
Physical Operators
Scanning, sorting, merging, hashing

141

Physical Operators

SQL

Query Compiler

Logical
query plan

Optimized
logical query plan

Physical
query planLogical plan

optimization
Physical plan

selection
Translation

Execution
Engine

Result

Physical
Data Storage

"Intermediate code" "Machine code"

Statistics
and

Metadata

142

Physical Operators

A logical query plan is essentially an execution tree

π

∪

σ

R

⋊⋉

S T

• To obtain a physical query plan we need to assign
to each logical operator a physical implementation
algorithm. We call such algorithms physical oper-
ators.

• In this lesson we study the various physical opera-
tors, together with their cost.

143

Physical Operators

Many implementations

• Each logical operator has multiple possible implementation algorithms

• No implementation is always better the others

• Hence we need to compare the alternatives on a case-by-case basis based on their
costs

144

The I/O model of computation

The I/O model

• Data is stored on disk, which is divided into blocks of bytes (typically 4 kilobytes)

(each block can contain many data items)

• The CPU can only work on data items that are in memory, not on items on disk

• Therefore, data must first be transferred from disk to memory

• Data is transferred from disk to memory (and back) in whole blocks at the time

• The disk can hold D blocks, at most M blocks can be in memory at the same
time (with M << D).

145

The I/O model of computation

• In-memory computation is fast (memory access ≈ 10−8s)

• Disk-access is slow (disk access: ≈ 10−3s)

• Hence: execution time is dominated by disk I/O

We will use the number of I/O operations required as cost metric

146

Physical Operators

To estimate the costs we will use the following parameters:

• B(R): the number of blocks that R occupies on disk

• T (R): the number of tuples in relation R

• V (R,A1, . . . , An): the number of tuples in R that have distinct values for
A1, . . . , An

(i.e., |δ(πA1,...,An(R)|)

•M : the number of main memory buffers available

Statistics and the system catalog

• The first three parameters are statistics that a DBMS stores in its system catalog

• These statistics are regularly collected

(e.g., when required, at a scheduled time, . . .)

147

Physical Operators

Bag union

We can compute the bag union R ∪B S as follows:

for each block BR in R do
load BR into buffer N ;
for each tuple tR in N do
output tR;

for each block BS in S do
load BS into buffer N ;
for each tuple tS in N do
output tS;

• Cost: B(R) + B(S) I/O operations (we never count the output-cost)

• Requires that M ≥ 1 (i.e., it can always be used)

148

Physical Operators

One-pass set union

Assume that M − 1 ≥ B(R). We can then compute the set union R ∪S S as
follows (R and S are assumed to be sets themselves)

load R into memory buffers N1, . . . , NB(R);
for each tuple tR in N1, . . . , NB(R) do
output tR

for each block BS in S do
load BS into buffer N0;
for each tuple tS in N0 do
if tS does not occur in N1, . . . , NB(R)

output tS

• Cost: B(R) + B(S) I/O operations (ignoring output-cost)

• Note that it also costs time to check whether tS occurs in N1, . . . , NB(R).
By using a suitable main-memory data structure this can be done in O(n) or
O(n log n) time. We ignore this cost.

• Requires B(R) ≤ M − 1

149

Physical Operators

Sort-based set union

We can also alternatively compute the set union R ∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S. An example (by writing
on slide during lecture):

�

�

�������
��		
�

�
�

�
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��

150

Physical Operators

Sort-based set union

We can also alternatively compute the set union R ∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S. Assume that we are
currently at tuple tR in R and tuple tS in S:

• If tR < tS then we output tR and move tR to the next tuple in R (possibly
by loading the next block of R into memory).

• If tR > tS then we output tS and move tS to the next tuple in S (possibly
by loading the next block of S into memory).

• If tR = tS then we output tR and move tR to the next tuple in R and tS to
the next tuple in S (possibly by loading the next block)

151

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

◦ In the first pass we read M blocks at the same time from the input relation,
sort these by means of a main-memory sorting algorithm, and write the sorted
resulting sublist to disk. After the first pass we hence have B(R)/M sorted
sublists of M blocks each.

���

����������	
�
��
���
������

�����
������
������
��
�
������
����

����
�

152

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

◦ In the following passes we keep reading M blocks from these sublists and
merge them into larger sorted sublists. (After the second pass we hence have
B(R)/M 2 sorted sublists of M 2 blocks each, after the third pass B(R)/M 3

sorted sublists, . . .)

���

�������	
����	������
��	��	�����
	����

��

	�

���

������	
����	������
��	�	�����
	����

���

���

���

153

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

1. In the first pass we read M blocks at the same time from the input relation,
sort these by means of a main-memory sorting algorithm, and write the sorted
resulting sublist to disk. After the first pass we hence have B(R)/M sorted
sublists of M blocks each.

2. In the following passes we keep reading M blocks from these sublists and
merge them into larger sorted sublists. (After the second pass we hence have
B(R)/M 2 sorted sublists of M 2 blocks each, after the third pass B(R)/M 3

sorted sublists, . . .)

3. We repeat until we obtain a single sorted sublist.

•What is the complexity of this?

1. In each pass we read and write the entire input relation exactly once.

2. There are ⌈logM B(R)⌉ passes

3. The total cost is hence 2B(R) ⌈logM B(R)⌉ I/O operations.

154

Physical Operators

Sort-based set union

• The costs of sort-based set union:

1. Sorting R : 2B(R) ⌈logM B(R)⌉ I/O’s

2. Sorting S : 2B(S) ⌈logM B(S)⌉ I/O’s

3. Synchronized iteration: B(R) + B(S) I/O’s

In Total:

2B(R) ⌈logM B(R)⌉ + 2B(S) ⌈logM B(S)⌉ + B(R) + B(S)

• Uses M memory-buffers during sorting

• Requires 2 memory-buffers for synchronized iteration

155

Physical Operators

Sort-based set union

Remark: the “synchronized iteration” phase of sort-based set union is very similar
to the merge phase of multiway merge-sort. Sometimes it is possible to combine
the last merge phase with the synchronized iteration, and avoid 2B(R) + 2B(S)
I/Os:

1. Sort R, but do not execute the last merge phase. R is hence still divided in
1 < l ≤ M sorted sublists.

2. Sort S, but do not execute the last merge phase. S is hence still divided in
1 < k ≤ M sorted sublists.

3. If l + k < M then we can use the M available buffers to load the first block
of each sublist of R and S in memory.

4. Then iterate synchronously through these sublists: at each point search the
“smallest” (according to the sort order) record in the k buffers, and output
that. Move to the next record in the buffers when required. When all records
from a certain buffer are processed, load the next block from the corresponding
sublist.

156

Physical Operators

Sort-based set union

The cost of the optimized sort-based set union algorithm is as follows:

1. Sort R, but do not execute the last merge phase.

2B(R)(⌈logM B(R)⌉ − 1)

2. Sort S, but do not execute the last merge phase.

2B(S)(⌈logM B(S)⌉ − 1)

3. Synchronized iteration through the sublists: B(R) + B(S) I/O’s

Total:

2B(R) ⌈logM B(R)⌉ + 2B(S) ⌈logM B(S)⌉−B(R)− B(S)

We hence save 2B(R) + 2B(S) I/O’s.

157

Physical Operators

Sort-based set union

Note that this optimization is only possible if k + l ≤ M .

Observe that k =
⌈

B(R)

M⌈logM B(R)⌉−1

⌉

and l =
⌈

B(S)

M⌈logM B(S)⌉−1

⌉

.

In other words, this optimization is only possible if:
⌈

B(R)

M ⌈logM B(R)⌉−1

⌉

+

⌈

B(S)

M ⌈logM B(S)⌉−1

⌉

≤ M

158

Physical Operators

Sort-based set union

Example: we have 15 buffers available, B(R) = 100, and B(S) = 120.

• Number of passes required to sort R completely: ⌈logM B(R)⌉ = 2

• Number of passes required to sort S completely: ⌈logM B(S)⌉ = 2

• Can the optimization be applied?
⌈

100

15

⌉

+

⌈

120

15

⌉

= 15 ≤ M

• The optimized sort-based set union hence costs:

2× 100× 2 + 2× 120× 2− 100− 120 = 660

159

Physical Operators

Sort-based set union

• The book states that in practice 2 passes usually suffice to completely sort a
relation.

• If we assume that R and S can be sorted in two passes (given the available
memory M) then we can instantiate our cost formula as follows:

◦Without optimization: 5B(R) + 5B(S)

◦With optimization: 3B(R) + 3B(S), but in this case we require sufficient
memory:

⌈

B(R)

M

⌉

+

⌈

B(S)

M

⌉

≤ M

or (approximately) B(R) + B(S) ≤ M 2.

→ This is the formula that you will find in the book!

• Note that the book focuses on the optimized algorithm in the case where two
passes suffice: the so-called “two-pass, sort-based set union”. It only sketches the
generalization to multiple passes.

160

Physical Operators

Hash-based set union

We can also alternatively compute the set union R∪S S as follows (R and S are
assume to be sets, and we assume that B(R) ≤ B(S)):

1. Partition, by means of hash function(s), R in buckets of at most M − 1 blocks
each. Let k be the resulting number of buckets, and let Ri be the relation
formed by the records in bucket i.

2. Partition, by means of the same hash function(s) as above, S in k buckets.
Let Si be the relation formed by the records in bucket i.

Observe: the records in Ri and Si have the same hash value! A record t hence
occurs in both R and S if, and only if, there is a bucket i such that t occurs
in both Ri and Si.

3. We can hence compute the set union by calculating the set union of Ri and
Si, for every i ∈ 1, . . . , k. Since every Ri contains at most M − 1 blocks, we
can do so using the one-pass algorithm.

Note: in contrast to the sort-based set union, the output of a hash-based set
union is unsorted!

161

Physical Operators

Hash-based set union

How do we partition R in buckets of at most M − 1 blocks?

1. Using M − 1 buffers, we first hash R into M − 1 buckets.

2. Subsequently we partition each bucket separately in M − 1 new buckets, by
using a new hash function distinct from the one used in the previous step (why?)

3. We continue doing so until the obtained buckets consists of at most M − 1
blocks.

162

Physical Operators

Hash-based set union

What is the cost of partitioning?

1. Assuming that the hash function(s) distribute the records uniformly, we have

M − 1 buckets of B(R)
M−1 blocks after the first pass, (M − 1)2 buckets of B(R)

(M−1)2

blocks after the second pass, and so on. Hence, if we reach buckets of at most
M − 1 blocks after k passes, k must satisfy:

B(R)

(M − 1)k
≤ M − 1

The minimal value of k that satisfies this is hence ⌈logM−1B(R)− 1⌉

2. In every pass we read and write R once.

Total cost:
2B(R) ⌈logM−1B(R)− 1⌉

163

Physical Operators

Hash-based set union

What is the costs of calculating hash-based set union?

1. Partition R: 2B(R) ⌈logM−1B(R)− 1⌉ I/O’s

2. Partition S: 2B(S) ⌈logM−1B(R)− 1⌉ I/O’s

Because we “only” need to partition S in as many buckets as R.

3. The one-pass set union of each Ri and Si: B(R) + B(S)

Total:

2B(R) ⌈logM−1B(R)− 1⌉ + 2B(S) ⌈logM−1B(R)− 1⌉ + B(R) + B(S)

164

Physical Operators

Hash-based set union

• The book states that in practice one level of partitioning suffices.

• The book hence focuses on the scenario where we only need two passes: “two-pass,
hash-based set union” and only sketches the generalization to multiple passes.

The algorithm is called two-pass because we need 1 pass through the data to
partition it, and another one to do the pairwise single-pass union of the buckets

• Under the assumption that one level of partitioning suffices, our cost formula
hence specializes to the cost: 3B(R) + 3B(S)

• But: one level of partitioning only suffices if B(R)
M−1 ≤ M − 1, or (approximately)

B(R) ≤ M 2 (where R is the smaller relation of R and S)

→ These are the formulas introduced in the book!

165

Physical Operators

Other operations on relations

To compute (bag) intersection and (bag) difference we can modify the previous
algorithms. The costs remain the same

Also the removal of duplicates can be done using the same techniques.

→ See book!

166

Physical Operators

One-pass Join

Assume that M − 1 ≥ B(R). We can then compute R(X, Y) ✶ S(Y, Z) as
follows:

load R into memory buffers N1, . . . , NB(R);
for each block BS in S do
load BS into buffer N0;
for each tuple tS in N0 do
for each tuple matching tuple tR in N1, . . . , NB(R) do
output tR ✶ tS

• Cost: B(R) + B(S) I/O operations

• There is also the cost of finding the matching tuples of tS in N1, . . . , NB(R).
By using a suitable main-memory data structure this can be done in O(n) or
O(n log n) time. We ignore this cost.

• Requires B(R) ≤ M − 1

167

Physical Operators

Nested Loop Join

We can also alternatively compute R(X, Y) ✶ S(Y, Z) as follows:

for each segment G of M − 1 blocks of R do
load G into buffers N1, . . . , NM−1;
for each block BS in S do
load BS into buffer N0;
for each tuple tR in N1, . . . , NM−1 do
for each tuple tS in N0 do
if tR.Y = tS.Y then output tR ✶ tS

Cost:

B(R) + B(S)×
B(R)

M − 1

168

Physical Operators

Sort-merge Join

Essentially the same algorithm as sort-based set union:

1. Sort R on attribute Y

2. Sort S on attribute Y

3. Iterated synchronously through R and S, keeping 1 block of each relation in
memory at all times, and at each point inspecting a single tuple from R and
S. Assume that we are currently at tuple tR in R and at tuple tS in S.

• If tR.Y < tS.Y then we advance the pointer tR to the next tuple in R
(possibly loading the next block of R if necessary).

• If tR.Y > tS.Y then we advance the pointer tS to the next tuple in S
(possibly loading the next block of S if necessary)).

• If tR.Y = tS.Y then we output tR ✶ t′S for each tuple t′S following tS
(including tS itself) that satisfies t′S.Y = tS.Y . It is possible that we need
to read the following blocks in S. Finally, we advance tR to the next tuple
in R, and rewind our pointer in S to tS.

169

Physical Operators

Sort-merge Join

• The cost depends on the number of tuples with equal values for Y . The worst
case is when all tuples in R and S have the same Y -value. The cost is then
B(R)× B(S) plus the cost for sorting R and S.

• However, joins are often performed on foreign key attributes. Assume for example
that attribute Y in S is a foreign key to attribute Y in R. Then every value for Y
in S has only one matching tuple in R, and there is no need to reset the pointer
in S. → See book

• In this case the cost analysis is similar to the analysis for sort-based set union.
Similarly, it is possible to optimize and gain 2B(R) + 2B(S) I/O operations
(provided there is enough memory).

• The book also focuses on “two-pass sort-merge join”.

• Remark: When R has a BTree index on Y , then it is not necessary to sort R
(why?). The same holds for S.

170

Physical Operators

Hash-Join

Essentially the same algorithm as hash-based set union:

1. Partition, by hashing the Y -attribute, R into buckets of at most M − 1 blocks
each. Let k be the number of buckets required, and let Ri be the relation
formed by the blocks in bucket i.

2. Partition, by hashing the Y -attribute using the same has function(s) as above,
S into k buckets. Let Si be the relation formed by the blocks in bucket i.

Notice: the records in Ri and Si have the same hash value. A tuple tR ∈ R
hence matches the Y attribute of tuple tS ∈ S if, and only if, there is a bucket
i such that tR ∈ Ri and tS ∈ Si.

3. We can therefore compute the join by calculating the join of Ri and Si, for
every i ∈ 1, . . . , k. Since every Ri consists of at most M − 1 blocks, this can
be done using the one-pass algorithm.

Remark: the output of a hash-join is unsorted on the Y attribute, in contrast to
the output of the sort-merge join!

171

Physical Operators

Hash-Join

• The cost analysis is the same as the analysis for hash-based set union

• Again the book focuses on “two-pass hash-join”:

one pass for the partitioning, one pass for the join

172

Physical Operators

Index-Join

Assume that S has an index on attribute Y . We can then alternatively compute
the join R(X, Y) ✶ S(Y, Z) by searching, for every tuple t in R, the matching
tuples in S (using the index).

Cost when the index on Y is not clustered:

B(R) + T (R)× ⌈T (S)/V (S, Y)⌉

Cost when the index on Y is clustered:

B(R) + T (R)× ⌈B(S)/V (S, Y)⌉

→ See book

General comment

The book often omits the ceiling operations (⌈·⌉) when calculating costs. In the
exercises you must always include these operations!

173

