
Concurrency Control
Ensuring Isolation

269



Concurrency control

Concurrency

To increase throughput and response time, a DBMS will execute multiple trans-
actions at the same time.

Concurrency control ensures that transactions have the same effect as if
they were executed in isolation

270



Concurrency control

Problem: WR conflict

T1 T2

READ(A,s)

s -= 100

WRITE(A,s)

READ(A,t)

t *= 1.06

WRITE(A,t)

READ(B,t)

t *= 1.06

WRITE(B,t)

READ(B,s)

s += 100

WRITE(B,s)

271



Concurrency control

Problem: WW conflict

T1 T2

s = 100

WRITE(A,s)

t = 200

WRITE(A,t)

t = 200

WRITE(B,t)

s = 100

WRITE(B,s)

272



Concurrency control

Definitions

• An action is an expression of the form r(X) or w(X)

• A transaction is a sequence of actions.

r(A), r(B), w(A), w(B)

We abstract away from the actual values read or written.

• A schedule is a sequence of actions belonging to multiple transactions. Subscripts
indicate to which transaction an action belongs.

r1(A), w1(A), r2(A), w2(A), r1(B), w1(B), r2(B), w2(B)

• A serial schedule is a schedule in which transactions are not executed concurrently.
In a serial schedule the actions hence occur grouped per transaction.

r2(A), w2(A), r2(B), w2(B), r1(A), w1(A), r1(B), w1(B)

273



Concurrency control

Serializability

A schedule is called serializable if there exists an equivalent serial schedule.

Example

The following schedules are equivalent:

S1 :=r1(A), w1(A), r2(A), w2(A), r1(B), w1(B), r2(B), w2(B)

S2 :=r1(A), w1(A), r1(B), w1(B), r2(A), w2(A), r2(B), w2(B)

Hence S1 is serializable.

274



Concurrency control

Conflict-serializability

• Two actions in a schedule are in conflict if:

1. they belong to the same transaction; or

2. act upon the same element, and one of them is a write.

r1(A), w1(A), r2(A), w2(A), r1(B), w1(B), r2(B), w2(B)

• A schedule is conflict-serializable if we can obtain a serial schedule by (repeatedly)
swapping non-conflicting actions.

Example

We can obtain S2 by swapping only non-conflicting actions from S1:

S1 :=r1(A), w1(A), r2(A), w2(A), r1(B), w1(B), r2(B), w2(B)

S2 :=r1(A), w1(A), r1(B), w1(B), r2(A), w2(A), r2(B), w2(B)

Consequently S1 is conflict-serializable.

275



Concurrency control

Clearly, conflict-serializability implies serializability

The converse is not true

S1 is equivalent to S2, but S2 cannot be obtained from S1 by conflict-free swap-
ping:

S1 :=w1(Y ), w2(Y ), w2(X), w1(X), w3(X)

S2 :=w1(Y );w1(X);w2(Y );w2(X);w3(X)

Hence S1 is not conflict-serializable, but it is serializable.

In practice, a DBMS will only allow conflict-serializable schedules

276



Concurrency control

A simple algorithm to check conflict-serializability

• Construct the precedence graph

• Check whether this graphs contains cycles. If so, output “no”, otherwise output
“yes”

Example

S1 := r2(A), r1(B), w2(A), r3(A), w1(B), w3(A), r2(B), w2(B)

1 2 3

S2 := w1(Y ), w2(Y ), w2(X), w1(X), w3(X)

1 2 3

277



Concurrency control

Why does this work?

• If there exists a cycle T1 → T2 → · · · → Tn → T1 in the dependency graph
then we there are actions from T1 that (1) follow actions from Tn and (2) cannot
be moved before the start of Tn by means of conflict-free swapping. Conversely,
there are also actions of Tn that follow actions of T1 and that cannot be moved
before Tn−1 by means of conflict-free swapping. As a consequence, we can never
obtain a serial schedule by means of conflict-free swapping (in a serial schedule
all actions of T1 must occur together).

• If there is no cycle in the dependency graph then we can obtain an equivalent
serial schedule by topologically sorting the dependency graph. Illustration on the
blackboard.

• See Section 18.2.3 in the book

278



Concurrency control

The scheduler in a DBMS

• It is the taks of the scheduler in a DBMS to create, given a number of transactions,
a (conflict-)serializable schedule to be executed.

• New transactions arrive continuously, however, and the scheduler never fully knows
the transactions (e.g., because the transactions are large and require a lot of time
to run)

• The scheduler hence needs to construct its schedule dynamically, by allowing
certain read and write requests; blocking others; and restarting transactions when
necessary

279



Concurrency control

Multiple kinds of schedulers:

• Based on locking

• Based on timestamping

• Based on validation

280



Concurrency control

Lock-based schedulers

• Add actions of the form l(X) and u(X) to schedules.

• Before an item can be read or written, a transaction must have a lock.

• If transaction i requests a lock that is already taken by another transaction j, the
scheduler will pause the execution of i until j releases the lock. It is in particular
impossible for two transaction to possess a lock on the same item at the same
time.

281



Concurrency control

Example: T1 T2

l1(A), r1(A)
w1(A), l1(B)
u1(A)

l2(A), r2(A)
w2(A)
l2(B) denied

r1(B), w1(B)
u1(B)

l2(B), u2(A)
r2(B), w2(B)
u2(B)

282



Concurrency control

Example:

l1(A), r1(A), w1(A), u1(A), l2(A), r2(A), w2(A), u2(A),

l2(B), r2(B), w2(B), u2(B), l1(B), r1(B), w1(B), u1(B)

Question: is this conflict-serializable?

283



Concurrency control

Two-phase locking

In order to always obtain a conflict-serializable schedule using locks, we require
that in each transaction all lock requests precede all unlock requests.

Why is this sufficient to guarantee conflict-serializability?

Illustration on the blackboard. See Section 18.3.3 in book.

284



Concurrency control

Observe:

• It is harmless for multiple transactions to read the same item at the same time.

→ shared and exclusive locks. See Section 18.4 in book.

• In practice transactions will only make read and write requests. They do not make
lock and unlock requests. It is the task of the scheduler to add the latter to the
schedule

→ see Section 18.5 in book

285



Concurrency control

Schedulers based on timestamping

• Are optimistic schedulers

• Assume that we execute transactions T1, T2, and T3 where T1 was started first,
T2 second, and T3 third. A timestamping scheduler allows arbitrary reorderings of
actions from these transactions, but checks at appropriate times if the reordering
used are equivalent to the serial schedule T1, T2, T3. If not, certain transactions
are aborted and restarted.

286



Concurrency control

How does it work?

• Every transaction T receives a timestamp TS(T ) upon creation. This can just be
a counter that is incremented for each new transaction.

• To each itemX we associate two timestamps RT(X) andWT(X), and a boolean
C(X).

◦ RT(X) is the highest timestamp of a transaction that has read X

◦WT(X) is the highest timestamp of a transaction that has written X

◦ C(X) is true if, and only if, the most recent transaction to write X has already
committed.

287



Concurrency control

Unrealizable behavior that we want to avoid (1/4)

������� �������

�����	��


���������


Hence

A read request rT (X) should only be granted if TS(T ) ≥ WT(X).

288



Concurrency control

Unrealizable behavior that we want to avoid (2/4)

������� �������

����	�
��� ���
�����

���
����

Hence

Read to X should be delayed until the transaction with timestamp RT(X) com-
mits (i.e., C(X) becomes true).

289



Concurrency control

Unrealizable behavior that we want to avoid (3/4)

Suppose TS(U) ≥ WT(X) at the time when U requests rU(X).

������� �������

����	�
���

���
�����

Hence

A write request wT (X) should only be granted if TS(T ) ≥ RT(X)

290



Concurrency control

Unrealizable behavior that we want to avoid (4/4)

������� �������

����	�
���

����	�
���

���
��	�� ����
���

Hence

Request wT (X) is realizable if TS(T ) ≥ RT(X) and TS(T ) < WT(X) BUT:

• if C(X) is false then T must be delayed until the transaction with timestamp
WT(X) commits (i.e. C(X) becomes true)

• if C(X) is true then the write can be ignored

291



Concurrency control

How does it work: conclusion

• Every transaction receives a timestamp upon creation. This can just be a counter
that is incremented for each new transaction.

• To each itemX we associate two timestamps RT(X) andWT(X), and a boolean
C(X).

• A transaction with timestamp t is allowed to read itemX if t ≥ WT(X). If C(X)
is false then the execution is paused until C(X) becomes true or the transaction
that has last written X aborts. If t < WT(X) then the transaction is aborted
and restarted with a larger timestamp.

• A transaction with timestamp t is allowed to write item X if RT(X) ≤ t and
WT(X) ≤ t. If t < RT(X) then the transaction is aborted and restarted with a
larger timestamp. If RT(X) ≤ t < WT(X) and C(X) is true then we keep the
current value of X . Otherwise the execution is paused until C(X) becomes true,
or until the transaction that last wrote X aborts.

292



Concurrency control

Locking versus timestamping

• Locking is very efficient when we have many transactions that both read and write.
In that case, timestamping will need to abort and restart many transactions.

• Timestamping is very efficient when we have many transactions that make only
read requests. In that case, many transactions would have to wait for locks
when using a lock-based scheduler, while they can immediately proceed with
timestamping-based schedulers.

293



Concurrency control

Schedulers based on validation

• Are optimistic

• The scheduler records, for every transaction T , the set RS(T ) of items read by
T , and the set WS(T ) of items written by T .

• Transactions are executed in three phases. In the first phase a transaction reads
all items in RS(T ). In the second phase, the scheduler validates the transaction
based on RS(T ) and WS(T ). If validation fails, the transaction is aborted and
restarted. In the third phase the transaction writes all items in WS(T ).

• The goal is again to obtain a schedule that is equivalent with the serial transaction
schedule that orders transactions by their starting time.

294



Concurrency control

Unrealizable behavior that we want to avoid (1/2)

������� �������

����	�
���

���
�����

��
��	���
� ��
��	���	��

Hence

• Record, for every transaction V , the time START(V ), VAL(V ), and FIN(V )
at which V starts, validates, and finishes, respectively.

• T can only successfully validate if RS(T )∩WS(U) = ∅ for any previously val-
idated transaction U that was not yet finished when T started, i.e., FIN(U) >
START(T ).

295



Concurrency control

Unrealizable behavior that we want to avoid (2/2)

���������	� 
�����������

��
���	���


�
���	���

��������

Hence

T can only successfully validate if WS(T ) ∩ WS(U) = ∅ for every previously
validated U that did not finish before T validated, i.e., FIN(U) > VAL(T ).

296



Concurrency control

How does the scheduler validate?

A transaction T passes validation if:

1. RS(T ) ∩WS(U) = ∅ for every transaction U that has already been validated,
but was not finished when T started.

2.WS(T )∩WS(U) = ∅ for every transaction U that has already been validated,
but is currently not yet finished.

If T does not pass validation, it is aborted and restarted.

297


