
Outline/summary

• Conventional Indexes
• Sparse vs. dense

• Primary vs. secondary

• B trees
• B+trees vs. indexed sequential

• Hashing schemes --> Next

key → h(key)

Hashing

<key>

.

.

.

Buckets
(typically 1
disk block)

.

.

.

Two alternatives

records

.

.

.(1) key → h(key)

(2) key → h(key)

Index

record
key 1

Two alternatives

• Alt (2) for “secondary” search key

Example hash function

• Key = ‘x1 x2 … xn’ n byte character
string

• Have b buckets
• h: add x1 + x2 + ….. xn

– compute sum modulo b

 This may not be best function …

 Read Knuth Vol. 3 if you really
need to select a good function.

Good hash function:

 Expected number of keys/bucket is the

 same for all buckets

Within a bucket:

• Do we keep keys sorted?

• Yes, if CPU time critical

 & Inserts/Deletes not too frequent

Next: example to illustrate
inserts, overflows, deletes

h(K)

EXAMPLE 2 records/bucket

INSERT:

h(a) = 1

h(b) = 2

h(c) = 1

h(d) = 0

0

1

2

3

d

a
c

b

h(e) = 1

e

0

1

2

3

a

b
c

e

d

EXAMPLE: deletion

Delete:
e
f

f
g

maybe move
“g” up

c
d

Rule of thumb:
• Try to keep space utilization

between 50% and 80%

 Utilization = # keys used
 total # keys that fit

• If < 50%, wasting space

• If > 80%, overflows significant
depends on how good hash
function is & on # keys/bucket

How do we cope with growth?

• Overflows and reorganizations

• Dynamic hashing

• Extensible

• Linear

Extensible hashing: two ideas

(a) Use i of b bits output by hash
function

 b

 h(K) →

 use i → grows over time….

00110101

(b) Use directory

h(K)[i] to bucket

.

.

..

.

.

Example: h(k) is 4 bits; 2
keys/bucket

i = 1

1

1

0001

1001

1100

Insert
1010

1
1100

1010

New directory

2
00

01

10

11

i =

2

2

1
0001

2
1001

1010

2
1100

Insert:

0111

0000

00

01

10

11

2i =

Example continued

0111

0000

0111

0001

2

2

00

01

10

11

2i =

21001

1010

21100

20111

20000

0001

Insert:

1001

Example continued

1001

1001

1010

000

001

010

011

100

101

110

111

3i =

3

3

Extensible hashing: deletion

• No merging of blocks

• Merge blocks
 and cut directory if possible

(Reverse insert procedure)

Deletion example:

• Run thru insert example in reverse!

Extensible hashing

Can handle growing files

- with less wasted space

- with no full reorganizations

Summary

+

Indirection
(Not bad if directory in memory)

Directory doubles in size
(Now it fits, now it does not)

-

-

Linear hashing

• Another dynamic hashing scheme

Two ideas:
(a) Use i low order bits of

hash 01110101
grows

b

i

(b) Number n of buckets in use grows linearly

Example b=4 bits, i =2, 2 keys/bucket

00 01 10 11

0101

1111

0000

1010

n = 01 (number of buckets in use)

Future
growth
buckets

If h(k)[i] ≤ n, then

 look at bucket h(k)[i]
 else, look at bucket h(k)[i] - 2i -1

Rule

0101
• can have overflow chains!

• insert 0101

Example b=4 bits, i =2, 2 keys/bucket

00 01 10 11

0101

1111

0000

1010

n = 01

Future
growth
buckets

10

1010

0101 • insert 0101

11

1111
0101

Example Continued: How to grow beyond
this?

00 01 10 11

111110100101

0101

0000

n = 11

i = 2

0 0 0 0
100 101 110 111

3

. . .

100

100

101

101

0101

0101

• If U > threshold then increase n

(and maybe i)

 When do we expand file?

• Keep track of: # records
 # buckets

= U

Linear Hashing

 Can handle growing files

- with less wasted space

- with no full reorganizations

 No indirection like extensible
hashing

Summary

+

+

Can still have overflow chains-

Example: BAD CASE

Very full

Very empty Need to
move

n here…

Would waste

space...

Hashing

- How it works

- Dynamic hashing

- Extensible

- Linear

Summary

• Hashing good for probes given key

e.g., SELECT …

 FROM R

WHERE R.A = 5

B+trees vs Hashing

• INDEXING (Including B Trees) good
for

Range Searches:

e.g., SELECT

FROM R

WHERE R.A > 5

B+Trees vs Hashing

	Outline/summary
	PowerPoint Presentation
	Slide 67
	Slide 68
	Example hash function
	Slide 70
	Within a bucket:
	Next: example to illustrate inserts, overflows, deletes
	EXAMPLE 2 records/bucket
	Slide 74
	Rule of thumb:
	How do we cope with growth?
	Extensible hashing: two ideas
	Slide 78
	Example: h(k) is 4 bits; 2 keys/bucket
	Slide 80
	Slide 81
	Extensible hashing: deletion
	Deletion example:
	Extensible hashing
	Linear hashing
	Example b=4 bits, i =2, 2 keys/bucket
	Slide 87
	Example Continued: How to grow beyond this?
	 When do we expand file?
	Linear Hashing
	Example: BAD CASE
	Slide 92
	Slide 93
	Slide 94

