
Database Systems Architecture

Stijn Vansummeren

1



General Course Information

Objective:

To obtain insight into the internal operation and implementation of systems de-
signed to manage and process large amounts of data (“database management
systems”).

• Storage management
• Query processing
• Transaction management

2



General Course Information

Examples of data management systems:

• Relational DBMSs

• NoSQL DBMS

• Graph databases

• Stream processing systems/Complex event processing systems

Focus on relational DBMS, with discussion on how the foundational
ideas of relational DBMSs are modified in other systems

3



General Course Information

Why is this interesting?

• Understand how typical data management systems work

• Predict data management system behavior, tune its performance

•Many of the techniques studied transfer to settings other than data manage-
ment systems
(MMORPGs, Financial market analysis, . . . )

What this course is not:

• Introduction to databases

• Focused on particular DBMS (Oracle, IBM,. . . )

4



General Course Information

Organisation

• Combination of lectures; exercise sessions; guided self-study; and project work.

• Evaluation: pair project and written exam

Course material

• Database Systems: The Complete Book (H. Garcia-Molina, J. D. Ullman, and J.
Widom) second edition

• Course notes (available on website)

Contact information

• Email: stijn.vansummeren@ulb.ac.be
• Office: UB4.125

•Website: http://cs.ulb.ac.be/public/teaching/infoh417

5



Course Prerequisites

An introductory course on relational database systems

• Understanding of the Relational Algebra

• Understanding of SQL

Background on basic data structures and algorithms

• Search trees

• Hashing
• Analysis of algorithms: worst-case complexity and big-oh notation (e.g., O(n3))

• Basic knowledge of what it means to be NP-complete

Proficiency in Programming (Java or C/C++)

• Necessary for completing the project assignment

6



Query processing: overview

SQL

Query Compiler

Logical 
query plan

Optimized
logical query plan

Physical 
query planLogical plan

optimization
Physical plan 

selection
Translation

Execution 
Engine

Result

Physical 
Data Storage

Statistics
and

Metadata

7



Query processing: overview

SQL

Query Compiler

Logical 
query plan

Optimized
logical query plan

Physical 
query planLogical plan

optimization
Physical plan 

selection
Translation

Execution 
Engine

Result

Physical 
Data Storage

"Intermediate code" "Machine code"

Statistics
and

Metadata

8



Translation of SQL into Relational Algebra
From SQL text to logical query plans

9



Translation of SQL into relational algebra: overview

SQL

Query Translation

Stream 
of tokens

Abstract
Syntax Tree

Logical 
query planSyntactic 

analysis
TransformationLexical

Analysis "Intermediate
 code"

We will adopt the following simplifying assumptions:

We will only show how to translate SQL-92 queries

And we adopt a set-based semantics of SQL. (In contrast, real SQL is bag-based.)

What will we use as logical query plans?

The extended relational algebra (interpreted over sets).

Prerequisites

• SQL: see chapter 6 in TCB

• Extended relational algebra: chapter 5 in TCB

10



Refreshing the Relational Algebra

Relations are tables whose columns have names, called attributes

A B C D

1 2 3 4
1 2 3 5
3 4 5 6
5 6 3 4

The set of all attributes of a relation is called the schema of the relation.

The rows in a relation are called tuples.

A relation is set-based if it does not contain duplicate tuples. It is called
bag-based otherwise.

11



Refreshing the Relational Algebra

Unless specified otherwise, we assume that relations are set-based.

Each Relational Algebra operator takes as input 1 or more relations, and
produces a new relation.

12



Refreshing the Relational Algebra

Union (set-based)

A B

1 2
3 4
5 6

∪ A B

3 4
1 5

= A B

1 2
3 4
5 6
1 5

Input relations must have the same schema (same set of attributes)

13



Refreshing the Relational Algebra

Intersection (set-based)

A B

1 2
3 4
5 6

∩ A B

3 4
1 5

= A B

3 4

Input relations must have same set of attributes

14



Refreshing the Relational Algebra

Difference (set-based)

A B

1 2
3 4
5 6

− A B

3 4
1 5

= A B

1 2
5 6

Input relations must have same set of attributes

15



Refreshing the Relational Algebra

Selection

σA>=3




A B

1 2
3 4
5 6


 =

A B

3 4
5 6

16



Refreshing the Relational Algebra

Projection (set-based)

πA,C




A B C D

1 2 3 4
1 2 3 5
3 4 5 6
5 6 3 4




=

A C

1 3
3 5
5 3

17



Refreshing the Relational Algebra

Cartesian product

A B

1 2
3 4

×
C D

2 6
3 7
4 9

=

A B C D

1 2 2 6
1 2 3 7
1 2 4 9
3 4 2 6
3 4 3 7
3 4 4 9

Input relations must have same disjoint schema (set of attributes)

18



Refreshing the Relational Algebra

Natural Join

A B

1 2
3 4

✶

B D

2 6
3 7
4 9

=

A B D

1 2 6
3 4 9

19



Refreshing the Relational Algebra

Natural Join

A B

1 2
3 4

✶

C D

2 6
3 7
4 9

=

A B C D

1 2 2 6
1 2 3 7
1 2 4 9
3 4 2 6
3 4 3 7
3 4 4 9

20



Refreshing the Relational Algebra

Theta Join

A B

1 2
3 4

✶B=C

C D

2 6
3 7
4 9

=

A B C D

1 2 2 6
3 4 4 9

21



Refreshing the Relational Algebra

Renaming

ρT




A B

1 2
3 4


 =

T.A T.B

1 2
3 4

Renaming specifies that the input relation (and its attributes) should be given a
new name.

22



Refreshing the Relational Algebra

Relational algebra expressions:

• Built using relation variables

• And relational algebra operators

σlength≥100(Movie) ✶title=movietitle StarsIn

23



Refreshing the Relational Algebra

The extended relational algebra

Adds some operators to the algebra (sorting, grouping, . . . ) and extends others
(projection).

Grouping:

γA,min(B)→D




A B C

1 2 a
1 3 b
2 3 c
2 4 a
2 5 a




=

A D

1 2
2 3

24



Refreshing the Relational Algebra

The extended relational algebra

Adds some operators to the algebra (sorting, grouping, . . . ) and extends others
(projection).

Extend projection to allow renaming of attributes:

πA,C→D




A B C D

1 2 3 4
1 2 3 5
3 4 5 6
5 6 3 4




=

A D

1 3
3 5
5 3

25



Refreshing the Relational Algebra

On the difference between sets and bags

• Historically speaking, relations are defined to be sets of tuples: duplicate tuples
cannot occur in a relation.

• In practical systems, however, it is more efficient to allow duplicates to occur
in relations, and only remove duplicates when requested. In this case relations
are bags.

Union (bag-based)

A B

1 2
3 4
5 6

∪ A B

3 4
1 5

= A B

1 2
3 4
5 6
3 4
1 5

26



Refreshing the Relational Algebra

On the difference between sets and bags

• Historically speaking, relations are defined to be sets of tuples: duplicate tuples
cannot occur in a relation.

• In practical systems, however, it is more efficient to allow duplicates to occur
in relations, and only remove duplicates when requested. In this case relations
are bags.

Intersection (bag-based)

A B

1 2
3 4
1 2
1 2

∩ A B

1 2
3 4
3 4
5 6

= A B

1 2
3 4

27



Refreshing the Relational Algebra

On the difference between sets and bags

• Historically speaking, relations are defined to be sets of tuples: duplicate tuples
cannot occur in a relation.

• In practical systems, however, it is more efficient to allow duplicates to occur
in relations, and only remove duplicates when requested. In this case relations
are bags.

Difference (bag-based)

A B

1 2
3 4
1 2
1 2

− A B

1 2
3 4
3 4
5 6

= A B

1 2
1 2

28



Refreshing the Relational Algebra

On the difference between sets and bags

• Historically speaking, relations are defined to be sets of tuples: duplicate tuples
cannot occur in a relation.

• In practical systems, however, it is more efficient to allow duplicates to occur
in relations, and only remove duplicates when requested. In this case relations
are bags.

Projection (bag-based)

πA,C




A B C D

1 2 3 4
1 2 3 5
3 4 5 6
5 6 3 4




=

A C

1 3
1 3
3 5
5 3

29



Refreshing the Relational Algebra

On the difference between sets and bags

• Historically speaking, relations are defined to be sets of tuples: duplicate tuples
cannot occur in a relation.

• In practical systems, however, it is more efficient to allow duplicates to occur
in relations, and only remove duplicates when requested. In this case relations
are bags.

The other operators are straightforwardly extended to bags: simply do
the same operation, taking into account duplicates

30



Translation of SQL into relational algebra: overview

SQL

Query Translation

Stream 
of tokens

Abstract
Syntax Tree

Logical 
query planSyntactic 

analysis
TransformationLexical

Analysis "Intermediate
 code"

We will adopt the following simplifying assumptions:

We will only show how to translate SQL-92 queries

And we adopt a set-based semantics of SQL. (In contrast, real SQL is bag-based.)

What will we use as logical query plans?

The extended relational algebra (interpreted over sets).

Prerequisites

• SQL: see chapter 6 in TCB

• Extended relational algebra: chapter 5 in TCB

31



Translation of SQL into the relational algebra

In the examples that follow, we will use the following database:

•Movie(title: string, year: int, length: int, genre: string, studioName: string,
producerC#: int)

•MovieStar(name: string, address: string, gender: char, birthdate: date)

• StarsIn(movieTitle: string, movieYear: string, starName: string)
•MovieExec(name: string, address: string, CERT#: int, netWorth: int)

• Studio(name: string, address: string, presC#: int)

32



Translation of SQL into the relational algebra

Select-from-where statements without subqueries

SQL: SELECT movieTitle

FROM StarsIn, MovieStar M

WHERE starName = M.name AND M.birthdate = 1960

Algebra: ???

33



Translation of SQL into the relational algebra

Select-from-where statements without subqueries

SQL: SELECT movieTitle

FROM StarsIn, MovieStar M

WHERE starName = M.name AND M.birthdate = 1960

Algebra: πmovieTitleσ starName=M.name
∧M.birthdate=1960

(StarsIn× ρM(MovieStar))

34



Translation of SQL into the relational algebra

Select statements in general contain subqueries

SELECT movieTitle FROM StarsIn

WHERE starName IN (SELECT name

FROM MovieStar

WHERE birthdate=1960)

Subqueries in the where-clause

Occur through the operators =, <, >, <=, >=, <>; through the quantifiers ANY, or
ALL; or through the operators EXISTS and IN and their negations NOT EXISTS

and NOT IN.

35



Translation of SQL into the relational algebra

We can always normalize subqueries to use only EXISTS and NOT EXISTS

SELECT movieTitle FROM StarsIn

WHERE starName IN (SELECT name

FROM MovieStar

WHERE birthdate=1960)

⇒ SELECT movieTitle FROM StarsIn

WHERE EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name=starName)

36



Translation of SQL into the relational algebra

We can always normalize subqueries to use only EXISTS and NOT EXISTS

SELECT name FROM MovieExec

WHERE netWorth >= ALL (SELECT E.netWorth

FROM MovieExec E)

⇒ SELECT name FROM MovieExec

WHERE NOT EXISTS(SELECT E.netWorth

FROM MovieExec E

WHERE netWorth < E.netWorth)

37



Translation of SQL into the relational algebra

We can always normalize subqueries to use only EXISTS and NOT EXISTS

SELECT C FROM S

WHERE C IN (SELECT SUM(B) FROM R

GROUP BY A)

⇒ ???

38



Translation of SQL into the relational algebra

We can always normalize subqueries to use only EXISTS and NOT EXISTS

SELECT C FROM S

WHERE C IN (SELECT SUM(B) FROM R

GROUP BY A)

⇒ SELECT C FROM S

WHERE EXISTS (SELECT SUM(B) FROM R

GROUP BY A

HAVING SUM(B) = C)

39



Translation of SQL into the relational algebra

Translating subqueries - First step: normalization

• Before translating a query we first normalize it such that all of the subqueries that
occur in a WHERE condition are of the form EXISTS or NOT EXISTS.

•We may hence assume without loss of generality in what follows that all subqueries
in a WHERE condition are of the form EXISTS or NOT EXISTS.

40



Translation of SQL into the relational algebra

Correlated subqueries

A subquery can refer to attributes of relations that are introduced in an outer
query.

SELECT movieTitle

FROM StarsIn

WHERE EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name=starName)

Definition

•We call such subqueries correlated subqueries.

• The “outer” relations from which the correlated subquery uses some attributes
are called the context relations of the subquery.

• The set of all attributes of all context relations of a subquery are called the
parameters of the subquery.

41



Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

42



Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

1. We first translate the EXISTS subquery.

πnameσ birthdate=1960∧name=S.starName
(MovieStar)

43



Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

1. We first translate the EXISTS subquery.

πnameσ birthdate=1960∧name=S.starName
(MovieStar))

Since we are translating a correlated subquery, however, we need to add the
context relations and parameters for this translation to make sense.

πS.movieTitle,S.movieYear,S.starName,nameσ birthdate=1960∧name=S.starName
(MovieStar×ρS(StarsIn))

44



Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

2. Next, we translate the FROM clause of the outer query. This gives us:

ρS(StarsIn)× ρM(Movie)

45



Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

3. We “synchronize” these subresults by means of a join. From the subquery we
only need to retain the parameter attributes.

(ρS(StarsIn)× ρM(Movie)) ✶

πS.movieTitle,S.movieYear,S.starNameσ birthdate=1960∧name=S.starName
(MovieStar× ρS(StarsIn))

46



Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

4. We can simplify this by omitting the first ρS(StarsIn)

ρM(Movie) ✶

πS.movieTitle,S.movieYear,S.starNameσ birthdate=1960∧name=S.starName
(MovieStar× ρS(StarsIn))

47



Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

5. Finally, we translate the remaining subquery-free conditions in the WHERE clause,
as well as the SELECT list

πS.movieTitle,M.studioName σS.movieYear>=2000∧S.movieTitle=M.title�
ρM(Movie) ✶ πS.movieTitle,S.movieYear,S.starName

σ birthdate=1960∧name=S.starName
(MovieStar× ρS(StarsIn))

�

48



Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

49



Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

1. We first translate the NOT EXISTS subquery.

πnameσ birthdate=1960∧name=S.starName
(MovieStar)

50



Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

1. We first translate the NOT EXISTS subquery.

πnameσ birthdate=1960∧name=S.starName
(MovieStar)

Since we are translating a correlated subquery, however, we need to add the
context relations and parameters for this translation to make sense.

πS.movieTitle,S.movieYear,S.starName,nameσ birthdate=1960∧name=S.starName
(MovieStar×ρS(StarsIn))

51



Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

2. Next, we translate the FROM clause of the outer query. This gives us:

ρS(StarsIn)× ρM(Movie)

52



Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

3. We then “synchronize” these subresults by means of an antijoin. From the
subquery we only need to retain the parameter attributes.

(ρS(StarsIn)× ρM(Movie)) ✶

πS.movieTitle,S.movieYear,S.starNameσ birthdate=1960∧name=S.starName
(MovieStar× ρS(StarsIn))

Here, the antijoin R✶S ≡ R− (R ✶ S).

Simplification is not possible: we cannot remove the first ρS(StarsIn).

53



Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

4. Finally, we translate the remaining subquery-free conditions in the WHERE clause,
as well as the SELECT list

πS.movieTitle,M.studioName σS.movieYear>=2000∧S.movieTitle=M.title�
(ρS(StarsIn)× ρM(Movie))✶πS.movieTitle,S.movieYear,S.starName

σ birthdate=1960∧name=S.starName
(MovieStar× ρS(StarsIn))

�

54



Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

In the previous examples we have only considered queries of the following form:

SELECT Select-list FROM From-list

WHERE ψ AND EXISTS(Q) AND · · · AND NOT EXISTS(P ) AND · · ·

How do we treat the following?

SELECT Select-list FROM From-list

WHERE A=B AND NOT(EXISTS(Q) AND C<6)

55



Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

In the previous examples we have only considered queries of the following form:

SELECT Select-list FROM From-list

WHERE ψ AND EXISTS(Q) AND · · · AND NOT EXISTS(P ) AND · · ·

How do we treat the following?

SELECT Select-list FROM From-list

WHERE A=B AND NOT(EXISTS(Q) AND C<6)

1. We first transform the condition into disjunctive normal form:

SELECT Select-list FROM From-list

WHERE (A=B AND NOT EXISTS(Q)) OR (A=B AND C>=6)

56



Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

In the previous examples we have only considered queries of the following form:

SELECT Select-list FROM From-list

WHERE ψ AND EXISTS(Q) AND · · · AND NOT EXISTS(P ) AND · · ·

How do we treat the following?

SELECT Select-list FROM From-list

WHERE A=B AND NOT(EXISTS(Q) AND C<6)

2. We then distribute the OR

(SELECT Select-list FROM From-list

WHERE (A=B AND NOT EXISTS(Q)))

UNION

(SELECT Select-list FROM From-list

WHERE (A=B AND C>=6))

57



Translation of SQL into the relational algebra

Union, intersection, and difference

SQL: (SELECT * FROM R R1) INTERSECT (SELECT * FROM R R2)

Algebra: ρR1
(R)∩ρR2

(R)

SQL: (SELECT * FROM R R1) UNION (SELECT * FROM R R2)

Algebra: ρR1
(R)∪ρR2

(R)

SQL: (SELECT * FROM R R1) EXCEPT (SELECT * FROM R R2)

Algebra: ρR1
(R)−ρR2

(R)

58



Translation of SQL into the relational algebra

Union, intersection, and difference in subqueries

Consider the relations R(A,B) and S(C).

SELECT S1.C, S2.C

FROM S S1, S S2

WHERE EXISTS (

(SELECT R1.A, R1.B FROM R R1

WHERE A = S1.C AND B = S2.C)

UNION

(SELECT R2.A, R2.B FROM R R2

WHERE B = S1.C)

)

In this case we translate the subquery as follows:

πS1.C,S2.C,R1.A→A,R1.B→B σ A=S1.C
∧B=S2.C

(ρR1
(R)× ρS1

(S)× ρS2
(S))

∪πS1.C,S2.C,R2.A→A,R2.B→B σB=S1.C (ρR2
(R)× ρS1

(S)×ρS2
(S))

59



Translation of SQL into the relational algebra

Join-expressions

SQL: (SELECT * FROM R R1) CROSS JOIN (SELECT * FROM R R2)

Algebra: ρR1
(R)×ρR2

(R)

SQL: (SELECT * FROM R R1) JOIN (SELECT * FROM R R2)

ON R1.A = R2.B

Algebra: ρR1
(R) ✶

R1.A=R2.B
ρR2

(R)

60



Translation of SQL into the relational algebra

Join-expressions in subqueries

Consider the relations R(A,B) and S(C).

SELECT S1.C, S2.C

FROM S S1, S S2

WHERE EXISTS (

(SELECT R1.A, R1.B FROM R R1

WHERE A = S1.C AND B = S2.C)

CROSS JOIN

(SELECT R2.A, R2.B FROM R R2

WHERE B = S1.C)

)

In this case we translate the subquery as follows:

πS1.C,S2.C,R1.A,R1.B σ A=S1.C
∧B=S2.C

(ρR1
(R)× ρS1

(S)× ρS2
(S))

✶πS1.C,R2.A,R2.B σB=S1.C (ρR2
(R)× ρS1

(S))

61



Translation of SQL into the relational algebra

GROUP BY and HAVING

SQL: SELECT name, SUM(length)

FROM MovieExec, Movie

WHERE cert# = producerC#

GROUP BY name

HAVING MIN(year) < 1930

Algebra:
πname,SUM(length)σMIN(year)<1930 γname,MIN(year),SUM(length)

σcert#=producerC#(MovieExec× Movie)

62



Translation of SQL into the relational algebra

Subqueries in the From-list

SQL: SELECT movieTitle

FROM StarsIn, (SELECT name FROM MovieStar

WHERE birthdate = 1960) M

WHERE starName = M.name

Algebra:
πmovieTitleσstarName=M.name(StarsIn

× ρMπnameσbirthdate=1960(MovieStar))

63



Translation of SQL into the relational algebra

Lateral subqueries in SQL-99

SELECT S.movieTitle

FROM (SELECT name FROM MovieStar

WHERE birthdate = 1960) M,

LATERAL

(SELECT movieTitle

FROM StarsIn

WHERE starName = M.name) S

1. We first translate the first subquery

E1 = πnameσbirthdate=1960(MovieStar).

2. We then translate the second subquery, which has E1 as context relation:

E2 = ρSπname,movieTitleσstarName=M.name(StarsIn× E1).

3. Finally, we translate the whole FROM-clause by means of a join due to the
correlation:

πmovieTitle(E1 ✶ E2).

64



Translation of SQL into the relational algebra

Lateral subqueries in SQL-99

SELECT S.movieTitle

FROM (SELECT name FROM MovieStar

WHERE birthdate = 1960) M,

LATERAL

(SELECT movieTitle

FROM StarsIn

WHERE starName = M.name) S

4. In this example, however, all relevant tuples of E1 are already contained in the
result of E2, and we can hence simplify:

πmovieTitle(E2).

65



Translation of SQL into the relational algebra

Subqueries in the select-list

Consider again the relations R(A,B) and S(C), and assume that A is a key for
R. The following query is then permitted:

SELECT C, (SELECT B FROM R

WHERE A=C)

FROM S

Such queries can be rewritten as queries with LATERAL subqueries in the from-list:

SELECT C, T.B

FROM (SELECT C FROM S),

LATERAL

(SELECT B FROM R

WHERE A=C) T

We can hence first rewrite them in LATERAL form, and subsequently translate the
rewritten query into the relational algebra.

66


