
CS 245 Notes 08 1

Crash Recovery

Hector Garcia-Molina
Stijn Vansummeren

CS 245 Notes 08 2

Integrity or correctness of data

• Would like data to be “accurate” or
“correct” at all times

Name

White
Green
Gray

Age

52
3421

1

EMP

CS 245 Notes 08 3

Integrity or consistency constraints

• Examples of predicates data must
satisfy:
- x is key of relation R

- x y holds in R

- Domain(x) = {Red, Blue, Green}

is valid index for attribute x of R

- no employee should make more than twice
the average salary

CS 245 Notes 08 4

Definition:

• Consistent state: satisfies all constraints
• Consistent DB: DB in consistent state

CS 245 Notes 08 5

Constraints (as we use here) may
not capture “full correctness”

Example 1 Transaction constraints
• When salary is updated,

new salary > old salary
• When account record is deleted,

balance = 0

CS 245 Notes 08 6

Example 2 Database should reflect
 real world

DB
Reality

Constraints (as we use here) may
not capture “full correctness”

CS 245 Notes 08 7

in any case, continue with constraints...

Observation: DB cannot always be consistent!

Example: a1 + a2 +…. an = TOT (constraint)

Deposit $100 in a2:

a2 a2 + 100
TOT TOT + 100

CS 245 Notes 08 8

 a2

 TOT

..

50

..

1000

..

150

..

1000

..

150

..

1100

Example: a1 + a2 +…. an = TOT (constraint)

Deposit $100 in a2: a2 a2 + 100

TOT TOT + 100

CS 245 Notes 08 9

Transaction: collection of actions
that preserve consistency

Consistent DB Consistent DB’T

CS 245 Notes 08 10

Big assumption:

If transaction T starts with consistent
state + T executes in isolation

 T leaves consistent state

CS 245 Notes 08 11

Correctness (informally)

• If we stop running transactions,
– DB left consistent

• Each transaction sees a consistent DB

CS 245 Notes 08 12

How can constraints be violated?

• Transaction bug
• DBMS bug
• Hardware failure

e.g., disk crash alters balance of account

• Data sharing
e.g.: T1: give 10% raise to programmers

 T2: change programmers systems analysts

CS 245 Notes 08 13

How can we prevent/fix violations?

• Chapter 17: due to failures only
• Chapter 18: due to data sharing only
• Chapter 19: due to failures and sharing

CS 245 Notes 08 14

We will not consider:

• How to write correct transactions
• How to write correct DBMS
• Constraint checking & repair

That is, solutions studied here do not need

to know constraints

CS 245 Notes 08 15

Crash Recovery

• First order of business:

Failure Model

Events Desired

 Undesired Expected

 Unexpected

CS 245 Notes 08 16

Our failure model

 processor

memory disk

CPU

M D

CS 245 Notes 08 17

Desired events: see product manuals….

Undesired expected events:

System crash

- memory lost

- cpu halts, resets

CS 245 Notes 08 18

Desired events: see product manuals….

Undesired expected events:

System crash

- memory lost

- cpu halts, resets

Undesired Unexpected: Everything else!

that’s it!!

CS 245 Notes 08 19

Examples:

• Disk data is lost

• Memory lost without CPU halt

• CPU implodes wiping out universe….

Undesired Unexpected: Everything else!

CS 245 Notes 08 20

Is this model reasonable?

Approach: Add low level checks +
 redundancy to increase

 probability that model holds

E.g., Replicate disk storage (stable store)

 Memory parity

 CPU checks

CS 245 Notes 08 21

Second order of business:

Storage hierarchy

Memory Disk

x x

CS 245 Notes 08 22

Operations:

• Input (x): block containing x memory

• Output (x): block containing x disk

CS 245 Notes 08 23

Operations:

• Input (x): block containing x memory
• Output (x): block containing x disk

• Read (x,t): do input(x) if necessary
 t value of x in block

• Write (x,t): do input(x) if necessary
 value of x in block t

CS 245 Notes 08 24

Key problem Unfinished transaction

Example Constraint: A=B

T1: A A 2

 B B 2

CS 245 Notes 08 25

T1: Read (A,t); t t2
Write (A,t);
Read (B,t); t t2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

CS 245 Notes 08 26

T1: Read (A,t); t t2
Write (A,t);
Read (B,t); t t2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

CS 245 Notes 08 27

T1: Read (A,t); t t2
Write (A,t);
Read (B,t); t t2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

16

failure!

CS 245 Notes 08 28

• Need atomicity:
– execute all actions of a transaction or

none at all

CS 245 Notes 08 29

One solution: undo logging (immediate
 modification)

essentially due to:
– Hansel and Gretel, 782 AD

CS 245 Notes 08 30

T1: Read (A,t); t t2 A=B
Write (A,t);
Read (B,t); t t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging (Immediate modification)

CS 245 Notes 08 31

T1: Read (A,t); t t2 A=B
Write (A,t);
Read (B,t); t t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

CS 245 Notes 08 32

T1: Read (A,t); t t2 A=B
Write (A,t);
Read (B,t); t t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>

CS 245 Notes 08 33

T1: Read (A,t); t t2 A=B
Write (A,t);
Read (B,t); t t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>

16

CS 245 Notes 08 34

T1: Read (A,t); t t2 A=B
Write (A,t);
Read (B,t); t t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

<T1, commit>
16 <T1, B, 8>

16

CS 245 Notes 08 35

One “complication”

• Log is first written in memory
• Not written to disk on every action

memory

DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

CS 245 Notes 08 36

One “complication”

• Log is first written in memory
• Not written to disk on every action

memory

DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

16
BAD STATE

1

CS 245 Notes 08 37

One “complication”

• Log is first written in memory
• Not written to disk on every action

memory

DB

 Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>
<T1, commit>

A: 8
B: 8

16
BAD STATE

2

<T1, B, 8>
<T1, commit>

..
.

CS 245 Notes 08 38

Undo logging rules

(1) For every action generate undo log
 record (containing old value)

(2) Before x is modified on disk, log
 records pertaining to x must be
 on disk (write ahead logging: WAL)

(3) Before commit is flushed to log, all
 writes of transaction must be
 reflected on disk

CS 245 Notes 08 39

Recovery rules: Undo logging

• For every transaction Ti with
<Ti, start> in log:
– If <Ti,commit> or <Ti,abort>in log:

 do nothing
Else
 For all <Ti, X, v> in log:

write (X, v)

output (X)

 Write <Ti, abort> to log

CS 245 Notes 08 40

Recovery rules: Undo logging

• For every transaction Ti with
<Ti, start> in log:
– If <Ti,commit> or <Ti,abort>in log:

 do nothing
Else
 For all <Ti, X, v> in log:

write (X, v)

output (X)

 Write <Ti, abort> to log
IS THIS CORRECT??

CS 245 Notes 08 41

Recovery rules: Undo logging

(1) Let S = set of transactions with
 <Ti, start> in log, but no <Ti, commit> or
 <Ti, abort> record in log

(2) For each <Ti, X, v> in log,

 in reverse order (latest earliest) do:

- if Ti S then - write (X, v)

 - output (X)

(3) For each Ti S do

- write <Ti, abort> to log

CS 245 Notes 08 42

Question

• Can writes of <Ti, abort> records
be done in any order (in Step 3)?
– Example: T1 and T2 both write A
– T1 executed before T2
– T1 and T2 both rolled-back
– <T1, abort> written but NOT <T2, abort>?
– <T2, abort> written but NOT <T1, abort>?

T1 write A T2 write A
time/log

CS 245 Notes 08 43

What if failure during recovery?

No problem! Undo idempotent

Can we truncate the log?

• Under a heavy transaction load, the log
grows quickly

• Are there parts of the log that we can
discard? (i.e. are there parts we know
for sure won't be needed again?)
– E.g., everything before a

<Ti, commit>?

CS 245 Notes 08 45

Solution: (Simple) Checkpoint

Periodically:
(1) Do not accept new transactions

(2) Wait until all running transactions have
finished and flushed their modifications to
disk

(3) Flush all log records to disk (log)
(4) Write “checkpoint” record on disk (log)

(5) Resume accepting transactions

An example undo log with simple
checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T2, B, 10>
<T2, C, 15>
<T1, D, 20>
<T1, commit>
<T2, commit>
<CKPT>
<T3, start>
<T3, E, 25>
<T3, F, 30>

failure!

An example undo log with simple
checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T2, B, 10>
<T2, C, 15>
<T1, D, 20>
<T1, commit>
<T2, commit>
<CKPT>
<T3, start>
<T3, E, 25>
<T3, F, 30>

failure!

UNDO to latest checkpoint

An example undo log with simple
checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T2, B, 10>
<T2, C, 15>
<T1, D, 20>
<T1, commit>
<T2, commit>
<CKPT>
<T3, start>
<T3, E, 25>
<T3, F, 30>

failure!

UNDO to latest checkpoint

This part can be removed
from the log

CS 245 Notes 08 49

Non-quiescent checkpoint

Simple checkpoints effectively shut down
the system while waiting for the open
transactions to commit

Therefore, a more complex technique
known as nonquiescent checkpointing is
normally used, that allows new
transactions to enter the system during
the checkpoint

CS 245 Notes 08 50

Solution: non-quiescent checkpoint

Periodically:
(1) Write a log record <START CKPT (T1,...,

TK) and flush the log. T1...Tk indentify the
active transactions (not yet committed
and written their changes to disk)

(2) Wait until all of T1 … Tk commit or
abort, but do not prohibit other
transactions form starting

(3) When all of T1 … Tk have completed,
write <END CKPT> to log on disk (log)

An example undo log with
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T2, B, 10>
<START CKPT (T1,T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<T1, commit>
<T3, E, 25>
<T2, commit>
<END CKPT>
<T3, F, 30>

failure!

An example undo log with
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T2, B, 10>
<START CKPT (T1,T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<T1, commit>
<T3, E, 25>
<T2, commit>
<END CKPT>
<T3, F, 30>

failure!

UNDO to latest
start checkpoint

An example undo log with
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T2, B, 10>
<START CKPT (T1,T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<T1, commit>
<T3, E, 25>
<T2, commit>
<END CKPT>
<T3, F, 30>

failure!

UNDO to latest
start checkpoint

This part can be removed
from the log

An example undo log with
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T2, B, 10>
<START CKPT (T1,T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<T1, commit>
<T3, E, 25>

failure!

An example undo log with
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T2, B, 10>
<START CKPT (T1,T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<T1, commit>
<T3, E, 25>

failure!

UNDO to latest
start checkpoint?

An example undo log with
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T2, B, 10>
<START CKPT (T1,T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<T1, commit>
<T3, E, 25>

failure!

UNDO to latest
COMPLETED

start checkpoint
!

CS 245 Notes 08 57

To discuss:

• Redo logging
• Undo/redo logging, why both?
• Real world actions
• Media failures

CS 245 Notes 08 58

Redo logging (deferred modification)

T1: Read(A,t); t t2; write (A,t);

 Read(B,t); t t2; write (B,t);

Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB

 LOG

CS 245 Notes 08 59

Redo logging (deferred modification)

T1: Read(A,t); t t2; write (A,t);

 Read(B,t); t t2; write (B,t);

Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB

 LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

CS 245 Notes 08 60

Redo logging (deferred modification)

T1: Read(A,t); t t2; write (A,t);

 Read(B,t); t t2; write (B,t);

Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB

 LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

output
16
16

CS 245 Notes 08 61

Redo logging (deferred modification)

T1: Read(A,t); t t2; write (A,t);

 Read(B,t); t t2; write (B,t);

Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB

 LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>
<T1, end>

output
16
16

CS 245 Notes 08 62

Redo logging rules
(1) For every action, generate redo log

 record (containing new value)

(2) Before X is modified on disk (DB),
 all log records for transaction that
 modified X (including commit) must
 be on disk

(3) Flush log at commit

(4) Write END record after DB updates
 flushed to disk

CS 245 Notes 08 63

• For every Ti with <Ti, commit> in log:
– For all <Ti, X, v> in log:

Write(X, v)

Output(X)

Recovery rules: Redo logging

CS 245 Notes 08 64

• For every Ti with <Ti, commit> in log:
– For all <Ti, X, v> in log:

Write(X, v)

Output(X)

Recovery rules: Redo logging

IS THIS CORRECT??

CS 245 Notes 08 65

(1) Let S = set of transactions with
 <Ti, commit> (and no <Ti, end>) in log

(2) For each <Ti, X, v> in log, in forward

 order (earliest latest) do:

- if Ti S then Write(X, v)

 Output(X)
(3) For each Ti S, write <Ti, end>

Recovery rules: Redo logging

CS 245 Notes 08 66

Non-quiescent checkpointing a
redo log

Periodically:

(1) Write a log record <START CKPT (T1,...,Tk)
where T1,...,Tk are all the active
(uncommitted) transactions, and flush the
log.

(2) Write to disk all database elements written
to buffers but not yet to disk by transactions
that had already committed when the start
ckpt record was written to the log

(3) Write the <END CKPT> record and flush the
log

An example redo log with
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T1, commit>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<T1, end>
<END CKPT>
<COMMIT T2>
<COMMIT T3> failure!

An example redo log with
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T1, commit>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<T1, end>
<END CKPT>
<COMMIT T2>
<COMMIT T3> failure!

REDO all committed transactions
 that were active (uncommitted)

when the checkpoint began,
or started later:

T2 and T3

An example redo log with
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T1, commit>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<T1, end>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

failure!

An example redo log with
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T1, commit>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<T1, end>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

failure!

REDO all committed transactions
 that were active (uncommitted)

when the checkpoint began,
or started later:

Only T2

An example redo log with
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T1, commit>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<T1, end>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

failure!

An example redo log with
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T1, commit>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<T1, end>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

failure!

REDO until the previous
 complete

<START CKPT>
(or to the beginning of the log)

Note:

• In the presence of non-quiescent
checklogging, the <Ti, end> log
records are redundant (the
checkpoint gives the same
information). The book hence does
not use such log records.

• The exercises do not use such
records

CS 245 Notes 08 74

Key drawbacks:

• Undo logging: cannot bring backup DB
copies up to date

• Redo logging: need to keep all modified
blocks in memory
until commit

CS 245 Notes 08 75

Solution: undo/redo logging!

Update <Ti, Xid, New X val, Old X val>

page X

CS 245 Notes 08 76

Rules

• Page X can be flushed before or
after Ti commit

• Log record flushed before corresponding
updated page (WAL)

• Flush at commit (log only)

CS 245 Notes 08 77

Non-quiescent checkpointing an
undo/redo log

Periodically:

(1) Write a log record <START CKPT (T1,...,Tk)
where T1,...,Tk are all the active
(uncommitted) transactions, and flush the
log.

(2) Write to disk all buffers that are dirty,i.e.,
they contain one or more changed database
elements.

(3) Write the <END CKPT> record and flush the
log

CS 245 Notes 08 78

Recovery process:

• Backwards pass (end of log -> latest valid checkpoint
start)

– construct set S of committed transactions
– undo actions of transactions not in S

• Undo pending transactions
– follow undo chains for transactions in

 (checkpoint active list) - S

Forward pass (latest valid checkpoint start -> end of log)

– redo actions of S transactions

backward pass

forward pass
start

check-
point

CS 245 Notes 08 79

Real world actions

E.g., dispense cash at ATM

Ti = a1 a2 …... aj …... an

$

CS 245 Notes 08 80

Solution

(1) execute real-world actions after commit

(2) try to make idempotent

CS 245 Notes 08 81

 ATM

Give$$

(amt, Tid, time)

$

give(amt)

lastTid:

time:

CS 245 Notes 08 82

Media failure (loss of non-volatile
storage)

A: 16

CS 245 Notes 08 83

Media failure (loss of non-volatile
storage)

A: 16

Solution: Make copies of data!

CS 245 Notes 08 84

Example 1 Triple modular redundancy

• Keep 3 copies on separate disks
• Output(X) --> three outputs
• Input(X) --> three inputs + vote

X1 X2 X3

CS 245 Notes 08 85

Example #2 Redundant writes,
 Single reads

• Keep N copies on separate disks
• Output(X) --> N outputs
• Input(X) --> Input one copy

- if ok, done

- else try another one

 Assumes bad data can be detected

CS 245 Notes 08 86

Example #3: DB Dump + Log

backup
database

active
database

log

• If active database is lost,
– restore active database from backup
– bring up-to-date using redo entries in log

CS 245 Notes 08 87

When can log be discarded?

check-
point

db
dump

last
needed
undo

not needed for
media recovery redo

not needed for undo
after system failure

not needed for
redo after system failure

log

time

last
needed
undo

not needed for
media recovery

CS 245 Notes 08 88

Summary

• Consistency of data
• One source of problems: failures

- Logging

- Redundancy

• Another source of problems:
 Data Sharing..... next

	CS 245: Database System Principles Notes 08: Failure Recovery
	Integrity or correctness of data
	Integrity or consistency constraints
	Definition:
	Constraints (as we use here) may not capture “full correctness”
	Slide 6
	in any case, continue with constraints...
	Slide 8
	Transaction: collection of actions that preserve consistency
	Big assumption:
	Correctness (informally)
	How can constraints be violated?
	How can we prevent/fix violations?
	Will not consider:
	Chapter 8[17]: Recovery
	Our failure model
	Slide 17
	Slide 18
	Slide 19
	Is this model reasonable?
	Second order of business:
	Operations:
	Slide 23
	Key problem Unfinished transaction
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	One “complication”
	Slide 36
	Slide 37
	Undo logging rules
	Recovery rules: Undo logging
	Slide 40
	Slide 41
	Question
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	To discuss:
	Redo logging (deferred modification)
	Slide 59
	Slide 60
	Slide 61
	Redo logging rules
	Recovery rules: Redo logging
	Slide 64
	Slide 65
	Solution: Checkpoint
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Key drawbacks:
	Solution: undo/redo logging!
	Rules
	Slide 77
	Recovery process:
	Real world actions
	Solution
	Slide 81
	Media failure (loss of non-volatile storage)
	Slide 83
	Example 1 Triple modular redundancy
	Example #2 Redundant writes, Single reads
	Example #3: DB Dump + Log
	When can log be discarded?
	Summary

