
One-dimensional index structures

110



Motivation: The I/O model of computation

The I/O model

• Data is stored on disk, which is divided into blocks of bytes (typically 4 kilobytes)

(each block can contain many data items)

• The CPU can only work on data items that are in memory, not on items on disk

• Therefore, data must first be transferred from disk to memory

• Data is transferred from disk to memory (and back) in whole blocks at the time

• The disk can hold D blocks, at most M blocks can be in memory at the same
time (with M << D).

111



Motivation: The I/O model of computation

However: complexity of algorithms is traditionally analyzed in the RAM
model of computation

• Data is stored in an (infinite) memory

• The CPU works on data items in memory

• Complexity is measured in terms of the number of memory accesses and CPU
operations.

112



Motivation: The I/O model of computation

“The difference in speed between modern CPU and disk technologies is analogous
to the difference in speed in sharpening a pencil using a sharpener on ones desk
or by taking an airplane to the other side of the world and using a sharpener on
someone elses desk.”

(D. Comer)

113



Motivation: The I/O model of computation

• In-memory computation is fast (memory access ≈ 10−8s )

• Disk-access is slow (disk access: ≈ 10−3s )

• Hence: execution time is dominated by disk I/O

We will use the number of I/O operations required as cost metric

114



Motivation: searching in a database

A hypothetical database

• A relation R(A,B,C,D). Each tuple comprises 32 bytes.

• Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

• Hence there are 128 tuples per block, or 106 blocks in total.

Searching for record with C = 10 in case R is arbitrary

• For every block X in R:

◦ Load X from disk in memory

◦ Check whether there is a tuple with A = 10 in X ;

◦ If so output record and terminate loop; otherwise continue

◦ Release X from memory

•Worst case I/O Cost: the total number of blocks in R, or 106 I/O’s.

• At 10−3 s per IO this takes 16.6 minutes. ⇒ Can we do better?

115



Index structures

See corresponding slides

116



Searching in a database with a index (1/2)

The database

• A relation R(A,B,C,D). Each tuple comprises 32 bytes.

• Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

• Hence there are 128 tuples per block, or 106 blocks in total.

The index

• There is a secondary index on attribute C.

• A (key value, ptr) pair in the index takes 16 bytes.

• Question: How many (key, ptr) pairs fit in a block?

• Question: How many blocks does the dense 1st level index take?

• Question: How many blocks does the sparse 2nd level index take?

117



Searching in a database with a index (1/2)

The database

• A relation R(A,B,C,D). Each tuple comprises 32 bytes.

• Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

• Hence there are 128 tuples per block, or 106 blocks in total.

The index

• There is a secondary index on attribute C.

• A (key value, ptr) pair in the index takes 16 bytes.

• Question: How many (key, ptr) pairs fit in a block? 256

• Question: How many blocks does the dense 1st level index take? 5 · 105

• Question: How many blocks does the sparse 2nd level index take? 1954

118



Searching in a database with a index (2/2)

Searching for records with C = 10 using the index

• Algorithm:

◦ Loop through all of the blocks in X , one, by one, and find the (key, ptr) pair
in X with the largest key value satisfying key <= 10.

◦ Follow ptr to dense index block, and use the information in this block to locate
the block in R containing the record with C = 10 (if it exists).

•Worst case I/O Cost: loading of all blocks of sparse index + 1 block of dense
index + 1 block of R, or 1954 + 1 + 1 = 1956 I/Os.

• At 10−3 s per I/O this takes 2 seconds.

Since the sparse index is sorted, we could perform binary search on it.

• I/O Cost: binary search in sparse index + 1 block of dense index + 1 block of R,
or log2(1954) + 1 + 1 = 14 I/Os → 0.014 seconds.

119



Searching in a database with a BTree index (1/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index on attribute C.

• A key value takes 8 bytes, a ptr also 8 bytes.

• Question: What is the maximum order n of the BTree, taking into account that
blocks are 4096 bytes large?

120



Searching in a database with a BTree index (2/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index on attribute C.

• A key value takes 8 bytes, a ptr also 8 bytes.

• Question: What is the maximum order n of the BTree, taking into account that
blocks are 4096 bytes large?

• Answer: A BTree of degree n stores n + 1 pointers and n key values in each
block. We are hence looking for the largest integer value of n satisfying:

(n + 1) ptrs × 8 bytes/ptr + n keys × 8 bytes/ptr ≤ 4096 bytes

As such, n = 255: we store 256 pointers and 255 keys in a block.

121



Searching in a database with a BTree index (3/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Question: What is the height of the BTree assuming that leaf blocks are full
and internal blocks contain 255 pointers?

122



Searching in a database with a BTree index (4/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Question: What is the height of the BTree assuming that leaf blocks are full
and internal blocks contain 255 pointers?

• Answer: : Observe:

◦ there are
⌈

128·106

255

⌉

leaf blocks (at level 1)

◦ there are
⌈

128·106

(255)2

⌉

blocks at level 2

◦ there are
⌈

128·106

(255)3

⌉

blocks at level 3

◦ . . .

123



◦ there are
⌈

128·106

(255)h

⌉

blocks at level h

Since the root is at the level where there is only one block, we are looking for the

smallest value of h such that
⌈

128·106

(255)h

⌉

= 1.

So, h =
⌈

log255 128 · 10
6
⌉

= 4 .

124



Searching in a database with a BTree index (5/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Hence we can store at most 256 pointers; and 255 key values in a block.

• Question: What is the cost of searching for the record with C = 10 using this
BTree, assuming the worst-case scenario that each block in the BTree is half full?

125



Searching in a database with a BTree index (6/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Hence we can store at most 256 pointers; and 255 key values in a block.

• Question: What is the cost of searching for the record with C = 10 using this
BTree, assuming the worst-case scenario that each block in the BTree is half full?

Answer: height of the Bree in which blocks are half full + 1 I/O to access main
file
=

⌈

log128 128 · 10
6
⌉

+ 1 = 5 → 0.005 seconds.

126



Inserting in a BTree index

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation.

The index

• There is a BTree index of order 255 on attribute C.

• Hence we can store at most 256 pointers; and 255 key values.

• Question: What is the cost of inserting a new record in this BTree, assuming
the record is already in the main file, and assuming the worst-case scenario where
each block in the BTree is full?

127



Inserting in a BTree index

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation.

The index

• There is a BTree index on attribute C.

• Hence we can store at most 256 pointers; and 255 key values.

• Question: What is the cost of inserting a new record in this BTree, assuming
the record is already in the main file, and assuming the worst-case scenario where
each block in the BTree is full?

Answer: cost of a search + 2 I/O’s per level of the BTree
=

⌈

log255 128 · 10
6
⌉

+ 2
⌈

log255 128 · 10
6
⌉

+ 1 = 3
⌈

log255 128 · 10
6
⌉

+ 1 = 13 →

0.013s

128


