
Multi-dimensional index structures
Part I: motivation

137



Motivation: Data Warehouse

A definition

“A data warehouse is a repository of in-
tegrated enterprise data. A data ware-
house is used specifically for decision
support, i.e., there is (typically, or ide-
ally) only one data warehouse in an en-
terprise. A data warehouse typically con-
tains data collected from a large number
of sources within, and sometimes also
outside, the enterprise.”

138



Decision support (1/2)

‘Traditional” relational databases were designed for online transaction
processing (OLTP):

• flight reservations; bank terminal; student administration; . . .

OLTP characteristics:

• Operational setting (e.g., ticket sales)

• Up-to-date = critical (e.g., do not book the same seat twice)

• Simple data (e.g., [reservation, data, name])

• Simple queries that only access a small part of the database (e.g., “Give the flight
details of X” or “List flights to Y”)

Decision support systems have different requirements.

139



Decision support (2/2)

Decision support systems have different requirements:

• Offline setting (e.g., evaluate flight sales)

• Historical data (e.g., flights of last year)

• Summarized data (e.g., # passengers per carrier for destination X)

• Integrates different databases (e.g., passengers, fuel costs, maintenance informa-
tion)

• Complex statistical queries (e.g., average percentage of seats sold per month and
destination)

140



Decision support (2/2)

Decision support systems have different requirements:

• Offline setting (e.g., evaluate flight sales)

• Historical data (e.g., flights of last year)

• Summarized data (e.g., # passengers per carrier for destination X)

• Integrates different databases (e.g., passengers, fuel costs, maintenance informa-
tion)

• Complex statistical queries (e.g., average percentage of seats sold per month and
destination)

Taking these criteria into mind, data warehouses are tuned for online
analytical processing (OLAP)

• Online = answers are immediately available, without delay.

141



The Data Cube: Generalizing Cross-Tabulations

Cross-tabulations are highly useful for analysis

• Example: sales June to August 2010

���� ��� ��	
�� �
�	�

��
� �� �� ��� ���

���� �� �� ��� ���

������ �� �� �� ���

�
�	� ��� �� ��� 	�


142



The Data Cube: Generalizing Cross-Tabulations

Cross-tabulations are highly useful for analysis

Data Cubes are extensions of cross-tabs to multiple dimensions

���� ��� ��	
�� �
�	�

��
� �� �� ��� ���

���� �� �� ��� ���

������ �� �� �� ���

�
�	� ��� �� ��� 	�


������	���������������
��

��

������	����������
����
��

� 

������	����������
����
��

� �	
���

��
��������

������	����������
����
��

� 

�
�

�
�
�
��
�
��

143



The Data Cube: Generalizing Cross-Tabulations

Cross-tabulations are highly useful for analysis

Data Cubes are extensions of cross-tabs to multiple dimensions

144



OLAP Operations on the CUBE

Roll-up

• Group per semester instead of per quarter

145



OLAP Operations on the CUBE

Roll-up

• Show me totals per semester instead of per quarter

146



OLAP Operations on the CUBE

Roll-up

• Show me totals per semester instead of per quarter

Inverse is drill-down

147



OLAP Operations on the CUBE

Slice and dice

• Select part of the cube by restricting one or more dimensions

• E.g, restrict analysis to Ireland and VCR

148



OLAP Operations on the CUBE

Slice and dice

• Select part of the cube by restricting one or more dimensions

• E.g, restrict analysis to Ireland and VCR

149



Different OLAP systems

Multidimensional OLAP (MOLAP)

• Early implementations used a multidimensional array to store the cube completely:

• In particular: pre-compute and materialize all aggregations

150

Array: cell[product, date, country]

• Fast lookup: to access cell[p,d,c] just
use array indexation



Different OLAP systems

Multidimensional OLAP (MOLAP)

• Early implementations used a multidimensional array to store the cube completely:

• In particular: pre-compute and materialize all aggregations

151

Array: cell[product, date, country]

• Fast lookup: to access cell[p,d,c] just
use array indexation

• Very quickly people realized that this
is infeasible due to the data explosion
problem



The data explosion problem

The problem:

• Data is not dense but sparse

• Hence, if we have n dimensions with each c possible values, then we do not
actually have data for all the cn cells in the cube.

• Nevertheless, the multidimensional array representation realizes space for all of
these cells

152



The data explosion problem

The problem:

• Data is not dense but sparse

• Hence, if we have n dimensions with each c possible values, then we do not
actually have data for all the cn cells in the cube.

• Nevertheless, the multidimensional array representation realizes space for all of
these cells

Example: 10 dimensions with 10 possible values each

• 10 000 000 000 cells in the cube

• suppose each cell is a 64-bit integer

• then the multidimensional-array representing the cube requires ≈ 74.5 gigabytes
to store → does not fit in memory!

• yet if only 1 000 000 cells are present in the data, we actually only need to store
≈ 0.0074 gigabytes

153



Multidimensional OLAP (MOLAP)

In conclusion

• Naively storing the entire cube does not work.

• Alternative representation strategies use sparse main memory index structures:

◦ search trees

◦ hash tables

◦ . . .

• And these can be specialized to also work in secondary memory
→ multidimensional indexes (the main technical content of this lecture).

154



Relational OLAP (ROLAP)

Key Insight [Gray et al, Data Mining and Knowledge Discovery, 1997]

• The n-dimensional cube can be represented as a traditional relation with n + 1
columns (1 column for each dimension, 1 column for the aggregate)

• Use special symbol ALL to represent grouping

155

������� �	�
 ������
 �	�
�

�� �� ����	
� ���

�� �
 ����	
� ��

�� ��� ����	
� ��

��� ��� ��� ���

�� �� ����	
� ���

��� ��� ��� ���

�� ��� ����	
� 
��

�� ��� ��� ����

��� ��� ��� ���

��� ��� ��� ���
��



Relational OLAP (ROLAP)

Key benefits: space usage

• The non-aggregate cells that are not present in the original data are also not
present in the relational cube representation.

•Moreover, it is straightforward to represent only aggregation tuples in which all
dimension columns have values that already occur in the data

156

������� �	�
 ������
 �	�
�

�� �� ����	
� ���

�� �
 ����	
� ��

�� ��� ����	
� ��

��� ��� ��� ���

�� �� ����	
� ���

��� ��� ��� ���

�� ��� ����	
� 
��

�� ��� ��� ����

��� ��� ��� ���

��� ��� ��� ���
��



Relational OLAP (ROLAP)

Key benefits

• By representing the cube as a relation it can be stored in a “traditional” relational
DBMS ...

• ... which works in secondary memory by design (good for multi-terraby data
warehouses) ...

• Hence one can re-use the rich literature on relational query storage and query
evaluation techniques,

But, to be honest, much research was done to get this representation
efficient in practice.

157



Relational OLAP (ROLAP)

Key benefits: use SQL

• Dice example: restrict analysis to Ireland and VCR

158

SELECT Date, Sales

FROM Cube_table

WHERE Product = "VCR"

AND Country = "Ireland"

���� �����

�� ���

�� ��

��� ��

�		 ���



Relational OLAP (ROLAP)

Key benefits: use SQL

• Dice example: restrict analysis to Ireland and VCR, quarter 2 and quarter 3
→ need to compute a new total aggregate for this sub-cube

159

(SELECT Date, Sales

FROM Cube_table

WHERE Product = "VCR"

AND Country = "Ireland"

AND (Date = "Q2" OR Date = "Q3")

AND SALES <> "ALL")

UNION

(SELECT "ALL" as DATE, SUM(T.Sales) as SALES

FROM Cube_table t

WHERE Product = "VCR"

AND Country = "Ireland"

AND (Date = "Q2" OR Date = "Q3")

AND SALES <> "ALL"

GROUP BY Product, Country)

This actually motivated the extension of SQL with CUBE-specific operators and keywords



Three-tier architecture

160



Multi-dimensional index structures
Part II: index structures

161



Multidimensional Indexes

Typical example of an application requiring multidimensional search
keys:

Searching in the data cube and searching in a spatial database

Typical queries with multidimensional search keys:

• Point queries:

◦ retrieve the Sales total for the product TV sold in Ireland, with an ALL value
for date.

◦ does there exist a star on coordinate (10, 3, 5)?

• Partial match queries: return the coordinates of all stars with x = 5 and z = 3.

• Dicing / Range queries:

◦ return all cube cells with date ≥ Q1 and date ≤ Q3 and sales ≤ 100;

◦ return the coordinates of all stars with x >= 10 and 20 ≤ y ≤ 35.

• Nearest-neighbour queries: return the three stars closest to the star at coordinate
(10, 15, 20).

162



Multidimensional Indexes

Indexes for search keys comprising multiple attributes?

• BTree: assumes that the search keys can be ordered. What order can we put on
multidimensional search keys?

→ Pick the lexicographical order:

(x, y, z) ≤ (x′, y′, z′) ⇔ x < x′

∨(x = x′ ∧ y < y′)
∨(x = x′ ∧ y = y′ ∧ z ≤ z′)

• Hash table: assumes a hash function h : keys → N. What hash function can we
put on multidimensional search keys?

→ Extend the hash function to tuples:

h(x, y, z) = h(x) + h(y) + h(z)

163



Multidimensional Indexes

Problem with the lexicographical order in BTrees:

Assume that we have a BTree index on (age, sal) pairs.

• age < 20: ok

• sal < 30: linear scan

• age < 20 ∧ sal < 20

age

sal

9 10 11

10

20

30

40

50

60

70

164



Multidimensional Indexes

Problem with hash tables:

Assume that we have a hash table on (age, sal) pairs.

• age < 20: linear scan

• sal < 30: linear scan

• age < 20 ∧ sal < 20: linear scan

Conclusion: for queries with multidimensional search keys we want to
index points by spatial proximity

.

165



Multidimensional Indexes

Grid files: a variant on hashing

40 55 1000

90

255

500

166



Multidimensional Indexes

Grid files: a variant on hashing

40 55 1000

90

255

500

167



Multidimensional Indexes

Grid files: a variant on hashing

40 55 1000

90

255

500

Bucket

Bucket

Bucket

Bucket

Bucket

Bucket
Buc

ket

Buc

ket

Buc

ket

• Insert: find the corresponding bucket,
and insert.

If the block is full: create overflow
blocks or split by creating new sepa-
rator lines (difficult).

• Delete: find the corresponding bucket,
and delete.

Reorganize if desired

168



Multidimensional Indexes

Grid files: a variant on hashing

40 55 1000

90

255

500

Bucket

Bucket

Bucket

Bucket

Bucket

Bucket
Buc

ket

Buc

ket

Buc

ket

• Good support for point queries

• Good support for partial match queries

• Good support for range queries

→ Lots of buckets to inspect, but also
lots of answers

• Reasonable support for nearest-
neighbour queries

→ By means of neighbourhood
searching

• But: many empty buckets when the
data is not uniformly distributed

169



Multidimensional Indexes

Partitioned Hash Functions

Assume that we have 1024 buckets available to build a hashing index for (x, y, z).
We can hence represent each bucket number using 10 bits. Then we can determine
the hash value for (x, y, z) as follows:

0 10

f(x) g(y) h(z)

2 7

• Good support for point queries

• Good support for partial match queries

• No support for range queries

• No support for nearest-neighbour queries

• Less wasted space than grid files

170



Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

171



Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

172



Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

173



Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

174



Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

175



Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

176



Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

177



Multidimensional Indexes

kd-Trees

We can look at this as a tree as follows:

X 40

Y 90

X 55

Y 200

X 48

Y 300

40 55 1000

90

255

500

178



Multidimensional Indexes

kd-Trees

We continue splitting after new insertions:

X 40

Y 90

X 55

Y 200

X 48

Y 300

40 55 1000

90

255

500

Y 30

179



Multidimensional Indexes

kd-Trees

• Good support for point queries

• Good support for partial match queries: e.g., (40 ≤ x ≤ 45)

• Good support for range queries (40 ≤ x ≤ 45 ∧ y < 80)

• Reasonable support for nearest neighbour

X 40

Y 90

X 55

Y 200

X 48

Y 300

40 55 1000

90

255

500

180



Multidimensional Indexes

kd-Trees for secondary storage

• Generalization to n children for each interal node (cf. BTree).

But it is difficult to keep this tree balanced since we cannot merge the children

•We limit ourselves to two children per node (as before), but store multiple nodes
in a single block.

181



Multidimensional Indexes

R-Trees: generalization of BTrees

Designed to index regions (where a single point is also viewed as a region). Assume
that the following regions fit on a single block:

road1

ro
a

d
2 pipelinehouse1

house2

school

house1 20,20 30,25

road1 0, 40 50,45

road2 45, 0 50,40

school 20,70 30,75

house2 60,40 80,60

pipeline 30,21 100,24

100

0 100

182



Multidimensional Indexes

R-Trees: generalization of BTrees

A new region is inserted and we need to split the block into two. We create a
tree structure:

road1

ro
a

d
2 pipelinehouse1

house2

theaterschool

house1 20,20 30,25

road1 0, 40 50,45

road2 45, 0 50,40

school 20,70 30,75

house2 60,40 80,60

pipeline 30,21 100,24

60,70 80,75theatre

100

0 100

(0,0),(55,55) (15,24),(100,80)

183



Multidimensional Indexes

R-Trees: generalization of BTrees

Inserting again can be done by extending the “bounding regions”:

house3

road1

ro
a

d
2 pipelinehouse1

house2

theaterschool

house1 20,20 30,25

road1 0, 40 50,45

road2 45, 0 50,40

house3 55,10 70,15

school 20,70 30,75

house2 60,40 80,60

pipeline 30,21 100,24

60,70 80,75theatre

100

0 100

(0,0),(75,55) (15,24),(100,80)

184



Multidimensional Indexes

R-Trees: generalization of BTrees

• Ideal for “where-am-I” queries

• Ideal for finding intersecting regions

e.g., when a user highlights an area of interest on a map

• Reasonable support for point queries

• Good support for partial match queries: e.g., (40 ≤ x ≤ 45)

• Good support for range queries

• Reasonable support for nearest neighbour

• Is balanced

• Often used in practice

185


