
Cost-Based Plan Selection

Enumerate, Estimate, Select

219

Cost-Based Plan Selection

SQL

Query Compiler

Logical
query plan

Optimized
logical query plan

Physical
query planLogical plan

optimization
Physical plan

selection
Translation

Execution
Engine

Result

Physical
Data Storage

"Intermediate code" "Machine code"

Statistics
and

Metadata

Components of the query compiler that we already know:

• SQL → relational algebra (i.e., a logical query plan)

• Logical query plan → optimized logical query plan

220

Cost-Based Plan Selection

The next step: logical query plan → physical query plan

π

∪

σ

R

⋊⋉

S T

• To obtain a physical query plan we need to assign
to each node in the logical query plan a physical
operator.

•We want to obtain the physical plan with the small-
est total execution cost.

• Hence, we need to compare, for every node and
every applicable physical operator, its cost.

• In order to estimate this cost we need (among others) the parameters B(R),
T (R), and V (R,A1, . . . , An)

• These belong to the statistics that a DBMS typically stores in its system catalog

• But these statistics only exist for the relations stored in the database, not for
subresults computed during query evaluation!

221

Cost-Based Plan Selection

Result size estimation

π

∪

σ

R

⋊⋉

S T

• For every internal node n we hence need
to estimate the parameters B(n), T (n), and
V (n,A1, . . . , Ak)

• Note that we can compute B(n) given (1) T (n);
(2) the size of the tuples output by n; and (3) the
size of a block

• Also note that T (n) and V (n,A1, . . . , Ak) only
depend on the logical query plan, not on the phys-
ical plan that we are computing!

222

Cost-Based Plan Selection

Result size estimation: projection

• General formula: T (πL(R)) = T (R)

• Remember that our version of the projection operator is bag-based and does not
remove duplicates; to remove duplicates we use the operator δ.

•While projection does not change the number of tuples, it does change the number
of blocks needed to store the resulting relation, as illustrated by the following
example.

Example

• R(A,B,C) is a relation with A and B integers of 4 bytes each; C a string of
100 bytes. Tuple headers are 12 bytes. Blocks are 1024 bytes and have headers
of 24 bytes. T (R) = 10000 and B(R) = 1250.

• Question: how many blocks do we need to store πA,B(R)?

223

Cost-Based Plan Selection

Result size estimation: projection

• General formula: T (πL(R)) = T (R)

• Remember that our version of the projection operator is bag-based and does not
remove duplicates; to remove duplicates we use the operator δ.

•While projection does not change the number of tuples, it does change the number
of blocks needed to store the resulting relation, as illustrated by the following
example.

Example

• R(A,B,C) is a relation with A and B integers of 4 bytes each; C a string of
100 bytes. Tuple headers are 12 bytes. Blocks are 1024 bytes and have headers
of 24 bytes. T (R) = 10000 and B(R) = 1250.

• Answer: resulting records need to record the header + A-field + B-field. The
size of these records is hence 12 + 4 + 4 = 20 bytes. We can hence store
(1024−24)/20 = 50 tuples in one block. Thus B(πA,B(R)) = T (πA,B(R))/50 =
10000/50 = 200 blocks.

224

Cost-Based Plan Selection

Result size estimation: selection σP (R) with P a filter predicate

• General formula:
T (σP (R)) = T (R)× selP (R)

where selP (R) is the estimated fraction of tuples in R that satisfy predicate P .

• In other words, selP (R) is the estimated probability that a tuple in R satisfies P .

• selP (R) is usually called the selectivity of filter predicate P .

• How we calculate selP (R) depends on what P is.

225

Cost-Based Plan Selection

Result size estimation: selection σA=c(R) with c a constant

selA=c(R) = 1
V (R,A)

• Intuition: there are V (R,A) distinct A-values in R. Assuming that A-values are
uniformly distributed, the probability that a tuple has A-value c is 1/V (R,A).

•While this intuition assumes that values are uniformly distributed, it can be shown
that this selectivity is a good estimate on average, provided that c is chosen
randomly.

Example

• R(A,B,C) is a relation. T (R) = 10000. V (R,A) = 50.

• Then T (σA=10(R)) is estimated by:

T (σA=10(R)) = T (R)×
1

V (R,A)
=

10000

50
= 200.

226

Cost-Based Plan Selection

Result size estimation: selection σA=c(R) with c a constant

• Better selectivity estimates are possible if we have more detailed statistics

• A DBMS typically collects histograms that detail the distribution of values.

• Such histograms are only available for base relations, however, not for subresults!

Example

• R(A,B,C) is a relation. The DBMS has collected the following equal-width
histogram on A:

range [1, 10] [11, 20] [21, 30] [31, 40] [41, 50]

tuples in range 50 2000 2000 3000 2950

• Then selA=10(R) can be estimated by:

selA=10(R) =
50

10000
×

1

10

227

Cost-Based Plan Selection

Result size estimation: selection σA<c(R)

selA<c(R) = 1
2 or selA<c(R) = 1

3

• This is just a heuristic, without any correctness guarantees.

• (The intuitive rationale is that queries involving an inequality tend to retrieve a
small fraction of the possible tuples.)

Example

• R(A,B,C) is a relation. T (R) = 10000.

• Then T (σB<10(R)) is estimated by:

T (σB<10(R)) = T (R)×
1

3
= 3334.

228

Cost-Based Plan Selection

Result size estimation: selection σA<c(R)

• Again, better estimates are possible if we have more detailed statistics

Example

• R(A,B,C) is a relation. T (R) = 10000. The DBMS statistics show that the
values of the B attribute lie within the range [8, 57], uniformly distributed.

• Question: what would be a reasonable estimate of selB<10(R)?

229

Cost-Based Plan Selection

Result size estimation: selection σA<c(R)

• Again, better estimates are possible if we have more detailed statistics

Example

• R(A,B,C) is a relation. T (R) = 10000. The DBMS statistics show that the
values of the B attribute lie within the range [8, 57], uniformly distributed.

• Question: what would be a reasonable estimate of selB<10(R)?

• Answer: We see that 57− 8 + 1 different values of B are possible; however only
records with values B = 8 or B = 9 satisfy the filter B < 10. Therefore,

selB<10(R) =
2

(57− 8 + 1)
=

2

50
= 4%

and hence
T (σB<10(R)) = T (R)× selB<10(R) = 400.

230

Cost-Based Plan Selection

Result size estimation: selection σA 6=c(R)

selA 6=c(R) = V (R,A)−1
V (R,A)

• Question: Can you give intuitive meaning to this formula?

231

Cost-Based Plan Selection

Result size estimation: selection σA 6=c(R)

selA 6=c(R) = V (R,A)−1
V (R,A)

• Question: Can you give intuitive meaning to this formula?

• Answer: 1/V (R,A) is the (estimated) probability that a tuple satisfies A = c.
Therefore

1− selA=c(R) = 1−
1

V (R,A)
=

V (R,A)− 1

V (R,A)

is the (estimated) probability that a tuple does not satisfy A = c.

232

Cost-Based Plan Selection

Result size estimation: selection σNOT P1(R)

selNOT P1(R) = 1− selP1(R)

233

Cost-Based Plan Selection

Result size estimation: selection σP1 AND P2(R)

selP1 AND P2(R) = selP1(R)× selP2(R)

• This implicitly assumes that filter predicates P1 and P2 are independent.

• Hence, in essence we treat σP1 AND P2(R) as σP1(σP2(R))

• The order does not matter, treating this as σP2(σP1(R)) gives the same results.

Example

• R(A,B,C) is a relation. T (R) = 10000. V (R,A) = 50.

• Then we estimate T (σA=10 AND B<10(R) to be:

T (R)× selA=10(R)× selB<10(R) = T (R)×
1

V (R,A)
×

1

3
= 67.

234

Cost-Based Plan Selection

Result size estimation: selection σP1 OR P2(R)

selP1 OR P2(R) = min(selP1(R) + selP2(R), 1)

• The term selP1(R) + selP2(R) implicitly assumes that filter predicates P1 and P2

are independent, and select disjoint sets of tuples.

• Disjointness is often not satisfied and then we count some tuples twice.

• But of course, the selectivity can never be greater than 1.

• Hence, we take the minimum of these two terms.

235

Cost-Based Plan Selection

Result size estimation: selection σP1 OR P2(R)

More complicated: treat this as σNOT(NOT P1 AND NOT P2)(R)).

selP1 OR P2(R) = 1− (1− selP1(R))× (1− selP2(R))

236

Cost-Based Plan Selection

Result size estimation: cartesian product R× S

• General formula:
T (R× S) = T (R)× T (S)

237

Cost-Based Plan Selection

Result size estimation: natural join R ✶ S

• Assume the relation schema R(X, Y) and S(Y, Z), i.e., we join on Y .

•Many cases are possible

◦ It is possible that R and S do not have any Y value in common. In that case,
T (R ✶ S) = 0.

◦ Y might be the key of S and a foreign key of R, so each tuple of R joins with
exactly one tuple of S. Then T (R ✶ S) = T (R).

◦ Almost all of the tuples of R and S could have the same Y -value. Then
T (R ✶ S) is approximately T (R)× T (S).

238

Cost-Based Plan Selection

Result size estimation: natural join R ✶ S

• Assume the relation schema R(X, Y) and S(Y, Z), i.e., we join on Y .

• To focus on the common cases, we make two simplifying assumptions.

1. Containment of value sets If attribute Y appears in several relations, then
each relation chooses its values from a fixed list of values y1, y2, y3, As
a consequence, if V (R, Y) ≤ V (S, Y) then every Y -value of R will have a
joining tuple Y -value in S.

2. Preservation of value sets When joining two relations, any attribute that is not
a join attribute does not lose values from its set of possible values: for such
attributes V (R ✶ S,A) = V (R,A), when A is in R and V (R ✶ S,A) =
V (S,A) otherwise.

239

Cost-Based Plan Selection

Result size estimation: natural join R ✶ S

• Assume the relation schema R(X, Y) and S(Y, Z), i.e., we join on Y .

• Under these assumptions, we can estimate as follows.

1. Case 1: V (R, Y) ≤ V (S, Y). Then every tuple of R has 1
V (S,Y) chance of

joining with a given tuple of S. Hence

T (R ✶ S) = T (R)×
1

V (S, Y)
× T (S)

2. Case 2: V (S, Y) ≤ V (R, Y). Then every tuple of S has 1
V (R,Y) chance of

joining with a given tuple of R. Hence

T (R ✶ S) = T (R)×
1

V (R, Y)
× T (S)

240

Cost-Based Plan Selection

Result size estimation: natural join R ✶ S

• Assume the relation schema R(X, Y) and S(Y, Z), i.e., we join on Y .

• Under these assumptions, we can estimate as follows.

1. Case 1: V (R, Y) ≤ V (S, Y). Then every tuple of R has 1
V (S,Y) chance of

joining with a given tuple of S. Hence

T (R ✶ S) = T (R)×
1

V (S, Y)
× T (S)

2. Case 2: V (S, Y) ≤ V (R, Y). Then every tuple of S has 1
V (R,Y) chance of

joining with a given tuple of R. Hence

T (R ✶ S) = T (R)×
1

V (R, Y)
× T (S)

General formula:

T (R ✶ S) = T (R)× T (S)× 1
max(V (R,Y),V (S,Y))

241

Cost-Based Plan Selection

Result size estimation: natural join R ✶ S

• Now assume the relation schema R(X, Y1, Y2) and S(Y1, Y2, Z), i.e., we join on
Y1 and Y2.

• Under the same assumptions as before, we can estimate as follows.

Case 1: V (R, Y1) ≤ V (S, Y1) and V (R, Y2) ≤ V (S, Y2).

Then a tuple of R has 1
V (S,Y1)

× 1
V (S,Y2)

chance of joining with a given tuple of S.

Hence

T (R ✶ S) = T (R)×
1

V (S, Y1)
×

1

V (S, Y2)
× T (S)

242

Cost-Based Plan Selection

Result size estimation: natural join R ✶ S

• Now assume the relation schema R(X, Y1, Y2) and S(Y1, Y2, Z), i.e., we join on
Y1 and Y2.

• Under the same assumptions as before, we can estimate as follows.

Case 2: V (S, Y1) ≤ V (R, Y1) and V (S, Y2) ≤ V (R, Y2).

Then a tuple of S has 1
V (R,Y1)

× 1
V (R,Y2)

chance of joining with a given tuple of R.

Hence

T (R ✶ S) = T (R)×
1

V (R, Y1)
×

1

V (R, Y2)
× T (S)

243

Cost-Based Plan Selection

Result size estimation: natural join R ✶ S

• Now assume the relation schema R(X, Y1, Y2) and S(Y1, Y2, Z), i.e., we join on
Y1 and Y2.

• Under the same assumptions as before, we can estimate as follows.

Case 3: V (R, Y1) ≤ V (S, Y1) and V (S, Y2) ≤ V (R, Y2).

Then a tuple of R has 1
V (S,Y1)

× 1
V (R,Y2)

chance of joining with a given tuple of S.

Hence

T (R ✶ S) = T (R)×
1

V (S, Y1)
×

1

V (R, Y2)
× T (S)

244

Cost-Based Plan Selection

Result size estimation: natural join R ✶ S

• Now assume the relation schema R(X, Y1, Y2) and S(Y1, Y2, Z), i.e., we join on
Y1 and Y2.

• Under the same assumptions as before, we can estimate as follows.

Case 4: V (S, Y1) ≤ V (R, Y1) and V (R, Y2) ≤ V (S, Y2).

Then a tuple of R has 1
V (R,Y1)

× 1
V (S,Y2)

chance of joining with a given tuple of S.

Hence

T (R ✶ S) = T (R)×
1

V (R, Y1)
×

1

V (S, Y2)
× T (S)

245

Cost-Based Plan Selection

Result size estimation: natural join R ✶ S

• Now assume the relation schema R(X, Y1, Y2) and S(Y1, Y2, Z), i.e., we join on
Y1 and Y2.

• General formula:

T (R ✶ S) = T (R)×T (S)
max(V (R,Y1),V (S,Y1))max(V (R,Y2),V (S,Y2))

• This generalizes straightforwardly to the case where we are joining on more than
2 attributes.

246

Cost-Based Plan Selection

Result size estimation

• Intersection R ∩ S, Difference R − S, duplicate elimination δ(R), Grouping
and aggregation γ(R)

→ see section 16.4 in the book

• A DBMS often also collects more detailed statistics

→ see sections 16.5.1 and 16.5.2 in the book

• As should be clear by now, result size estimation is not an exact art

• For commercial DBMSs, the software component that estimates result sizes is
intricate and advanced!

247

Cost-Based Plan Selection

Join ordering

During the optimization of the logical query plan we:

• remove redundant joins;

• push selections and projections; recognize joins.

The order in which the joins are to be executed is not yet fixed, however!

248

Cost-Based Plan Selection

Join ordering

Example: relations R(A,B), S(B,C), T (C,D), U(D,A) and the query

SQL: SELECT * FROM R,S,T,U

WHERE R.B = S.B AND S.C = T.C AND T.D = U.D

Algebra: R ✶ S ✶ T ✶ U

• So far, we have always considered the join as a polyadic operator:

⋊⋉

R S T U

After all, the join order is irrelevant for logical query plans.

• However, physical join operators are binary!

•When devising a physical query plan, the join order therefore becomes very
important, as we illustrate next.

249

Cost-Based Plan Selection

Join ordering

Example: relations R(A,B), S(B,C), T (C,D), U(D,A) and the query

SQL: SELECT * FROM R,S,T,U

WHERE R.B = S.B AND S.C = T.C AND T.D = U.D

Algebra: R ✶ S ✶ T ✶ U

We can interpret this as:

((R ✶ S) ✶ T) ✶ U or (R ✶ S) ✶ (T ✶ U) or . . .

But also as:

((R ✶ T) ✶ U) ✶ S or ((R ✶ S) ✶ U) ✶ T of . . .

250

Cost-Based Plan Selection

Join ordering

The chosen order can influence the total cost of the physical query plan.

Consider, for example, R(A,B), S(B,C), T (A,E). Assume

B(R) = 50 B(S) = 50 B(T) = 50

B(R ✶ S) = 150 B(S ✶ T) = 2500 B(R ✶ T) = 200

Further assume that we execute all joins by means of the one-pass algorithm.
What is the best order to compute R ✶ S ✶ T ?

1. Cost of R ✶ (S ✶ T):

B(R) + B(S ✶ T) + B(S) + B(T) = 2650

2. Cost of S ✶ (R ✶ T):

B(S) + B(R ✶ T) + B(R) + B(T) = 350

3. Cost of T ✶ (R ✶ S):

B(T) + B(R ✶ S) + B(R) + B(S) = 300

251

Cost-Based Plan Selection

Join ordering

• To obtain the physical plan with the least cost we would hence have to enumerate
and compare every possible join ordering.

• The number of possible orderings to join n relations is n!× T (n):

◦ There are n! ways to order the relations to join

◦ Given a fixed ordering, there are T (n) ways to create a binary tree over n leaf
nodes, where

T (1) = 1 T (n) =
n−1∑

i=1

T (i)× T (n− i)

252

Cost-Based Plan Selection

Join ordering

• The resulting search space is enormous.

Number of relations n n!× T (n)
2 2
3 12
4 120
5 1,680
6 30,240
7 665,580
8 17,297,280

• For each of these plans, we have to consider all possible assignments of physical
join algorithms to logical join operators to get the plan with the least cost.

→ Query optimization should in no case take more time than the actual exe-
cution of the query. We will therefore not consider all possible orders, but only
a limited subclass.

253

Cost-Based Plan Selection

Kinds of join orderings

⋊⋉

⋊⋉

⋊⋉

R S

T

U

⋊⋉

⋊⋉

R S

⋊⋉

T U

⋊⋉

R ⋊⋉

S ⋊⋉

T U

left-deep bushy right-deep

In practice a query compiler usually only considers left-deep join orderings:

• There are still n! possible orderings of this form, but that is already a lot less.

• Left-deep orderings use, in general, less memory. Furthermore, in general they
require fewer subresults to be stored.

→ See section 16.6.3 in the book

254

Cost-Based Plan Selection

Plan selection

To compute the best physical plan for a given logical query plan we should, in
principle:

1. Calculate all possible (left-deep) join orderings of the logical plan

2. For each such plan calculate all possible assignments of physical operators to
the nodes

3. From this enormous pile of candidate physical query plans choose the one with
the least estimated cost.

There are exponentially many candidate physical query plans

• Query compilation should in no case take longer than the actual execution of the
query!

• In general it is hence impossible to inspect all candidate physical plans.

Heuristics: Branch-and-Bound Plan Enumeration; Hill Climbing; Dynamic Pro-
gramming; Selinger-Style; Greedy

→ See section 16.5.4, 16.6.4 and 16.6.5 in the book

255

Cost-Based Plan Selection

Greedy plan selection

In the exercises we will use the following greedy algorithm.

• Start with a logical query plan without join ordering.

•We work bottom-up: first we assign physical operators to the leaves, then to
the parents of the leaves, then to their parents, and so on. At each point we
choose the phyiscal operator with the least cost.

•When we reach a join operator (e.g., R ✶ S ✶ T ✶ U) and need to determine
an ordering of its various members then:

1. We start by joining the two relations for which the best physical join algorithm
yields the smallest cost

→ e.g., execute R ✶ T through a hash-join

2. Add, from the remaining relations (S or U), those relations to the join for
which the best physical join-algorithm yields the smallest cost.

→ e.g., (R ✶ T) ✶ U through a one-pass join

3. Repeat the previous step until we have a complete join ordering.

256

Cost-Based Plan Selection

Greedy plan selection

• This is a generalization of the greedy algorithm to compute a join ordering de-
scribed in section 16.6.6 from the book. However, we use I/O operations as our
cost metric instead of the size of the intermediate results as done in the book.

• Often, the leaves of the logical query plan are selections. We have seen two
physical operators for selections: table-scan and index-scan. The book describes
in section 16.7.1 how we can choose the best selection method when the selection
condition is complex.

257

Cost-Based Plan Selection

Greedy plan selection need not return the optimal plan

• It may return a more expensive join ordering. For example:

R(A,B) ✶ S(B,C) ✶ T (C,D) ✶ U(A,D)

Assume: the greedy algorithm computes ((R ✶ S) ✶ T) ✶ U) with

B(R ✶ S) = 100 B((R ✶ S) ✶ T) = 2000

Assume: the alternative ordering ((R ✶ U) ✶ T) ✶ S yields

B(R ✶ U) = 200 B((R ✶ U) ✶ T) = 1000

When we hence execute the joins using the one-pass algorithm we get the following
costs, respectively:

1. B(R) + B(S) + B(R ✶ S) + B(T) + B((R ✶ S) ✶ T) + B(U)

2. B(R) + B(U) + B(R ✶ U) + B(T) + B((R ✶ U) ✶ T) + B(S)

The second ordering yields a saving of 900 I/Os.

258

Cost-Based Plan Selection

Greedy plan selection need not return the optimal plan

• It does not take into account the properties of the output of an operator. For
example (R and S share only the Y attribute):

δ

πY

⋊⋉

R S

three-pass sort-based elimination

single-pass projection

two-pass hash-join

table-scan R table-scan S

logical plan physical plan

Consider the setting where there is limited memory available. The optimized
sort-merge join is not applicable; only the non-optimized version. In this case
the two-pass hash-join is cheaper, and is hence selected by the greedy algorithm.

Because the output of R ✶ S is large, we will eventually have to remove
duplicates by means of a three-pass algorithm.

259

If, however, we had executed the join by means of a two-pass sort-merge join,
then its result would have been sorted on Y and we would have been able to
compute the duplicate removal by means of the one-pass algorithm instead of
the three-pass one. In that case, the total costs would have been smaller (check
this!)

260

Cost-Based Plan Selection

Finally

The result of the greedy algorithm is an execution tree in which every node is a
physical operator.

π

∪

σ

R

⋊⋉

S T

project

two-pass sort-based union

filter

index-scan R

nested-loop join

table-scan S table-scan T

logical plan physical plan

We remain to decide, for every internal node, whether we will materialize or
pipeline the subresults.

→ See sections 16.7.3, 16.7.4, and 16.7.5

261

Cost-Based Plan Selection

Pipelining versus materialization

So far, we have assumed that all database operators consume items on disk, and
produce their result on disk.

• This causes a lot of I/O.

• In addition, we suffer from long response times since an operator cannot start
computing its result before all of its inputs are fully generated (“materialized”)

262

Cost-Based Plan Selection

Pipelining versus materialization

Alternatively, each operator could pass its result directly to the next operator.
This is called pipelining.

When executed in a pipelined manner, an operator

• Starts computing results as early as possible, i.e., as soon as enough input data
is available to start producing output.

• Doesn’t wait until the entire output is computed, but propagates its output
immediately.

The granularity in which data is passed may influence performance:

• Small chunks yield better system response time.

• Large chunks may improve the effectiveness of caches.

•Most often, data is passed a tuple at a time.

263

Cost-Based Plan Selection

Examples of operators that can be pipelined

• projection

• selection

• renaming

• bag-based union

• merge-joins for which the input are already known to be sorted

264

Cost-Based Plan Selection

Pipelining versus materialization

Pipelining reduces memory requirements and response times since each chunk of
its input is propagated to the output immediately.

Some operators cannot be implemented in such a way:

• operators based on (external) sorting (i.e. sort-merge join)

• operators based on external hashing (i.e., hash join)

• grouping and duplicate elimination over unsorted input

Operators that cannot be pipelined are said to be blocking

• Blocking operators consume their entire input before they can produce any
output.

• Their data is typically materialized on disk.

265

