
Database Systems Architecture Q & A

Stijn Vansummeren

1

Translation of SQL into the relational algebra

In the examples that follow, we will use the following database:

•Movie(title: string, year: int, length: int, genre: string, studioName: string,
producerC#: int)

•MovieStar(name: string, address: string, gender: char, birthdate: date)

• StarsIn(movieTitle: string, movieYear: string, starName: string)

•MovieExec(name: string, address: string, CERT#: int, netWorth: int)

• Studio(name: string, address: string, presC#: int)

2

Translation of SQL into the relational algebra

Select-from-where statements without subqueries

SQL: SELECT movieTitle

FROM StarsIn S, MovieStar M

WHERE S.starName = M.name AND M.birthdate = 1960

Algebra:
• Translate From-clause into cartesian product (ρ, ×)

• Translate Where-clause into selection (σ)

• Translate Select-clause into projection (π)

3

Translation of SQL into the relational algebra

Correlated subqueries

A subquery can refer to attributes of relations that are introduced in an outer
query.

SELECT movieTitle

FROM StarsIn S

WHERE EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name=S.starName)

Definition

•We call such subqueries correlated subqueries.

• The “outer” relations from which the correlated subquery uses some attributes
are called the context relations of the subquery.

• The set of all attributes of all context relations of a subquery are called the
parameters of the subquery.

4

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

5

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

1. We first translate the EXISTS subquery.

πnameσ birthdate=1960
∧name=S.starName

(MovieStar)

6

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

1. We first translate the EXISTS subquery.

πnameσ birthdate=1960
∧name=S.starName

(MovieStar)

Since we are translating a correlated subquery, however, we need to add the
context relations and parameters for this translation to make sense.

πS.movieTitle,S.movieYear,S.starName,nameσ birthdate=1960
∧name=S.starName

(MovieStar×ρS(StarsIn))

7

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

2. Next, we translate the FROM clause of the outer query. This gives us:

ρS(StarsIn)× ρM(Movie)

8

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

3. We “synchronize” these subresults by means of a join. From the subquery we
only need to retain the parameter attributes.

(ρS(StarsIn)× ρM(Movie)) 1

πS.movieTitle,S.movieYear,S.starNameσ birthdate=1960
∧name=S.starName

(MovieStar× ρS(StarsIn))

9

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

4. We can simplify this by omitting the first ρS(StarsIn)

ρM(Movie) 1

πS.movieTitle,S.movieYear,S.starNameσ birthdate=1960
∧name=S.starName

(MovieStar× ρS(StarsIn))

10

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

5. Finally, we translate the remaining subquery-free conditions in the WHERE clause,
as well as the SELECT list

πS.movieTitle,M.studioName σS.movieYear>=2000∧S.movieTitle=M.title(
ρM(Movie) 1 πS.movieTitle,S.movieYear,S.starName

σ birthdate=1960
∧name=S.starName

(MovieStar× ρS(StarsIn))
)

11

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

12

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

1. We first translate the NOT EXISTS subquery.

πnameσ birthdate=1960
∧name=S.starName

(MovieStar)

13

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

1. We first translate the NOT EXISTS subquery.

πnameσ birthdate=1960
∧name=S.starName

(MovieStar)

Since we are translating a correlated subquery, however, we need to add the
context relations and parameters for this translation to make sense.

πS.movieTitle,S.movieYear,S.starName,nameσ birthdate=1960
∧name=S.starName

(MovieStar×ρS(StarsIn))

14

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

2. Next, we translate the FROM clause of the outer query. This gives us:

ρS(StarsIn)× ρM(Movie)

15

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

3. We then “synchronize” these subresults by means of an antijoin. From the
subquery we only need to retain the parameter attributes.

(ρS(StarsIn)× ρM(Movie)) 1

πS.movieTitle,S.movieYear,S.starNameσ birthdate=1960
∧name=S.starName

(MovieStar× ρS(StarsIn))

Here, the antijoin R1S ≡ R− (R 1 S).

Simplification is not possible: we cannot remove the first ρS(StarsIn).

16

Translation of SQL into the relational algebra

Translation of correlated select-from-where subqueries

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name= S.starName)

4. Finally, we translate the remaining subquery-free conditions in the WHERE clause,
as well as the SELECT list

πS.movieTitle,M.studioName σS.movieYear>=2000∧S.movieTitle=M.title(
(ρS(StarsIn)× ρM(Movie))1πS.movieTitle,S.movieYear,S.starName

σ birthdate=1960
∧name=S.starName

(MovieStar× ρS(StarsIn))
)

17

Translation of SQL into the relational algebra

GROUP BY and HAVING

SQL: SELECT name, SUM(length)

FROM MovieExec, Movie

WHERE cert# = producerC#

GROUP BY name

HAVING MIN(year) < 1930

Algebra:
πname,SUM(length)σMIN(year)<1930 γname,MIN(year),SUM(length)

σcert#=producerC#(MovieExec× Movie)

18

Translation of SQL into the relational algebra

Task

Translate the following SQL-query into an expression of the relational algebra.

SELECT MAX(P.price), S.sname

FROM Parts P, Suppliers S

WHERE S.city = Ham

AND (P.Price, S.city) IN

(SELECT P2.Price, S2.city FROM Parts P2, Supply Y, Suppliers S2

WHERE P2.pid = Y.sid AND Y.pid = S2.pid

AND S.sid = S2.sid AND P.pid = P2.pid)

GROUP BY S.sname

19

Translation of SQL into the relational algebra

Solution

Normalization gives

SELECT MAX(P.price), S.sname

FROM Parts P, Suppliers S

WHERE S.city = Ham

AND EXISTS

(SELECT P2.Price, S2.city FROM Parts P2, Supply Y, Suppliers S2

WHERE P2.pid = Y.sid AND Y.pid = S2.pid

AND S.sid = S2.sid AND P.pid = P2.pid

AND P.Price = P2.Price AND S2.city =S.city

)

GROUP BY S.sname

20

Translation of SQL into the relational algebra

Solution

Translation of inner query

SELECT P2.Price, S2.city FROM Parts P2, Supply Y, Suppliers S2

WHERE P2.pid = Y.sid AND Y.pid = S2.pid

AND S.sid = S2.sid AND P.pid = P2.pid

AND P.Price = P2.Price AND S2.city =S.city

e1 := πP.∗,S.∗,P2.Price,S2.city

σP2.pid = Y.sid AND Y.pid = S2.pid AND S.sid = S2.sid AND P.pid = P2.pid

σP.Price = P2.Price AND S2.city =S.city

(ρP2Parts× ρY Supply× ρS2Suppliers× ρPParts× ρSSuppliers)

21

Translation of SQL into the relational algebra

Solution

Decorrelation:

SELECT MAX(P.price), S.sname

FROM Parts P, Suppliers S

WHERE S.city = Ham

AND EXISTS

(...

)

GROUP BY S.sname

e2 := ρPParts× ρSSuppliers

e3 := ê2 1 πP.∗,S.∗,(e1)

Note that ê2 is empty!

22

Translation of SQL into the relational algebra

Solution

Where, Group, By, and Aggregate:

SELECT MAX(P.price), S.sname

FROM Parts P, Suppliers S

WHERE S.city = Ham

AND EXISTS

(...

)

GROUP BY S.sname

e4 := σS.city=’Ham’(e3)

e5 := γS.sname,MAX(S.Price)(e4)

e6 := πS.sname,MAX(S.Price)(e5)

23

Optimization of logical query plans
Eliminating redundant joins

24

Optimization of select-project-join expressions

Containment of conjunctive queries is decidable

A(x, y)← R(x,w), G(w, z), R(z, y)
B(x, y)← R(x,w), G(w,w), R(w, y)

Golden method to check whether B ⊆ A:

1. First calculate the canonical database D for B:

R
ẋ ẇ
ẇ ẏ

G
ẇ ẇ

2. Then check whether (ẋ, ẏ) ∈ A(D). If so, B ⊆ A, otherwise B 6⊆ A.

25

Optimization of select-project-join expressions

Containment of conjunctive queries is decidable

A(x, y)← R(x,w), G(w, z), R(z, y)
B(x, y)← R(x,w), G(w,w), R(w, y)

Fact: B ⊆ A⇔ (x, y) ∈ A(D) with D the canonical database for B.

First possibility: (ẋ, ẏ) 6∈ A(D)

In this case we have just constructed a counter-example because (ẋ, ẏ) ∈ B(D).

R
ẋ ẇ
ẇ ẏ

G
ẇ ẇ

26

Optimization of select-project-join expressions

Containment of conjunctive queries is decidable

A(x, y)← R(x,w), G(w, z), R(z, y)
B(x, y)← R(x,w), G(w,w), R(w, y)

Fact: B ⊆ A⇔ (x, y) ∈ A(D) with D the canonical database for B.

Second possibility: (ẋ, ẏ) ∈ A(D)

• There hence exists a matching h of A into D such that h(x) = ẋ and h(y) = ẏ

• Let D′ be an arbitrary other database, and pick t ∈ B(D′). There hence exists a
matching f such that t = (f (x), f (y)).

• Then f ◦ h is a matching of A on D′:

A
R
x w
z y

G
w z

h−→ D = B
R
ẋ ẇ
ẇ ẏ

G
ẇ ẇ

f−→ D′

R
. . .
. . .
. . .
. . .

G
. . .
. . .
. . .
. . .

27

Optimization of select-project-join expressions

Containment of conjunctive queries is decidable

A(x, y)← R(x,w), G(w, z), R(z, y)
B(x, y)← R(x,w), G(w,w), R(w, y)

Fact: B ⊆ A⇔ (x, y) ∈ A(D) with D the canonical database for B.

Second possibility: (ẋ, ẏ) ∈ A(D)

• There hence exists a matching h of A into D such that h(x) = ẋ and h(y) = ẏ

• Let D′ be an arbitrary other database, and pick t ∈ B(D′). There hence exists a
matching f such that t = (f (x), f (y)).

• Then f ◦ h is a matching of A on D′:

A
R
x w
z y

G
w z

h−→ D = B
R
x w
w y

G
w w

f−→ D′

R
. . .
. . .
. . .
. . .

G
. . .
. . .
. . .
. . .

28

Optimization of select-project-join expressions

Containment of conjunctive queries is decidable

A(x, y)← R(x,w), G(w, z), R(z, y)
B(x, y)← R(x,w), G(w,w), R(w, y)

Fact: B ⊆ A⇔ (x, y) ∈ A(D) with D the canonical database for B.

Second possibility: (x, y) ∈ A(D)

• There hence exists a matching h of A into D such that h(x) = x and h(y) = y

• Let D′ be an arbitrary other database, and pick t ∈ B(D′). There hence exists a
matching f such that t = (f (x), f (y)).

• Then f ◦ h is a matching of A on D′:

• And hence
t = (f (x), f (y)) = (f (h(x)), f (h(y)) ∈ A(D′)

29

Optimization of select-project-join expressions

Conclusion:

• Containment of conjunctive queries is decidable

• Consequently the equivalence of conjunctive queries is also decidable

30

Optimization of select-project-join expressions

Optimizing conjunctive queries

Input: A conjunctive query Q

Output: A conjunctive query Q′ equivalent to Q that is optimal (i.e., has the
least number of atoms in its body).

For each conjunctive query we can obtain an equivalent, optimal query,
by removing atoms from its body

• Let Q be a CQ and let P be an arbitrary optimal and equivalent query.

• Then Q ⊆ P and hence (ẋ, ẏ) ∈ P (DQ) with DQ the canonical database for Q.
Let f be the matching that ensures this fact.

• Let Q′ be obtained by removing from Q all atoms that are not in the range of f

• Then Q ⊆ Q′

•Moreover, also Q′ ⊆ P (because (ẋ, ẏ) ∈ P (DQ′) still holds) and P ⊆ Q. Hence
Q′ ≡ Q.

• Note that Q′ contains at most the same number of atoms as P . Hence Q′ is
optimal.

31

Optimization of select-project-join expressions

Optimization of conjunctive queries

Input: A conjunctive query Q

Output: A conjunctive query Q′ equivalent to Q that is optimal (i.e., has the
least number of atoms in its body).

Optimization algorithm

• A conjunctive query is given. Consider for example:

Q(x)← R(x, x), R(x, y)

•We check, atom by atom, what atoms in its body are redundant.

We next try to remove R(x, y):

Q2(x)← R(x, x)

Note that Q ⊆ Q2 and Q2 ⊆ Q.

Q2 is certainly shorter than Q and hence closer to the optimal query. Since there
remain no other atoms to test, our result is Q2.

32

Optimization of select-project-join expressions

Optimization of select-project-join expressions

1. Translate the select-project-join expression e into an conjunctive query Q.

2. Optimize Q.

3. Translate Q back into a select-project-join expression.

33

Optimization of arbitrary relational algebra

Undecidable in general!

Our method in integrated exercises:

1. Identify syntactically maximal subexpressions that are SPJ

2. Optimize these

Example

πD.floorσE.did=D.did(

[πD.∗,E.∗σF2.did=E.did∧E2.did=D.did∧E2.eid=E.eid∧F2.expenses=300∧E.did=F2.did

(ρD(Dept)× ρE(Emp)× ρF2(Finance)× ρE2(Emp))]

1 [πD.∗σF1.budget>150∧D2.did=F1.did∧D2.floor=D.floor

(ρD(Dept)× ρD2(Dept)× ρF1(Finance))]

34

One-dimensional index structures

35

Linear Hashing

Q: When do we increase ?

A: See corresponding slides

36

Multi-dimensional index structures
Part I: motivation

37

Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

38

Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

39

Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

40

Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

41

Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

42

Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

43

Multidimensional Indexes

kd-Trees

40 55 1000

90

255

500

44

Multidimensional Indexes

kd-Trees

We can look at this as a tree as follows:

X 40

Y 90

X 55

Y 200

X 48

Y 300

40 55 1000

90

255

500

45

Multidimensional Indexes

kd-Trees

We continue splitting after new insertions:

X 40

Y 90

X 55

Y 200

X 48

Y 300

40 55 1000

90

255

500

Y 30

46

Multidimensional Indexes

kd-Trees

• Good support for point queries

• Good support for partial match queries: e.g., (y = 40)

• Good support for range queries (40 ≤ x ≤ 45 ∧ y < 80)

• Reasonable support for nearest neighbour

X 40

Y 90

X 55

Y 200

X 48

Y 300

40 55 1000

90

255

500

47

Multidimensional Indexes

kd-Trees for secondary storage

• Generalization to n children for each interal node (cf. BTree).

But it is difficult to keep this tree balanced since we cannot merge the children

•We limit ourselves to two children per node (as before), but store multiple nodes
in a single block.

48

Multidimensional Indexes

R-Trees: generalization of BTrees

Designed to index regions (where a single point is also viewed as a region).

See illustration at https://www.youtube.com/watch?v=u6SUeQtKBsY

49

Physical Operators
Scanning, sorting, merging, hashing

50

Physical Operators

One-pass set union

Assume that M − 1 ≥ B(R). We can then compute the set union R ∪S S as
follows (R and S are assumed to be sets themselves)

load R into memory buffers N1, . . . , NB(R);
for each tuple tR in N1, . . . , NB(R) do

output tR
for each block BS in S do

load BS into buffer N0;
for each tuple tS in N0 do

if tS does not occur in N1, . . . , NB(R)

output tS

• Cost: B(R) +B(S) I/O operations (ignoring output-cost)

• Note that it also costs time to check whether tS occurs in N1, . . . , NB(R).
By using a suitable main-memory data structure this can be done in O(n) or
O(n log n) time. We ignore this cost.

• Requires B(R) ≤M − 1

51

Physical Operators

Sort-based set union

We can also alternatively compute the set union R∪S S as follows (again R and
S are assumed to be sets):

1. Sort R

2. Sort S

3. Iterate synchronously over R and S, at each point loading 1 block of each
relation in memory and inspecting 1 tuple of R and S.

5
10

15
20

25
30

35
40

45
50

55
60

25
28

32
35

38
39

40
45

46

Relation R = green
Relation S = blue
2 integers per block

Output:

25
28

= occupied frame
= free frame

52

Physical Operators

Sort-based set union

• Sorting can in principle be done by any suitable algorithm, but is usually done
by Multiway Merge-Sort:

◦ In the first pass we read M blocks at the same time from the input relation,
sort these by means of a main-memory sorting algorithm, and write the sorted
resulting sublist to disk. After the first pass we hence have B(R)/M sorted
sublists of M blocks each.

...

...Relation R
of B(R) blocks

B(R)/M sorted “runs”
of M blocks each

Pass 1

53

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

◦ In the 2nd pass, we merge the first M sublists from the first pass into a
single sublist of M 2 blocks. We do so by iterating synchronously over these
M sublists, keeping 1 block of each list into memory during this iteration.

...

B(R)/M2 sorted “runs”
of M2 blocks each

Pass 2

...

B(R)/M sorted “runs”
of M blocks each

...

...

...

54

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

◦We then merge the next M sublists into a single sublist, and continue until
we have treated each sublist resulting from the first pass.

...

B(R)/M2 sorted “runs”
of M2 blocks each

Pass 2

...

B(R)/M sorted “runs”
of M blocks each

...

...

...

55

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

◦ After the second pass we hence have B(R)/M 2 sorted sublists of M 2 blocks
each.

...

B(R)/M2 sorted “runs”
of M2 blocks each

Pass 2

...

B(R)/M sorted “runs”
of M blocks each

...

...

...

56

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

◦ In the 3rd pass, we merge the first M sublists from the 2nd pass (each
of M 2 blocks) into a single sublist of M 3 blocks. We do so by iterating
synchronously over these M sublists, keeping 1 block of each list into memory
during this iteration.

...

B(R)/M3 sorted “runs”
of M3 blocks each

Pass 3

...

B(R)/M2 sorted “runs”
of M2 blocks each

...

...

...

57

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

◦We then merge the next M sublists into a single sublist, and continue until
we have treated each sublist resulting from the 2nd pass .

...

B(R)/M3 sorted “runs”
of M3 blocks each

Pass 3

...

B(R)/M2 sorted “runs”
of M2 blocks each

...

...

...

58

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

◦ After the 3rd pass we hence have B(R)/M 3 sorted sublists of M 3 blocks
each.

...

B(R)/M3 sorted “runs”
of M3 blocks each

Pass 3

...

B(R)/M2 sorted “runs”
of M2 blocks each

...

...

...

59

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

◦We keep doing new passes until we reach a single sorted list.

1 sorted run of B(R)
blocks

...

At most M sorted
“runs”

...

60

Physical Operators

Sort-based set union

• Sorting can in principle be done by suitable algorithm, but is usually done by
Multiway Merge-Sort:

1. In the first pass we read M blocks at the same time from the input relation,
sort these by means of a main-memory sorting algorithm, and write the sorted
resulting sublist to disk. After the first pass we hence have B(R)/M sorted
sublists of M blocks each.

2. In the following passes we keep reading M blocks from these sublists and
merge them into larger sorted sublists. (After the second pass we hence have
B(R)/M 2 sorted sublists of M 2 blocks each, after the third pass B(R)/M 3

sorted sublists, . . .)

3. We repeat until we obtain a single sorted sublist.

•What is the complexity of this?

1. In each pass we read and write the entire input relation exactly once.

2. There are dlogM B(R)e passes

3. The total cost is hence 2B(R) dlogM B(R)e I/O operations.

61

Physical Operators

Sort-based set union

• The costs of sort-based set union:

1. Sorting R : 2B(R) dlogM B(R)e I/O’s

2. Sorting S : 2B(S) dlogM B(S)e I/O’s

3. Synchronized iteration: B(R) +B(S) I/O’s

In Total:

2B(R) dlogM B(R)e + 2B(S) dlogM B(S)e +B(R) +B(S)

• Uses M memory-buffers during sorting

• Requires 2 memory-buffers for synchronized iteration

62

Physical Operators

Sort-based set union

Remark: the “synchronized iteration” phase of sort-based set union is very similar
to the merge phase of multiway merge-sort. Sometimes it is possible to combine
the last merge phase with the synchronized iteration, and avoid 2B(R) + 2B(S)
I/Os:

1. Sort R, but do not execute the last merge phase. R is hence still divided in
1 < l ≤M sorted sublists.

2. Sort S, but do not execute the last merge phase. S is hence still divided in
1 < k ≤M sorted sublists.

3. If l + k < M then we can use the M available buffers to load the first block
of each sublist of R and S in memory.

4. Then iterate synchronously through these sublists: at each point search the
“smallest” (according to the sort order) record in the l+ k buffers, and output
that. Move to the next record in the buffers when required. When all records
from a certain buffer are processed, load the next block from the corresponding
sublist.

63

Physical Operators

Sort-based set union

The cost of the optimized sort-based set union algorithm is as follows:

1. Sort R, but do not execute the last merge phase.

2B(R)(dlogM B(R)e − 1)

2. Sort S, but do not execute the last merge phase.

2B(S)(dlogM B(S)e − 1)

3. Synchronized iteration through the sublists: B(R) +B(S) I/O’s

Total:

2B(R) dlogM B(R)e + 2B(S) dlogM B(S)e−B(R)−B(S)

We hence save 2B(R) + 2B(S) I/O’s.

64

Physical Operators

Sort-based set union

Note that this optimization is only possible if k + l ≤M .

Observe that k =
⌈

B(R)

MdlogM B(R)e−1

⌉
and l =

⌈
B(S)

MdlogM B(S)e−1

⌉
.

In other words, this optimization is only possible if:⌈
B(R)

M dlogM B(R)e−1

⌉
+

⌈
B(S)

M dlogM B(S)e−1

⌉
≤M

65

Physical Operators

Hash-based set union

We can also alternatively compute the set union R∪S S as follows (R and S are
assumed to be sets, and we assume that B(R) ≤ B(S)):

1. Partition, by means of hash function(s), R in buckets of at most M − 1 blocks
each. Let k be the resulting number of buckets, and let Ri be the relation
formed by the records in bucket i.

2. Partition, by means of the same hash function(s) as above, S in k buckets.
Let Si be the relation formed by the records in bucket i.

Observe: the records in Ri and Si have the same hash value! A record t hence
occurs in both R and S if, and only if, there is a bucket i such that t occurs
in both Ri and Si.

3. We can hence compute the set union by calculating the set union of Ri and
Si, for every i ∈ 1, . . . , k. Since every Ri contains at most M − 1 blocks, we
can do so using the one-pass algorithm.

Note: in contrast to the sort-based set union, the output of a hash-based set
union is unsorted!

66

Physical Operators

Hash-based set union

How do we partition R in buckets of at most M − 1 blocks?

1. Using M buffers, we first hash R into M − 1 buckets.

2. Subsequently we partition each bucket separately in M − 1 new buckets, by
using a new hash function distinct from the one used in the previous step (why?)

3. We continue doing so until the obtained buckets consists of at most M − 1
blocks.

67

Physical Operators

Hash-based set union

What is the cost of partitioning?

1. Assuming that the hash function(s) distribute the records uniformly, we have

M − 1 buckets of B(R)
M−1 blocks after the first pass, (M − 1)2 buckets of B(R)

(M−1)2
blocks after the second pass, and so on. Hence, if we reach buckets of at most
M − 1 blocks after k passes, k must satisfy:

B(R)

(M − 1)k
≤M − 1

The minimal value of k that satisfies this is hence dlogM−1B(R)− 1e
2. In every pass we read and write R once.

Total cost:
2B(R) dlogM−1B(R)− 1e

68

Physical Operators

Hash-based set union

What is the costs of calculating hash-based set union?

1. Partition R: 2B(R) dlogM−1B(R)− 1e I/O’s

2. Partition S: 2B(S) dlogM−1B(R)− 1e I/O’s

Because we “only” need to partition S in as many buckets as R.

3. The one-pass set union of each Ri and Si: B(R) +B(S)

Total:

2B(R) dlogM−1B(R)− 1e + 2B(S) dlogM−1B(R)− 1e +B(R) +B(S)

69

Physical Operators

Sort-merge Join

Essentially the same algorithm as sort-based set union:

1. Sort R on attribute Y

2. Sort S on attribute Y

3. Iterated synchronously through R and S, keeping 1 block of each relation in
memory at all times, and at each point inspecting a single tuple from R and
S. Assume that we are currently at tuple tR in R and at tuple tS in S.

• If tR.Y < tS.Y then we advance the pointer tR to the next tuple in R
(possibly loading the next block of R if necessary).

• If tR.Y > tS.Y then we advance the pointer tS to the next tuple in S
(possibly loading the next block of S if necessary)).

• If tR.Y = tS.Y then we output tR 1 t′S for each tuple t′S following tS
(including tS itself) that satisfies t′S.Y = tS.Y . It is possible that we need
to read the following blocks in S. Finally, we advance tR to the next tuple
in R, and rewind our pointer in S to tS.

70

Physical Operators

Sort-merge Join

• The cost depends on the number of tuples with equal values for Y . The worst
case is when all tuples in R and S have the same Y -value. The cost is then
B(R)×B(S) plus the cost for sorting R and S.

• However, joins are often performed on foreign key attributes. Assume for example
that attribute Y in S is a foreign key to attribute Y in R. Then every value for Y
in S has only one matching tuple in R, and there is no need to reset the pointer
in S.

• In this case the cost analysis is similar to the analysis for sort-based set union.

2B(R) dlogM B(R)e + 2B(S) dlogM B(S)e +B(R) +B(S)

• Similarly, it is possible to optimize and gain 2B(R) + 2B(S) I/O operations

2B(R) dlogM B(R)e + 2B(S) dlogM B(S)e −B(R)−B(S)

provided that ⌈
B(R)

M dlogM B(R)e−1

⌉
+

⌈
B(S)

M dlogM B(S)e−1

⌉
≤M

71

Physical Operators

Hash-Join

Essentially the same algorithm as hash-based set union:

1. Partition, by hashing the Y -attribute, R into buckets of at most M − 1 blocks
each. Let k be the number of buckets required, and let Ri be the relation
formed by the blocks in bucket i.

2. Partition, by hashing the Y -attribute using the same has function(s) as above,
S into k buckets. Let Si be the relation formed by the blocks in bucket i.

Notice: the records in Ri and Si have the same hash value. A tuple tR ∈ R
hence matches the Y attribute of tuple tS ∈ S if, and only if, there is a bucket
i such that tR ∈ Ri and tS ∈ Si.

3. We can therefore compute the join by calculating the join of Ri and Si, for
every i ∈ 1, . . . , k. Since every Ri consists of at most M − 1 blocks, this can
be done using the one-pass algorithm.

Remark: the output of a hash-join is unsorted on the Y attribute, in contrast to
the output of the sort-merge join!

72

Physical Operators

Hash-Join

• Assuming foreign-key joins, the cost analysis is the same as the analysis for hash-
based set union

1. Partition R: 2B(R) dlogM−1B(R)− 1e I/O’s

2. Partition S: 2B(S) dlogM−1B(R)− 1e I/O’s

Because we “only” need to partition S in as many buckets as R.

3. The one-pass set union of each Ri and Si: B(R) +B(S)

Total:

2B(R) dlogM−1B(R)− 1e + 2B(S) dlogM−1B(R)− 1e +B(R) +B(S)

• Again the book focuses on “two-pass hash-join”:

one pass for the partitioning, one pass for the join

73

Cost-Based Plan Selection
Enumerate, Estimate, Select

74

Cost-Based Plan Selection

Greedy plan selection

In the exercises we will use the following greedy algorithm.

• Start with a logical query plan without join ordering.

•We work bottom-up: first we assign physical operators to the leaves, then to
the parents of the leaves, then to their parents, and so on. At each point we
choose the phyiscal operator with the least cost. At each point, if the operator
can be pipelined we decide to pipeline, otherwise we materialize.

•When we reach a join operator (e.g., R 1 S 1 T 1 U) and need to determine
an ordering of its various members then:

1. We start by joining the two relations for which the best physical join algorithm
yields the smallest cost

→ e.g., execute R 1 T through a hash-join

2. Add, from the remaining relations (S or U), those relations to the join for
which the best physical join-algorithm yields the smallest cost.

→ e.g., (R 1 T) 1 U through a one-pass join

3. Repeat the previous step until we have a complete join ordering.

75

Cost-Based Plan Selection

Greedy plan selection

• This is a generalization of the greedy algorithm to compute a join ordering de-
scribed in section 16.6.6 from the book. However, we use I/O operations (in
blocks) as our cost metric instead of the size of the intermediate results (in tu-
ples) as done in the book.

• Often, the leaves of the logical query plan are selections. We have seen two
physical operators for selections: table-scan and index-scan. The book describes
in section 16.7.1 how we can choose the best selection method when the selection
condition is complex.

76

Cost-Based Plan Selection

Materializing vs Pipelining

• A pipelined operator consumes some memory buffers

• A materialized operator frees all buffers consumed by descendant operators.

77

Question

Construct the optimal physical query plan for:

πD.did,COUNT(∗)γD.did,COUNT(∗)(πD.did,D.pid(σD.budget≥99000(D)) 1 πP.pid(P))

To solve this, you need to know what the cost formula is for evaluating
γD.did,COUNT(∗).

Any ideas?

78

