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Integrity or correctness of data

• Would like data to be “accurate” or
“correct” at all times

      
Name

White
Green
Gray

Age

52
3421

1

EMP
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Integrity or consistency constraints

• Examples of predicates data must 
satisfy:
- x is key of relation R

- x  y holds in R

- Domain(x) = {Red, Blue, Green}

is valid index for attribute x of R

- no employee should make more than twice 
the average salary
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Definition:

• Consistent state: satisfies all constraints
• Consistent DB: DB in consistent state
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Constraints (as we use here) may 
not capture “full correctness”

Example 1   Transaction constraints
• When salary is updated, 

new salary >  old salary
• When account record is deleted,

balance = 0
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Example 2     Database should reflect
      real world

DB
Reality

Constraints (as we use here) may 
not capture “full correctness”
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in any case, continue with constraints...

Observation:  DB cannot always be consistent!

Example: a1 + a2 +…. an = TOT (constraint)

Deposit $100 in a2:   

a2    a2 + 100
TOT    TOT + 100
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    a2

     TOT

..

50

..

1000

..

150

..

1000

..

150

..

1100

Example: a1 + a2 +…. an = TOT (constraint)

Deposit $100 in a2:   a2    a2 + 100

TOT    TOT + 100
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Transaction:  collection of actions 
that preserve consistency

   

Consistent DB Consistent DB’T
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Big assumption:

If transaction T starts with consistent 
state + T executes in isolation

 T leaves consistent state
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Correctness  (informally)

• If we stop running transactions, 
– DB left consistent

• Each transaction sees a consistent DB
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How can constraints be violated?

• Transaction bug
• DBMS bug
• Hardware failure

e.g., disk crash alters balance of account

• Data sharing
e.g.: T1: give 10% raise to programmers     

      T2: change programmers  systems analysts
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How can we prevent/fix violations?

• Chapter 17: due to failures only
• Chapter 18: due to data sharing only
• Chapter 19: due to failures and sharing
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We will not consider:

• How to write correct transactions
• How to write correct DBMS
• Constraint checking & repair

That is, solutions studied here do not need 

to know constraints
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Crash Recovery

• First order of business:

Failure Model

Events  Desired

 Undesired  Expected

 Unexpected
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Our failure model

    processor

memory        disk

CPU

M D
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Desired events: see product manuals….

Undesired expected events:

System crash

- memory lost

- cpu halts, resets
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Desired events: see product manuals….

Undesired expected events:

System crash

- memory lost

- cpu halts, resets

Undesired Unexpected:    Everything else!

that’s it!!
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Examples:

• Disk data is lost

• Memory lost without CPU halt

• CPU implodes wiping out universe….

Undesired Unexpected:    Everything else!
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Is this model reasonable?

Approach:  Add low level checks +
  redundancy to increase

  probability that model holds

E.g.,  Replicate disk storage (stable store)

 Memory parity

 CPU checks
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Second order of business:

Storage hierarchy

Memory                  Disk

x x
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Operations:

• Input (x):   block containing x  memory

• Output (x): block containing x  disk
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Operations:

• Input (x):   block containing x  memory
• Output (x): block containing x  disk

• Read (x,t): do input(x) if necessary
     t  value of x in block

• Write (x,t): do input(x) if necessary
     value of x in block  t
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Key problem   Unfinished transaction

Example Constraint: A=B

 
T1:  A    A  2

       B    B  2
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T1: Read (A,t);  t  t2
Write (A,t);
Read (B,t);  t  t2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk
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T1: Read (A,t);  t  t2
Write (A,t);
Read (B,t);  t  t2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16
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T1: Read (A,t);  t  t2
Write (A,t);
Read (B,t);  t  t2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

16

failure!
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• Need atomicity:  
– execute all actions of a transaction or 

none at all
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One solution: undo logging  (immediate
       modification)

essentially due to: 
– Hansel and Gretel, 782 AD
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T1: Read (A,t);  t  t2          A=B
Write (A,t);
Read (B,t);  t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging    (Immediate modification)
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T1: Read (A,t);  t  t2          A=B
Write (A,t);
Read (B,t);  t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging    (Immediate modification)

16
16

<T1, start>
<T1, A, 8>
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T1: Read (A,t);  t  t2          A=B
Write (A,t);
Read (B,t);  t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging    (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>



CS 245 Notes 08 33

T1: Read (A,t);  t  t2          A=B
Write (A,t);
Read (B,t);  t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging    (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>

16
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T1: Read (A,t);  t  t2          A=B
Write (A,t);
Read (B,t);  t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging    (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

<T1, commit>
16 <T1, B, 8>

16
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One “complication”

• Log is first written in memory
• Not written to disk on every action

memory

DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8
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One “complication”

• Log is first written in memory
• Not written to disk on every action

memory

DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

16
BAD STATE

# 1
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One “complication”

• Log is first written in memory
• Not written to disk on every action

memory

DB

   Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>
<T1, commit>

A: 8
B: 8

16
BAD STATE

# 2

<T1, B, 8>
<T1, commit>

..
.
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Undo logging rules

(1) For every action generate undo log    
   record (containing old value)

(2) Before x is modified on disk, log    
   records pertaining to x must be
   on disk (write ahead logging: WAL)

(3) Before commit is flushed to log, all    
   writes of transaction must be
   reflected on disk
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Recovery rules:         Undo logging

• For every transaction Ti with 
<Ti, start> in log:
– If <Ti,commit> or <Ti,abort>in log:

      do nothing
Else   
      For all <Ti, X, v> in log:

write (X, v)

output (X )

    Write <Ti, abort> to log



CS 245 Notes 08 40

Recovery rules:         Undo logging

• For every transaction Ti with 
<Ti, start> in log:
– If <Ti,commit> or <Ti,abort>in log:

      do nothing
Else   
      For all <Ti, X, v> in log:

write (X, v)

output (X )

    Write <Ti, abort> to log
IS THIS CORRECT??
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Recovery rules:         Undo logging

(1) Let S = set of transactions with
  <Ti, start> in log, but no <Ti, commit>  or    
  <Ti, abort> record in log

(2) For each <Ti, X, v> in log,

  in reverse order (latest  earliest) do:

- if Ti  S then    - write (X, v)

         - output (X)

(3) For each Ti  S do

- write <Ti, abort> to log
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Question

• Can writes of <Ti, abort> records
be done in any order (in Step 3)?
– Example: T1 and T2 both write A
– T1 executed before T2
– T1 and T2 both rolled-back
– <T1, abort> written but NOT <T2, abort>?
– <T2, abort> written but NOT <T1, abort>?

T1 write A T2 write A
time/log
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What if failure during recovery?

No problem!     Undo idempotent



Can we truncate the log?

• Under a heavy transaction load, the log 
grows quickly

• Are there parts of the log that we can 
discard? (i.e. are there parts we know 
for sure won't be needed again?)
– E.g., everything before a 

<Ti, commit>?
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Solution:  (Simple) Checkpoint   
  

Periodically:
(1) Do not accept new transactions

(2) Wait until all running transactions have 
finished and flushed their modifications to 
disk

(3) Flush all log records to disk (log)
(4) Write “checkpoint” record on disk (log)

(5) Resume accepting transactions 



An example undo log with simple 
checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T2, B, 10>
<T2, C, 15>
<T1, D, 20>
<T1, commit>
<T2, commit>
<CKPT>
<T3, start>
<T3, E, 25>
<T3, F, 30>

failure!



An example undo log with simple 
checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T2, B, 10>
<T2, C, 15>
<T1, D, 20>
<T1, commit>
<T2, commit>
<CKPT>
<T3, start>
<T3, E, 25>
<T3, F, 30>

failure!

UNDO to latest checkpoint



An example undo log with simple 
checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T2, B, 10>
<T2, C, 15>
<T1, D, 20>
<T1, commit>
<T2, commit>
<CKPT>
<T3, start>
<T3, E, 25>
<T3, F, 30>

failure!

UNDO to latest checkpoint

This part can be removed 
from the log
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Non-quiescent checkpoint     

Simple checkpoints effectively shut down 
the system while waiting for the open 
transactions to commit

Therefore, a more complex technique 
known as nonquiescent checkpointing is 
normally used, that allows new 
transactions to enter the system during 
the checkpoint
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Solution:  non-quiescent checkpoint 
    

Periodically:
(1) Write a log record <START CKPT (T1,..., 

TK) and flush the log. T1...Tk indentify the 
active transactions (not yet committed 
and written their changes to disk)

(2) Wait until all of T1 … Tk commit or 
abort, but do not prohibit other 
transactions form starting

(3) When all of T1 … Tk have completed, 
write <END CKPT> to log on disk (log)



An example undo log with 
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T2, B, 10>
<START CKPT (T1,T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<T1, commit>
<T3, E, 25>
<T2, commit>
<END CKPT>
<T3, F, 30>

failure!



An example undo log with 
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T2, B, 10>
<START CKPT (T1,T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<T1, commit>
<T3, E, 25>
<T2, commit>
<END CKPT>
<T3, F, 30>

failure!

UNDO to latest 
start checkpoint



An example undo log with 
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T2, B, 10>
<START CKPT (T1,T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<T1, commit>
<T3, E, 25>
<T2, commit>
<END CKPT>
<T3, F, 30>

failure!

UNDO to latest 
start checkpoint

This part can be removed 
from the log



An example undo log with 
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T2, B, 10>
<START CKPT (T1,T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<T1, commit>
<T3, E, 25>

failure!



An example undo log with 
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T2, B, 10>
<START CKPT (T1,T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<T1, commit>
<T3, E, 25>

failure!

UNDO to latest 
start checkpoint?



An example undo log with 
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T2, B, 10>
<START CKPT (T1,T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<T1, commit>
<T3, E, 25>

failure!

UNDO to latest 
COMPLETED

start checkpoint
!
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To discuss:

• Redo logging
• Undo/redo logging, why both?
• Real world actions
• Media failures
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Redo logging  (deferred modification)

T1: Read(A,t); t   t2; write (A,t);

  Read(B,t); t   t2; write (B,t);

Output(A); Output(B)   

A: 8
B: 8

A: 8
B: 8

memory DB

 LOG
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Redo logging  (deferred modification)

T1: Read(A,t); t   t2; write (A,t);

  Read(B,t); t   t2; write (B,t);

Output(A); Output(B)   

A: 8
B: 8

A: 8
B: 8

memory DB

 LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>
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Redo logging  (deferred modification)

T1: Read(A,t); t   t2; write (A,t);

  Read(B,t); t   t2; write (B,t);

Output(A); Output(B)   

A: 8
B: 8

A: 8
B: 8

memory DB

 LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

output
16
16
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Redo logging  (deferred modification)

T1: Read(A,t); t   t2; write (A,t);

  Read(B,t); t   t2; write (B,t);

Output(A); Output(B)   

A: 8
B: 8

A: 8
B: 8

memory DB

 LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>
<T1, end>

output
16
16
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Redo logging rules
(1) For every action, generate redo log       

  record (containing new value)

(2) Before X is modified on disk (DB),    
   all log records for transaction that    
   modified X (including commit) must
   be on disk

(3) Flush log at commit

(4) Write END record after DB updates
  flushed to disk
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• For every Ti with <Ti, commit> in log:
– For all <Ti, X, v> in log:

Write(X, v)

Output(X)

Recovery rules:         Redo logging
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• For every Ti with <Ti, commit> in log:
– For all <Ti, X, v> in log:

Write(X, v)

Output(X)

Recovery rules:         Redo logging

IS THIS CORRECT??
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(1) Let S = set of transactions with
  <Ti, commit> (and no <Ti, end>) in log

(2) For each <Ti, X, v> in log, in forward

   order (earliest  latest) do:

- if Ti  S then  Write(X, v)

 Output(X)
(3) For each Ti  S, write <Ti, end> 

Recovery rules:         Redo logging
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Non-quiescent checkpointing a 
redo log

Periodically:

(1) Write a log record <START CKPT (T1,...,Tk) 
where T1,...,Tk are all the active 
(uncommitted) transactions, and flush the 
log.

(2) Write to disk all database elements written 
to buffers but not yet to disk by transactions 
that had already committed when the start 
ckpt record was written to the log

(3) Write the <END CKPT> record and flush the 
log



An example redo log with 
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T1, commit>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<T1, end>
<END CKPT>
<COMMIT T2>
<COMMIT T3> failure!



An example redo log with 
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T1, commit>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<T1, end>
<END CKPT>
<COMMIT T2>
<COMMIT T3> failure!

REDO all committed transactions
 that were active (uncommitted) 

when the checkpoint began, 
or started later:

T2 and T3



An example redo log with 
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T1, commit>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<T1, end>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

failure!



An example redo log with 
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T1, commit>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<T1, end>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

failure!

REDO all committed transactions
 that were active (uncommitted) 

when the checkpoint began, 
or started later:

Only T2



An example redo log with 
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T1, commit>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<T1, end>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

failure!



An example redo log with 
nonquiescent checkpoint (disk)

<T1, start>
<T1, A, 5>
<T2, start>
<T1, commit>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<T1, end>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

failure!

REDO until the previous
 complete 

<START CKPT>
(or to the beginning of the log)



Note:

• In the presence of non-quiescent 
checklogging, the <Ti, end> log 
records are redundant (the 
checkpoint gives the same 
information). The book hence does 
not use such log records.

• The exercises do not use such 
records
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Key drawbacks:

• Undo logging: cannot bring backup DB
copies up to date

• Redo logging: need to keep all modified 
blocks in memory 
until commit
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Solution: undo/redo logging!

Update   <Ti, Xid, New X val, Old X val>

page X
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Rules

• Page X can be flushed before or
after Ti commit

• Log record flushed before corresponding 
updated page (WAL)

• Flush at commit (log only) 
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Non-quiescent checkpointing an 
undo/redo log

Periodically:

(1) Write a log record <START CKPT (T1,...,Tk) 
where T1,...,Tk are all the active 
(uncommitted) transactions, and flush the 
log.

(2) Write to disk all buffers that are dirty,i.e., 
they contain one or more changed database 
elements.

(3) Write the <END CKPT> record and flush the 
log
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Recovery process:

• Backwards pass (end of log -> latest valid checkpoint 
start)

– construct set S of committed transactions
– undo actions of transactions not in S

• Undo pending transactions
– follow undo chains for transactions in

  (checkpoint active list) - S

Forward pass (latest valid checkpoint start -> end of log)

– redo actions of S transactions

backward pass

forward pass
start

check-
point
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Real world actions

E.g., dispense cash at ATM

Ti = a1 a2 …... aj …... an

$
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Solution

(1) execute real-world actions after commit

(2) try to make idempotent



CS 245 Notes 08 81

   ATM

Give$$

(amt, Tid, time)

$

give(amt)

lastTid:

time:
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Media failure  (loss of non-volatile
storage)

      

A: 16
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Media failure  (loss of non-volatile
storage)

      

A: 16

Solution:  Make copies of data!
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Example 1  Triple modular redundancy

• Keep 3 copies on separate disks
• Output(X) --> three outputs
• Input(X) --> three inputs + vote

X1 X2 X3
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Example #2    Redundant writes,
  Single reads

• Keep N copies on separate disks
• Output(X) --> N outputs
• Input(X) --> Input one copy

- if ok, done

- else try another one

  Assumes bad data can be detected
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Example #3: DB Dump + Log

backup
database

active
database

log

• If active database is lost,
– restore active database from backup
– bring up-to-date using redo entries in log
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When can log be discarded?

check-
point

db
dump

last
needed
undo

not needed for
media recovery redo

not needed for undo
after system failure

not needed for
redo after system failure

log

time

last
needed
undo

not needed for
media recovery



CS 245 Notes 08 88

Summary

• Consistency of data
• One source of problems: failures

- Logging

- Redundancy

• Another source of problems:
          Data Sharing..... next
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