U

• So far, we have always considered the join as a polyadic operator:

on

R S T U

After all, the join order is irrelevant for logical query plans.

• However, physical join operators are binary!

•When devising a physical query plan, the join order therefore becomes very
important, as we illustrate next.

339

Cost-Based Plan Selection

Join ordering

Example: relations R(A,B), S(B,C), T (C,D), U(D,A) and the query

SQL: SELECT * FROM R,S,T,U

WHERE R.B = S.B AND S.C = T.C AND T.D = U.D

Algebra: R 1 S 1 T 1 U

We can interpret this as:

((R 1 S) 1 T) 1 U or (R 1 S) 1 (T 1 U) or . . .

But also as:

((R 1 T) 1 U) 1 S or ((R 1 S) 1 U) 1 T or . . .

340

Cost-Based Plan Selection

Join ordering

The chosen order can influence the total cost of the physical query plan.

Consider, for example, R(A,B), S(B,C), T (A,E). Assume

B(R) = 50 B(S) = 50 B(T) = 50

B(R 1 S) = 150 B(S 1 T) = 2500 B(R 1 T) = 200

Further assume that we execute all joins by means of the one-pass algorithm.
What is the best order to compute R 1 S 1 T ?

1. Cost of R 1 (S 1 T):

B(R) +B(S 1 T) +B(S) +B(T) = 2650

2. Cost of S 1 (R 1 T):

B(S) +B(R 1 T) +B(R) +B(T) = 350

3. Cost of T 1 (R 1 S):

B(T) +B(R 1 S) +B(R) +B(S) = 300

341

Cost-Based Plan Selection

Join ordering

• To obtain the physical plan with the least cost we would hence have to enumerate
and compare every possible join ordering.

• The number of possible orderings to join n relations is n!× T (n):
◦ There are n! ways to order the relations to join

◦ Given a fixed ordering, there are T (n) ways to create a binary tree over n leaf
nodes, where

T (1) = 1 T (n) =

n−1∑
i=1

T (i)× T (n− i)

342

Cost-Based Plan Selection

Join ordering

• The resulting search space is enormous.

Number of relations n n!× T (n)
2 2
3 12
4 120
5 1,680
6 30,240
7 665,580
8 17,297,280

• For each of these plans, we have to consider all possible assignments of physical
join algorithms to logical join operators to get the plan with the least cost.

→ Query optimization should in no case take more time than the actual exe-
cution of the query. We will therefore not consider all possible orders, but only
a limited subclass.

343

Cost-Based Plan Selection

Kinds of join orderings

on

on

on

R S

T

U

on

on

R S

on

T U

on

R on

S on

T U

left-deep bushy right-deep

In practice a query compiler usually only considers left-deep join orderings:

• There are still n! possible orderings of this form, but that is already a lot less.

• Left-deep orderings use, in general, less memory. Furthermore, in general they
require fewer subresults to be stored.

→ See section 16.6.3 in the book

344

Cost-Based Plan Selection

Plan selection

To compute the best physical plan for a given logical query plan we should, in
principle:

1. Calculate all possible (left-deep) join orderings of the logical plan

2. For each such plan calculate all possible assignments of physical operators to
the nodes

3. From this enormous pile of candidate physical query plans choose the one with
the least estimated cost.

There are exponentially many candidate physical query plans

• Query compilation should in no case take longer than the actual execution of the
query!

• In general it is hence impossible to inspect all candidate physical plans.

Heuristics: Branch-and-Bound Plan Enumeration; Hill Climbing; Dynamic Pro-
gramming; Selinger-Style; Greedy

→ See section 16.5.4, 16.6.4 and 16.6.5 in the book

345

Cost-Based Plan Selection

Greedy plan selection

In the exercises we will use the following greedy algorithm.

• Start with a logical query plan without join ordering.

•We work bottom-up: first we assign physical operators to the leaves, then to
the parents of the leaves, then to their parents, and so on. At each point we
choose the phyiscal operator with the least cost.

•When we reach a join operator (e.g., R 1 S 1 T 1 U) and need to determine
an ordering of its various members then:

1. We start by joining the two relations for which the best physical join algorithm
yields the smallest cost

→ e.g., execute R 1 T through a hash-join

2. Add, from the remaining relations (S or U), those relations to the join for
which the best physical join-algorithm yields the smallest cost.

→ e.g., (R 1 T) 1 U through a one-pass join

3. Repeat the previous step until we have a complete join ordering.

346

Cost-Based Plan Selection

Greedy plan selection

• This is a generalization of the greedy algorithm to compute a join ordering de-
scribed in section 16.6.6 from the book. However, we use I/O operations as our
cost metric instead of the size of the intermediate results as done in the book.

• Often, the leaves of the logical query plan are selections. We have seen two
physical operators for selections: table-scan and index-scan. The book describes
in section 16.7.1 how we can choose the best selection method when the selection
condition is complex.

347

Cost-Based Plan Selection

Greedy plan selection need not return the optimal plan

• It may return a more expensive join ordering. For example:

R(A,B) 1 S(B,C) 1 T (C,D) 1 U(A,D)

Assume: the greedy algorithm computes ((R 1 S) 1 T) 1 U) with

B(R 1 S) = 100 B((R 1 S) 1 T) = 2000

Assume: the alternative ordering ((R 1 U) 1 T) 1 S yields

B(R 1 U) = 200 B((R 1 U) 1 T) = 1000

When we hence execute the joins using the one-pass algorithm we get the following
costs, respectively:

1. B(R) +B(S) +B(R 1 S) +B(T) +B((R 1 S) 1 T) +B(U)

2. B(R) +B(U) +B(R 1 U) +B(T) +B((R 1 U) 1 T) +B(S)

The second ordering yields a saving of 900 I/Os.

348

Cost-Based Plan Selection

Greedy plan selection need not return the optimal plan

• It does not take into account the properties of the output of an operator. For
example (R and S share only the Y attribute):

δ

πY

on

R S

three-pass sort-based elimination

single-pass projection

two-pass hash-join

table-scan R table-scan S

logical plan physical plan

Consider the setting where there is limited memory available. The optimized
sort-merge join is not applicable; only the non-optimized version. In this case
the two-pass hash-join is cheaper, and is hence selected by the greedy algorithm.

Because the output of R 1 S is large, we will eventually have to remove
duplicates by means of a three-pass algorithm.

349

If, however, we had executed the join by means of a two-pass sort-merge join,
then its result would have been sorted on Y and we would have been able to
compute the duplicate removal by means of the one-pass algorithm instead of
the three-pass one. In that case, the total costs would have been smaller (check
this!)

350

Cost-Based Plan Selection

Finally

The result of the greedy algorithm is an execution tree in which every node is a
physical operator.

π

∪

σ

R

on

S T

project

two-pass sort-based union

filter

index-scan R

nested-loop join

table-scan S table-scan T

logical plan physical plan

We remain to decide, for every internal node, whether we will materialize or
pipeline the subresults.

→ See sections 16.7.3, 16.7.4, and 16.7.5

351

Cost-Based Plan Selection

Pipelining versus materialization

So far, we have assumed that all database operators consume items on disk, and
produce their result on disk.

• This causes a lot of I/O.

• In addition, we suffer from long response times since an operator cannot start
computing its result before all of its inputs are fully generated (“materialized”)

352

Cost-Based Plan Selection

Pipelining versus materialization

Alternatively, each operator could pass its result directly to the next operator.
This is called pipelining.

When executed in a pipelined manner, an operator

• Starts computing results as early as possible, i.e., as soon as enough input data
is available to start producing output.

• Doesn’t wait until the entire output is computed, but propagates its output
immediately.

The granularity in which data is passed may influence performance:

• Small chunks yield better system response time.

• Large chunks may improve the effectiveness of caches.

•Most often, data is passed a tuple at a time.

353

Cost-Based Plan Selection

Examples of operators that can be pipelined

• projection

• selection

• renaming

• bag-based union

• merge-joins for which the input are already known to be sorted

354

Cost-Based Plan Selection

Pipelining versus materialization

Pipelining reduces memory requirements and response times since each chunk of
its input is propagated to the output immediately.

Some operators cannot be implemented in such a way:

• operators based on (external) sorting (i.e. sort-merge join)

• operators based on external hashing (i.e., hash join)

• grouping and duplicate elimination over unsorted input

Operators that cannot be pipelined are said to be blocking

• Blocking operators consume their entire input before they can produce any
output.

• Their data is typically materialized on disk.

355

Crash Recovery
Dealing Gracefully with Failures

356

Transaction Processing

A transaction is an atomic unit of work in a DBMS

Example: transfer 100 Euro from bank account A to bank account B

Must satisfy the ACID properties:

• Atomic

• Consistent

• Isolated

• Durable

Transaction processing consists of two parts: Crash recovery and
Concurrency control

357

Crash recovery

Is responsible for:

• Atomicity: transactions that are unexpectedly aborted (e.g., due to a system
crash) are rolled back and optionally re-executed

• Consistency: by means of atomicity

• Durability: once a transaction is committed its data is persistent through archiving
and logging

Several approaches:

• Undo logging

• Redo logging

• Undo/redo logging

See book chapter 17

358

Concurrency Control
Ensuring Isolation

359

Concurrency control

Concurrency

To increase throughput and response time, a DBMS will execute multiple trans-
actions at the same time.

Concurrency control ensures that transactions have the same effect as if
they were executed in isolation

360

Concurrency control

Problem: WR conflict

T1 T2
READ(A,s)

s -= 100

WRITE(A,s)

READ(A,t)

t *= 1.06

WRITE(A,t)

READ(B,t)

t *= 1.06

WRITE(B,t)

READ(B,s)

s += 100

WRITE(B,s)

361

Concurrency control

Problem: WW conflict

T1 T2
s = 100

WRITE(A,s)

t = 200

WRITE(A,t)

t = 200

WRITE(B,t)

s = 100

WRITE(B,s)

362

Concurrency control

Definitions

• An action is an expression of the form r(X) or w(X)

• A transaction is a sequence of actions.

r(A), r(B), w(A), w(B)

We abstract away from the actual values read or written.

• A schedule is a sequence of actions belonging to multiple transactions. Subscripts
indicate to which transaction an action belongs.

r1(A), w1(A), r2(A), w2(A), r1(B), w1(B), r2(B), w2(B)

• A serial schedule is a schedule in which transactions are not executed concurrently.
In a serial schedule the actions hence occur grouped per transaction.

r2(A), w2(A), r2(B), w2(B), r1(A), w1(A), r1(B), w1(B)

363

Concurrency control

Serializability

A schedule is called serializable if there exists an equivalent serial schedule.

Example

The following schedules are equivalent:

S1 :=r1(A), w1(A), r2(A), w2(A), r1(B), w1(B), r2(B), w2(B)

S2 :=r1(A), w1(A), r1(B), w1(B), r2(A), w2(A), r2(B), w2(B)

Hence S1 is serializable.

364

Concurrency control

Conflict-serializability

• Two actions in a schedule are in conflict if:

1. they belong to the same transaction; or

2. act upon the same element, and one of them is a write.

r1(A), w1(A), r2(A), w2(A), r1(B), w1(B), r2(B), w2(B)

• A schedule is conflict-serializable if we can obtain a serial schedule by (repeatedly)
swapping non-conflicting actions.

Example

We can obtain S2 by swapping only non-conflicting actions from S1:

S1 :=r1(A), w1(A), r2(A), w2(A), r1(B), w1(B), r2(B), w2(B)

S2 :=r1(A), w1(A), r1(B), w1(B), r2(A), w2(A), r2(B), w2(B)

Consequently S1 is conflict-serializable.

365

Concurrency control

Clearly, conflict-serializability implies serializability

The converse is not true

S1 is equivalent to S2, but S2 cannot be obtained from S1 by conflict-free swap-
ping:

S1 :=w1(Y), w2(Y), w2(X), w1(X), w3(X)

S2 :=w1(Y);w1(X);w2(Y);w2(X);w3(X)

Hence S1 is not conflict-serializable, but it is serializable.

In practice, a DBMS will only allow conflict-serializable schedules

366

Concurrency control

A simple algorithm to check conflict-serializability

• Construct the precedence graph

• Check whether this graphs contains cycles. If so, output “no”, otherwise output
“yes”

Example

S1 := r2(A), r1(B), w2(A), r3(A), w1(B), w3(A), r2(B), w2(B)

1 2 3

S2 := w1(Y), w2(Y), w2(X), w1(X), w3(X)

1 2 3

367

Concurrency control

Why does this work?

• If there exists a cycle T1 → T2 → · · · → Tn → T1 in the dependency graph
then we there are actions from T1 that (1) follow actions from Tn and (2) cannot
be moved before the start of Tn by means of conflict-free swapping. Conversely,
there are also actions of Tn that follow actions of T1 and that cannot be moved
before Tn−1 by means of conflict-free swapping. As a consequence, we can never
obtain a serial schedule by means of conflict-free swapping (in a serial schedule
all actions of T1 must occur together).

• If there is no cycle in the dependency graph then we can obtain an equivalent
serial schedule by topologically sorting the dependency graph. Illustration on the
blackboard.

• See Section 18.2.3 in the book

368

Concurrency control

The scheduler in a DBMS

• It is the taks of the scheduler in a DBMS to create, given a number of transactions,
a (conflict-)serializable schedule to be executed.

• New transactions arrive continuously, however, and the scheduler never fully knows
the transactions (e.g., because the transactions are large and require a lot of time
to run)

• The scheduler hence needs to construct its schedule dynamically, by allowing
certain read and write requests; blocking others; and restarting transactions when
necessary

369

Concurrency control

Multiple kinds of schedulers:

• Based on locking

• Based on timestamping

• Based on validation

370

Concurrency control

Lock-based schedulers

• Add actions of the form l(X) and u(X) to schedules.

• Before an item can be read or written, a transaction must have a lock.

• If transaction i requests a lock that is already taken by another transaction j, the
scheduler will pause the execution of i until j releases the lock. It is in particular
impossible for two transaction to possess a lock on the same item at the same
time.

371

Concurrency control

Example: T1 T2
l1(A), r1(A)
w1(A), l1(B)
u1(A)

l2(A), r2(A)
w2(A)
l2(B) denied

r1(B), w1(B)
u1(B)

l2(B), u2(A)
r2(B), w2(B)
u2(B)

372

Concurrency control

Example:

l1(A), r1(A), w1(A), u1(A), l2(A), r2(A), w2(A), u2(A),

l2(B), r2(B), w2(B), u2(B), l1(B), r1(B), w1(B), u1(B)

Question: is this conflict-serializable?

373

Concurrency control

Two-phase locking

In order to always obtain a conflict-serializable schedule using locks, we require
that in each transaction all lock requests precede all unlock requests.

Why is this sufficient to guarantee conflict-serializability?

Illustration on the blackboard. See Section 18.3.3 in book.

374

Concurrency control

Observe:

• It is harmless for multiple transactions to read the same item at the same time.

→ shared and exclusive locks. See Section 18.4 in book.

• In practice transactions will only make read and write requests. They do not make
lock and unlock requests. It is the task of the scheduler to add the latter to the
schedule

→ see Section 18.5 in book

375

Concurrency control

Schedulers based on timestamping

• Are optimistic schedulers

• Assume that we execute transactions T1, T2, and T3 where T1 was started first,
T2 second, and T3 third. A timestamping scheduler allows arbitrary reorderings of
actions from these transactions, but checks at appropriate times if the reordering
used are equivalent to the serial schedule T1, T2, T3. If not, certain transactions
are aborted and restarted.

376

Concurrency control

How does it work?

• Every transaction T receives a timestamp TS(T) upon creation. This can just be
a counter that is incremented for each new transaction.

• To each item X we associate two timestamps RT(X) and WT(X), and a boolean
C(X).

◦ RT(X) is the highest timestamp of a transaction that has read X

◦WT(X) is the highest timestamp of a transaction that has written X

◦ C(X) is true if, and only if, the most recent transaction to write X has already
committed.

377

Concurrency control

Unrealizable behavior that we want to avoid (1/4)

T start U start

T reads X

U writes X

Hence

A read request rT (X) should only be granted if TS(T) ≥WT(X).

378

Concurrency control

Unrealizable behavior that we want to avoid (2/4)

U start T start

U writes X T reads X

U aborts

Hence

Read to X should be delayed until the transaction with timestamp WT(X) com-
mits (i.e., C(X) becomes true).

379

Concurrency control

Unrealizable behavior that we want to avoid (3/4)

Suppose TS(U) ≥WT(X) at the time when U requests rU(X).

T start U start

T writes X

U reads X

Hence

A write request wT (X) should only be granted if TS(T) ≥ RT(X)

380

Concurrency control

Unrealizable behavior that we want to avoid (4/4)

T start U start

T writes X

U writes X

T commits U aborts

Hence

Request wT (X) is realizable if TS(T) ≥ RT(X) and TS(T) <WT(X) BUT:

• if C(X) is false then T must be delayed until the transaction with timestamp
WT(X) commits (i.e. C(X) becomes true)

• if C(X) is true then the write can be ignored

381

Concurrency control

How does it work: conclusion

• Every transaction receives a timestamp upon creation. This can just be a counter
that is incremented for each new transaction.

• To each item X we associate two timestamps RT(X) and WT(X), and a boolean
C(X).

• A transaction with timestamp t is allowed to read item X if t ≥WT(X). If C(X)
is false then the execution is paused until C(X) becomes true or the transaction
that has last written X aborts. If t < WT(X) then the transaction is aborted
and restarted with a larger timestamp.

• A transaction with timestamp t is allowed to write item X if RT(X) ≤ t and
WT(X) ≤ t. If t < RT(X) then the transaction is aborted and restarted with a
larger timestamp. If RT(X) ≤ t < WT(X) and C(X) is true then we keep the
current value of X . Otherwise the execution is paused until C(X) becomes true,
or until the transaction that last wrote X aborts.

382

Concurrency control

Locking versus timestamping

• Locking is very efficient when we have many transactions that both read and write.
In that case, timestamping will need to abort and restart many transactions.

• Timestamping is very efficient when we have many transactions that make only
read requests. In that case, many transactions would have to wait for locks
when using a lock-based scheduler, while they can immediately proceed with
timestamping-based schedulers.

383

Concurrency control

Schedulers based on validation

• Are optimistic

• The scheduler records, for every transaction T , the set RS(T) of items read by
T , and the set WS(T) of items written by T .

• Transactions are executed in three phases. In the first phase a transaction reads
all items in RS(T). In the second phase, the scheduler validates the transaction
based on RS(T) and WS(T). If validation fails, the transaction is aborted and
restarted. In the third phase the transaction writes all items in WS(T).

• The goal is again to obtain a schedule that is equivalent with the serial transaction
schedule that orders transactions by their starting time.

384

Concurrency control

Unrealizable behavior that we want to avoid (1/2)

U start T start

U writes X

T reads X

U validated T validating

Hence

• Record, for every transaction V , the time START(V), VAL(V), and FIN(V)
at which V starts, validates, and finishes, respectively.

• T can only successfully validate if RS(T)∩WS(U) = ∅ for any previously val-
idated transaction U that was not yet finished when T started, i.e., FIN(U) >
START(T).

385

Concurrency control

Unrealizable behavior that we want to avoid (2/2)

U validated T validating

U writes X

T writes X

U finish

Hence

T can only successfully validate if WS(T) ∩ WS(U) = ∅ for every previously
validated U that did not finish before T validated, i.e., FIN(U) > VAL(T).

386

Concurrency control

How does the scheduler validate?

A transaction T passes validation if:

1. RS(T) ∩WS(U) = ∅ for every transaction U that has already been validated,
but was not finished when T started.

2. WS(T)∩WS(U) = ∅ for every transaction U that has already been validated,
but is currently not yet finished.

If T does not pass validation, it is aborted and restarted.

387

More about transaction management

Interaction between crash recovery and concurrency control

• Crash recovery: recover from system errors by means of logging

• Concurrency control: prevent non-serializable schedules

• Combination?

388

More about transaction management

Dirty reads

T1 T2 A B
l1(A); r1(A); 25 25
A := A + 100;
w1(A); l1(B);u1(A); 125

l2(A); r2(A);
A := A ∗ 2;
w2(A); 250
Commit

r1(B);
Crash

• Recovery problem: T2 has committed, and can hence not be rolled back. T1,
on the other hand, requires a rollback. But T2 depends on T1!

389

More about transaction management

Dirty reads

T1 T2 A B
l1(A); r1(A); 25 25
A := A + 100;
w1(A); l1(B);u1(A); 125

l2(A); r2(A);
A := A ∗ 2;
w2(A); 250
l2(B)Denied

r1(B);
Abort;u1(B);

l2(B);u2(A); r2(B);
B := B ∗ 2;
w2(B);u2(B); 50

• Implies cascading rollbacks in lock-based schedulers.

390

More about transaction management

Recoverable schedules

A schedule is called recoverable when every transaction in the schedule commits
only when every other transaction from which it has read data, have already
committed.

Example

• Recoverable and serial: S1 = w1(A);w1(B);w2(A); r2(B); c1; c2;

• Recoverable, but not serializable: S2 = w2(A);w1(B);w1(A); r2(B); c1; c2;

• Not recoverable, but serializable: S3 = w1(A);w1(B);w2(A); r2(B); c2; c1;

Notice that

Recoverable schedules like S1 may still require a cascading rollback!

391

More about transaction management

Avoid Cascading Rollback (ACR) schedules

A schedule is said to avoid cascading rollbacks if transactions in the schedule only
read data from transaction that have already committed. In other words: the
transaction can never ready “dirty data”.

Example

• ACR and serial: S4 = w1(A);w1(B);w2(A); c1; r2(B); c2;

Observe:

Every ACR schedule is recoverable.

392

More about transaction management

Strict schedules

A lock-based schedule is strict when every transaction only releases its exclusive
locks when it has committed or aborted, and the commit or abort log record has
been written to disk.

Observe:

• Every strict schedule is ACR.

• Every strict schedule is serializable.

Simplification

We need not wait until the commit or abort log record has been written to disk,
provided that we are guaranteed that log records are written in the same order as
they are created (group commit).

393

