Algorithms in Secondary Memory

Project Assignment

2013-2014

Assignment

In this assignment you are asked to implement an external-memory merge-sort algorithm
(such as the one described in Section 15.4.1 of TCB), and examine its performance under
different parameters. As a warm-up exercise you will need to explore several different ways
to read data from, and write data to secondary memory. The overall goal of the assignment
is to get real-world experience with the performance of external-memory algorithms.

Follow the outline of tasks below. You need to document your findings in a report that
needs to be handed in together with your implementation. Code may be written in either
C++ or Java.

1 Project outline

1.1 Reading and writing: streams

Your merge sort implementation will need to be able to sort disk files consisting of 32-bit
integers. It will hence need to read data from, and write data to disk. A first step, therefore,
is to develop stream classes that can sequentially read and write a file consisting of 32-bit
integers. You will need two types of streams: input streams and output streams. The input
stream should support the following operations: open (open an existing file for reading),
read next, (read the next element from the stream), and end_of _stream (a boolean operation
that returns true if the end of stream has been reached). The output stream should support
the following operations: create (create a new file), write (write an element to the stream),
and close (close the stream).

Use the following four distinct I/O mechanisms to obtain four different implementations
of the input and output streams.

1. Read and write one element at a time using the read and write system calls. These
calls are available in C/C++ through the io.h header (if you're programming on win-
dows in Visual C++) or through the unistd.h header (on Unix/Linux). If you are
doing the project in Java these system calls can be mimicked. You can mimic read by
calling readInt () on a java.io.DataIlnputStream that is wrapped directly around a
java.io.FileInputStream, as illustrated by the following code snippet:

InputStream is = new FileInputStream(new File("input.data"));
DataIlnputStream ds = new DatalnputStream(is);
ds.readInt();

The write system call can be mimicked similarly.

2. Read and write using fread and fwrite functions from the C stdio library which im-
plements its own buffering mechanism for these functions. If you are doing the project in
Java these functions can be mimicked. You can mimic fread by calling readInt() on a
java.io.DataInputStream that is wrapped around a java.io.BufferedInputStream
that itself is wrapped around a java.io.FileInputStream, as illustrated by the fol-
lowing code snippet:

InputStream is = FileInputStream(new File("input.data"));
BufferedInputStream bis = new BufferedInputStream(is);
DatalnputStream ds = new DatalnputStream(bis);
ds.readInt();

The fwrite function can be mimicked similarly.

3. Read and write are implemented as in step , except that now you equip your streams
with a buffer of size B in internal memory. Whenever the buffer becomes empty /full
the next B elements are read/written from/to the file.

4. Read and write is performed by mapping and unmapping a B element portion of the
file into internal memory through memory mapping. Whenever you need to read/write
outside of the mapped portion, the next B element portion of the file is mapped.

Memory mapping is available in C/C++ through the mmap/munmap functions of the
<sys/mman.h> header (in Linux) and the CreateFileMapping function of <windows.h>
(in Windows). Alternatively, the Boost C++ libraryﬂ provides platform-independent
interfaces to memory-mapped ﬁlesE] In Java, you should use the map method of the
java.nio.channels.FileChannel class.

For this particular implementation you are required to do a little research on what
memory mapping actually is; you are expected to explain this concept in your report.

Experiment with each stream implementation and determine which implementation is the
most performant. The goal is to determine which works the best, and to clearly document
the process of this discovery in the report. What are the limitations and advantages of each
implementation? In particular:

e Try opening k streams (on distinct files) and read/write one element to/from each
stream, N times. Try for large N and k = 1,2,..., MAX where MAX is the minimum of
(1) the maximum number of streams supported by your operating system/programming
language and (2) 500.

e For implementations and , experiment with different values of B (including very
large ones). Identify the optimal values.

Don’t forget to describe, in your report, the environment on which your experiments have
been performed (machine type, hard disk type, operating system, total memory available,
programming language used, and libraries used).

"http://www.boost .org/
Tt actually provides 2 such interfaces, one in the iostreams sublibrary, and one in the interprocess
sublibrary.

http://www.boost.org/

1.2 Multi-way merge

Implement a d-way merging algorithm that, given d sorted input streams of 32-bit integers,
creates a single output stream containing the elements from the input stream in sorted order.
The merging should use a priority queue (e.g., a heap) to obtain the next element to be output
at all times.

1.3 External multi-way merge-sort

Implement an external memory multi-way merge-sort algorithm for sorting 32-bit integers.
The program should take as input an input file and the following parameters:

e M — the size of the main memory available, in number of 32-bit integers;
e d — the number of streams to merge in one pass;
and sort as follows. Let N be the size of the input file, measured in number of 32-bit integers.

1. Read the (single) input file and split it into [N/M| streams, each of size at most M.
This splitting itself should take care not to read more than M integers from the input
file into memory at any given time.

Each stream that is created should be sorted in internal memory using heapsort, (internal-
memory) mergesort, or a sorting method that has comparable O(n log n) worst-case per-
formance before being written to disk. In particular, you can reuse the sort algorithm
provided with the language you use if it meets the performance requirement.

2. Store the references to the [IN/M] streams in a queue (if necessary in external memory).

Again, take care to only store the references to the streams in the queue. The content
of the streams themselves should not be loaded into memory until the stream is treated
by the following step.

3. Repeatedly until only one stream remains, merge the d first streams in the queue, and
put the resulting stream at the end of the queue (if only x < d streams remain in the
queue, merge those).

Experiment with your merge-sort implementation using the best stream implementation
from Hereto, you should generate (unsorted) input files that contain randomly generated
32-bit integers. Try different values of N, M, and d. Identify what are good choices of these
parameters for various input sizes (including very large ones). In case that the input file is
small enough to fit in memory, compare your merge-sort implementation with a main-memory
sort (e.g., heapsort, mergesort). Document everything you discover in your report.

2 Tips

e Run your programs a suitable number of times for each input size and use the average
running time. This should level out fluctuations due to other processes.

e There are quite a number of Unix commands to time the execution of the program.
Among these are time and timex. In some shells (e.g. csh), there are also built-in ver-
sions of time. There are also corresponding unix routines called times, getrusage, and

gettimeofday. Their availability may differ from machine to machine. The Windows
API also provides QueryPerformanceCounter and QueryFrequencyCounter that can
also be used to time the execution. Both the Boost library and the C++411 STL also
provides a chrono class that provides timing in a platform independent way.

e Alternatively there are a number of benchmmarking frameworks available for both C++
and Java that allow you to specify the code that needs to be benchmarked, and that
takes care of running this benchmark a number of times and reporting running time
averages, standard deviations, etc.

e When comparing different algorithms (or the same algorithm with different parameters),
make sure to run them on the same input file in order to get meaningful results.

3 Report

Your report should document the progress of your project, your findings, as well as try to
relate your experimental observations to what we have discussed during the theory lectures.
(In particular: the cost formulas from Lecture 6.) Here is a suggested table of contents.

1. Introduction and Environment.

Briefly summarize the project goals. Document the machine environment on which the
experiments were run; the programming language used; the external libraries used; the
manner in which test data was generated; the size of the test data.

2. Observations on streams

(a) Expected behavior.
For each of the 4 implementations, briefly explain the implementation in your
own words. Give details on how you programmed the implementation if necessary.
Ezplain what kind of performance behavior you intuitively expect (before running
any experiment) from the implementation.

(b) Experimental observations.

Discuss what you observe during your experiments. Use graphs and plots to com-
pare the implementations. In each experiment, vary only one parameter (e.g., N)
while keeping the other parameters (e.g., k) fized.

(c) Discussion of expected behavior vs experimental observations. Conclusions and
identification of stream implementation to use for the external multi-way merge-
sort algorithm.

3. Observations on multi-way merge sort.

(a) Expected behavior.

Ezxplain the implementation in your own words. Give details on how you pro-
grammed the implementation if necessary. Explain what kind of performance be-
havior you intuitively expect (before running any experiment) from the implemen-
tation.

4.

(b) Experimental observations.

Discuss what you observe during your experiments. Use graphs and plots to com-
pare the implementations. In each experiment, vary only one parameter (e.g., N)
while keeping the other parameters (e.g., M,d) fized.

(c) Discussion of expected behavior vs experimental observations. Identify what good
choices are of the parameters for varying input sizes.
Overall conclusion.

Summarize what you have learned in this project.

Careful! Do not simply copy-and-paste text from the internet to include in your report.
If you copy-and-paste existing text/graphics without duly citing the source from which this
was copied this constitutes fraud, which will result on 0/20 on the course and possibly an
exclusion from other exams!

4 Modalities

The assignment has the following modalities:

1.

This project assignment contributes 6/20 to the overall grade; the written exam con-
tributes the remaining 14/20 points.

The assignment will be graded on (1) the implementation itself and (2) the report that
you need to write describing both the implementation and the experimental work.

The assignment should be solved in groups of 2 (if we have an odd number, one group
of 3 students will be allowed). You are asked to register, per group, the names of the
group members via the online poll available at

https://docs.google.com/forms/d/1dQ16UB-I6£15A7VreD7Exh3WQK2sr-2AKhsPHBTvRiw/viewform

by October 25 at the latest. If you cannot find a partner, please indicate so by sending
an email to Mr. Stefan Eppe (stefan.eppe@ulb.ac.be), who will hook you up with a
partner.

This assignment is mandatory. If you do not make the assignment, you cannot pass the
course in the first exam session.

You will have to create a GIT repositoryﬁ] in the INFO-H-417/2013-2014-1 repository
group at http://wit-projects.ulb.ac.be/rhodecode/| to submit both your report
and your code. The username and password to login to this system correspond to your
ULB/VUB NetID. The repository will be named project-<student1>-<student2>,
where student corresponds to your username. This repository must be made private.
It is recommended that you create this repository as soon as possible to avoid last
minute technical difficulties, and that you use it throughout the project to synchronize
your changes.

3http://git-scm.com/documentation

https://docs.google.com/forms/d/1dQl6UB-I6fl5A7VreD7Exh3WQK2sr-2AKhsPHBTvRiw/viewform
stefan.eppe@ulb.ac.be
http://wit-projects.ulb.ac.be/rhodecode/
http://git-scm.com/documentation

Art.34 In case of fraud or plagiarism during an examination or during o test
at an interim date during the academic year, or in relation with the preparation
of written reports or papers, the course professor reports the case in writing prior
to the jury deliberation to the relevant academic authority levels for disciplinary
matters. A copy of that fraud report is addressed to the jury chairmen. The student
can ask to be heard by a jury chairperson prior to the jury deliberation, in presence
of the related course professor. Without prejudice to the disciplinary processes at
the University Faculty level, in case of fraud the student points for the related course
are brought down to 0/20. The jury further can:

e decide to cancel the examination session;

e decide to refuse the student access to both examination sessions of that academic
year.

Figure 1: Excerpt of the Exam Regulations concerning fraud.

Tip. If you attempt to push a large set of changes to a GIT repository with HTTP
or HT'TPS, you may get an error message such as error: RPC failed; result=22,
HTTP code = 411. This is caused by a GIT configuration default which limits certain
HTTP operations to 1 megabyte. To change this limit run within your local repository

git config http.postBuffer *bytesx*

where *bytes* is the maximum number of bytes permitted.

. Your solution should be pushed to the repository no later than 5 January 2014. You
get a penalty of -1/6 points for each day that your solution is delayed. Only the latest
commit will be considered as the solution.

. As stated above, the project will need to use a priority queue and implement heapsort
or equivalent main-memory sorting algorithm. You are only allowed to use existing code
and existing libraries for these two aspects; all other code must be written by you for
the project, unless explicitly stated otherwise in the assignment above. For example,
you can use the std: :priority_queue class from the C++ STL to implement priority
queue (if you do the project in C++), or the Java java.util.PriorityQueue (if you
do it in Java).

(Note that, if you decide to use a benchmarking framework, you are free to use that as
a library in your code.)

. Sharing of code between groups is not allowed. (Groups may, however, verbally discuss
ideas on how to tackle the project).

. Plagiarism, in the sense of copy-pasting from existing reports or copy-pasting existing
external memory merge-sort code is not allowed. In case plagiarism is detected, students
risk being punished according to article 34 of the exam regulations shown in Figure

	Project outline
	Reading and writing: streams
	Multi-way merge
	External multi-way merge-sort

	Tips
	Report
	Modalities

