
Exam INFO-H-417 Database System Architecture
13 January 2014

Name:

ULB Student ID:

P Q1 Q2 Q3 Q4 Q5 Tot
(60) (20) (20) (20) (60) (20) (200)

Exam modalities

• You are allotted a maximum of 4 hours to complete this exam.

• You are allowed to use a calculator, provided that this is a bare-bones calculator,
and not a “graphical” calculator capable of being programmed and/or capable
of storing text.

• Draft paper is provided by the exam supervisor.

• You should answer each question in the foreseen space after the question.
Should this space prove to be insufficient you are allowed to use the back of the
page as well. Draft paper will not be corrected!

• Be sure to motivate your answer, and give subresults where appropriate. In the
absense of subresults, an incorrect final answer yields a score of 0!

1



Name: Student id:

Question 1. (20 pts) Consider the relations R(A,B), S(B,C,D) and T (D,E, F ).
Translate the following SQL query to the relational algebra:

SELECT R.A, S.C FROM R, S, T

WHERE R.B = S.B AND S.D = T.D

AND R.A IN

(SELECT T2.E FROM T T2

WHERE NOT T2.E = 4

OR (T2.F <= ALL

(SELECT AVG(R2.B)

FROM R R2

WHERE R2.A = R.A AND R2.B <> S.B)

)

)

Use the algorithm studied in the course for this purpose. Give sub-results and moti-
vate your answer.

Step 1 [4 points] First, we put the query in the form where every subquery occurs
with EXISTS and NOT EXISTS.

SELECT R.A, S.C FROM R, S, T

WHERE R.B = S.B AND S.D = T.D

AND EXISTS

(SELECT T2.E FROM T T2

WHERE

R.A = T2.E

AND (

NOT T2.E = 4

OR NOT EXISTS

(SELECT AVG(R2.B)

FROM R R2

WHERE R2.A = R.A AND R2.B <> S.B

HAVING T2.F > AVG(R2.B)

)

)

)

Step 2 [2 points] Next, we rewrite the query such that every WHERE clause is
in disjunctive normal form, by distributing OR over AND

SELECT R.A, S.C FROM R, S, T

WHERE R.B = S.B AND S.D = T.D

AND EXISTS

(SELECT T2.E FROM T T2

WHERE

(R.A = T2.E AND NOT T2.E = 4)

OR (R.A = T2.E

EXAM INFO-H-417 13 January 2014 Page 2 of 15



Name: Student id:

AND NOT EXISTS

(SELECT AVG(R2.B)

FROM R R2

WHERE R2.A = R.A AND R2.B <> S.B

HAVING T2.F > AVG(R2.B)

)

)

)

Step 3 [1 points] We then rewrite the query such that every WHERE clause is a
conjunction by translating OR into UNION

SELECT R.A, S.C FROM R, S, T

WHERE R.B = S.B AND S.D = T.D

AND EXISTS

(

(SELECT T2.E FROM T T2

WHERE R.A = T2.E AND NOT T2.E = 4)

UNION

(SELECT T2.E FROM T T2

WHERE R.A = T2.E

AND NOT EXISTS

(SELECT AVG(R2.B)

FROM R R2

WHERE R2.A = R.A AND R2.B <> S.B

HAVING T2.F > AVG(R2.B)

)

)

)

Step 4 [4 points] We translate the most inner subquery.

SELECT AVG(R3.B)

FROM R R2

WHERE R2.A = R.A AND R2.B <> S.B

HAVING T2.F > AVG(R2.B)

This subquery has R,S, and T2 as context relations. We first translate the FROM-
WHERE clause by adding these context relations to the FROM clause:

e1 = σR2.A=R.A∧R2.B<>S.B(ρR2(R)×R× S × ρT2(T ))

The HAVING clause is translated by grouping on the context relations, and in-
troducing the aggregation attribute AVG(R2.B)), and a subsequent selection.

e2 = σT2.F>AV G(R2.B) γR.∗,S.∗,T2.∗,AV G(R2.B) (e1)

Finally, we translate the SELECT clause, which gives us the translation of the
entire query.

e3 = πR.∗,S.∗,T2.∗,AV G(R2.B)(e2)

EXAM INFO-H-417 13 January 2014 Page 3 of 15



Name: Student id:

Step 5 [4 points] We use the results of the previous step to translate the subquery

SELECT T2.E FROM T T2

WHERE R.A = T2.E

AND NOT EXISTS

(SELECT AVG(R2.B)

FROM R R2

WHERE R2.A = R.A AND R2.B <> S.B

HAVING T2.F > AVG(R2.B)

)

The context relations of the subquery-free part is R. When translating this part,
however, we also need to include S, since this is a context relation occurring in a
NOT exist subquery. Translation of the subquery-free part hence yields

σR.A=T2.E(ρT2(T )×R× S)

We decorrelate this with e3, the result of the subquery. Since it concerns a NOT
exists, we cannot simplify.

e4 = σR.A=T2.E ((ρT2(T )×R× S)onπR.∗,S.∗,T2.∗(e3))

Finally, we translate the SELECT clause, adding all parameters.

e5 = πR.∗,S.∗,T2.E(e4).

Step 6 [1 points] We translate the subquery

SELECT T2.E FROM T T2

WHERE R.A = T2.E AND NOT T2.E = 4

Which is straightforward. The context relation is R.

e6 = πR.∗,T2.EσR.A=T2.E∧T2.E<>4(ρT2(T )×R)

Step 7 [2 points] We translate the UNION subquery

(SELECT T2.E FROM T T2

WHERE R.A = T2.E AND NOT T2.E = 4)

UNION

(SELECT T2.E FROM T T2

WHERE R.A = T2.E

AND NOT EXISTS

(SELECT AVG(R2.B)

FROM R R2

WHERE R2.A = R.A AND R2.B <> S.B

HAVING T2.F > AVG(R2.B)

)

)

EXAM INFO-H-417 13 January 2014 Page 4 of 15



Name: Student id:

This is straightforward given that we already have the translations of both subqueries
from step 5 and step 7. We need to take care, however: the schema of both trans-
lations differ. We need to resolve this by adding S as a context relation to e6. This
gives the following translation:

e7 = e5 ∪ (e6 × S)

Step 8 [2 points] Finally, we translate the whole query. The subquery-free part
yields the translation:

σR.B=S.B∧S.D=T.D(R× S × T )

We decorrelate with the EXSISTS subquery

σR.B=S.B∧S.D=T.D ((R× S × T ) on πR.∗,S.∗(e7))

Which, since it concerns an EXISTS query can be simplified to

σR.B=S.B∧S.D=T.D(T on e7)

Finally, we translate the SELECT clause, yielding the final result.

e = πR.A,S.C σR.B=S.B∧S.D=T.D (T on e7)

EXAM INFO-H-417 13 January 2014 Page 5 of 15



Name: Student id:

Question 2. (20 pts) Consider the following relational algebra expression over the
relations R(A,B) and S(C,D):

πS2.D(ρR1(R) on
R1.A=R2.A

σR2.B=4(ρR2(R)) on
R2.B=R3.A

σR3.B=5(ρR3(R))

on
R3.A=R4.A

ρR4(R) on
S1.C=R1.A

ρS1(S) on
S2.c=R2.A

ρS2(S))

Optimize this expression by removing redundant joins. Use the algorithm studied in
the course for this purpose. Give sub-results and motivate your answer.

Step 1. [4 points] We first put this SPJ expression into conjunctive query syntax.

Q(d2) : −R(a1, b1), R(a1, 4), R(4, 5), R(4, b4), S(a1, d1), S(a1, d2)

Step 2. [12 points] We optimize the conjunctive query above by repeatedly trying
to remove atoms from the body, and checking at every step whether we retain an
equivalent query. Checking equivalence is done using the “canonical method”:

1. create the frozen database of the modified query, and evaluate the original query
on it.

2. If the frozen head of the modified query is in the result, then the modified query
is contained in the original one, otherwise not.

3. There is no need to check that the original query is contained in the modified
one; that is always the case since the modified query contains a subset of the
atoms of the original query.

• Try to remove R(a1, b1). The modified query Q2 and its frozen database D2

are as follows.

Q2(d2) : −R(a1, 4), R(4, 5), R(4, b4), S(a1, d1), S(a1, d2)

D2 = {R(a1, 4), R(4, 5), R(4, b4), S(a1, d1), S(a1, d2)}

The following matching ensures that d2 ∈ Q(D2):

a1 7→ a1

b1 7→ 4

b4 7→ b4

d1 7→ d1

d2 7→ d2

Therefore Q2 ⊆ Q. Since always Q ⊆ Q2 we hence have Q2 ≡ Q.

Q2 is hence more optimal than Q. We continue optimizing Q2.

• We try to remove R(a1, 4) from Q2.The modified query Q3 and its frozen
database D3 are as follows.

Q3(d2) : −R(4, 5), R(4, b4), S(a1, d1), S(a1, d2)

D3 = {R(4, 5), R(4, b4), S(a1, d1), S(a1, d2)}

EXAM INFO-H-417 13 January 2014 Page 6 of 15



Name: Student id:

Now, d2 6∈ Q2(D3): there is no atom in D3 in which the constant 4 occurs in
the second column of R.

We hence cannot remove R(a1, 4).

• We try to removeR(4, 5) fromQ2.The modified queryQ4 and its frozen database
D4 are as follows.

Q4(d2) : −R(a1, 4), R(4, b4), S(a1, d1), S(a1, d2)

D4 = {R(a1, 4), R(4, b4), S(a1, d1), S(a1, d2)}

Now, d2 6∈ Q2(D4): there is no atom in D4 in which the constant 5.

We hence cannot remove R(4, 5).

• We try to remove R(4, b4) from Q2.The modified query Q5 and its frozen
database D5 are as follows.

Q5(d2) : −R(a1, 4), R(4, 5), S(a1, d1), S(a1, d2)

D5 = {R(a1, 4), R(4, 5), S(a1, d1), S(a1, d2)}

The following matching ensures that d2 ∈ Q2(D5):

a1 7→ a1

b4 7→ 4

d1 7→ d1

d2 7→ d2

Therefore Q5 ⊆ Q2. Since always Q2 ⊆ Q5 we hence have Q5 ≡ Q2. Q5 is
hence more optimal than Q2. We continue optimizing Q5.

• We try to remove S(a1, d1) from Q5.The modified query Q6 and its frozen
database D6 are as follows.

Q6(d2) : −R(a1, 4), R(4, 5), S(a1, d2)

D6 = {R(a1, 4), R(4, 5), S(a1, d2)}

The following matching ensures that d2 ∈ Q5(D6):

a1 7→ a1

b4 7→ 4

d1 7→ d2

d2 7→ d2

Therefore Q6 ⊆ Q5. Since always Q5 ⊆ Q6 we hence have Q6 ≡ Q5. Q6 is
hence more optimal than Q5. We continue optimizing Q6.

• We cannot remove S(a1, d2) from Q6 since this the only atom that contains the
variable d2 that occurs in the head. If we were to remove this atom, we obtain
a syntactically invalid query.

The final optimized query is hence Q6.

EXAM INFO-H-417 13 January 2014 Page 7 of 15



Name: Student id:

Step 3. [4 points] It remains to translate this query back into relational algebra
syntax, which yields:

πS.D(σR2.B=4(ρR2(R)) on σR3.A=4∧R3.B=5ρR3(R) onR2.A=S.C S

EXAM INFO-H-417 13 January 2014 Page 8 of 15



Name: Student id:

Question 3. (20 pts) Explain and illustrate, by means of an example, how R-Trees
work (what such a tree looks like, how are they constructed, how one can query for
points in the index, how one can do nearest-neighbour searches, how one can insert
new tuples, how one can delete tuples). Be sure to explain the strengths and the
weaknesses of this index.

• R-trees are generalizations of B-trees to multiple dimension. It is a tree where
every internal node corresponds to a “region”. Internal nodes have, in place of
keys, subregions that represent the contents of its children.

• Lookup is recursive: we start at the root. In the root, we look at all stored
subregions that intersect with the region that we search. We recursively search
for all such intersecting subregions. Insert and delete are done similarly, keeping
the tree balanced as in a search tree.

• For nearest-neighbour queries, the search again starts at the root. In the root,
we look for sub regions that intersect, expanding our search region if no such
region exists, and recursively search.

• The R-tree has good support for all major multi-dimensional operations. Is
adaptive to updates. With good worst-case complexity.

• Students should give an example data set + the corresponding RTree (of depth
at least 2).

EXAM INFO-H-417 13 January 2014 Page 9 of 15



Name: Student id:

Question 4. (60 pts) Consider the (clustered) relations R(A,B,C), S(C,D,E),
T (E,F ) and U(E,F ). Records from R and S comprise 50, while records from T and
U comprise 40 bytes. Blocks are 4000 bytes large and there are 8 main memory buffers
available. The statistics show that R contains 36000 tuples; that S contains 10000
tuples; that T contains 12510 tuples; and that U contains 25000 tuples. Furthermore,
R.B is uniformly distributed in the range [0, 100]; S.D is uniformly distributed in the
range [10000, 30000], and S has 5000 distinct values for E. Relation R has clustered
B-tree index on attribute B; relation S has unclustered hashing indexes on attributes
D en E (separately). Attribute A is a key for R; C is a key for S, and E is a key for
T and U .

The query compiler has already obtained the following logical query plan:

πR.A, S.C, T.F

(
(T − U) on σR.B≤60(R) on σS.D!=20000(S)

)
Construct a sufficiently optimal physical query plan. Use disk I/Os as your op-

timization metric. Motivate your answer, and describe any assumptions that you
make. It suffices to make only locally-optimal decisions (in other words: you may
use the greedy algorithm, and your solution need not be globally optimal.)

Subexpression (T − U)

B(T ) =
12510× 40

4000
= 126

B(U) =
25000× 40

4000
= 250

The difference operator is evaluated like a join (on composite attributes E and F .
A one-pass algorithm is not possible. There are no indexes available on the joining
attributes E and F . An index difference is hence not possible. Hence, we must resort
to a multi-pass sort-based difference or hash-based difference (which will always be
better than the nested difference algorithm).

1. Sort-merge based algorithm. The cost is given by:

2B(T ) dlogM B(T )e+ 2B(U) dlogM B(U)e+B(U) +B(T )

= 2 · 126 · 3 + 2 · 250 · 3 + 126 + 250

= 2632 I/O

However, the optimization is possible since

2 + 4 =

⌈
B(T )

M dlogM B(T )e−1

⌉
+

⌈
B(U)

M dlogM B(U)e−1

⌉
≤M = 8

This optimized sort-merge difference gives a cost of

2B(T ) dlogM B(T )e+ 2B(U) dlogM B(U)e −B(U)−B(T )

= 2 · 126 · 3 + 2 · 250 · 3− 126− 250

= 1880 I/O

EXAM INFO-H-417 13 January 2014 Page 10 of 15



Name: Student id:

2. Hash-based algorithm. The cost is given by: (we only need to partition the
smallest relation)

2B(T )
⌈
logM−1B(T )− 1

⌉
+ 2B(U)

⌈
logM−1B(T )− 1

⌉
+B(T ) +B(U)

= 2 · 126 · 2 + 2 · 250 · 2 + 126 + 250

= 1880 I/O

Both options hence yield the same cost. We pick the hash-based version. (But
sort-based is also possible.)

The number of tuples in the output is estimated at

T (T )− T (U)

2
= 12510− 12500 = 10.

Which fits in 1 block.

Subexpression σR.B≤60(R)

B(R) =
36000× 50

4000
= 450

Scanning R to find the matching records hence costs B(R) = 450 disk I/Os.
Alternatively, we can use the clustered B-tree index on attribute B to find record

with B = 60 and then scan to the beginning from there. Since the index is clustered,
the cost of this is as many blocks as there are in the result of the selection, which we
calculate using the fact that R.B is uniformly distributed in the range [0, 100]:

T (σR.B≤60(R)) =

⌈
60− 0 + 1

100− 0 + 1
× T (R)

⌉
=

⌈
61

101
× T (R)

⌉
= 21743 records.

Which fits in

B(σR.B≤60(R)) =

⌈
21743 · 50

4000

⌉
= 272 blocks.

The cost of the clustered index scan is B(σR.B≤60(R)) = 272 I/Os, which is preferred
over the 450 I/Os given by the table scan.

Subexpression σS.D!=20000(S) Hash indexes do not help in evaluating inequality
predicates. Hence, a table scan is the only option, which costs

B(S) =
10000 · 50

4000
= 125 I/O

Using the fact that S.D is uniformly distributed in the range [10000, 30000] we esti-
mate

T (σS.D!=20000(S)) =

⌈
30000− 10000 + 1− 1

30000− 10000 + 1
× T (S)

⌉
= 10000 records

(no penalty will be given if this is estimated to 9999 records instead).

EXAM INFO-H-417 13 January 2014 Page 11 of 15



Name: Student id:

Join ordering We consider all pairs of joins between

e1 := (T − U)

e2 := σR.B≤60(R)

e3 := σS.D!=20000(S)

and take the pair that has the least cost to evaluate.

1. Pair e1 and e2. Since B(e1) fits in memory a one-pass join can be used. This
costs B(e1) + B(e2) = 1 + 272 = 273 I/Os. Since there are no attributes
common, an index join can not be used. All other methods cost more.

2. Pair e1 and e3. Since B(e1) fits in memory a one-pass join can be used. This
costs B(e1) + B(e3) = 1 + 125 = 126 I/Os. Subresults do not have indexes,
so an index join cannot be used. All other methods cost more.

3. Pair e2 and e3. A one pass join is not possible. Subresults do not have indexes,
so an index join cannot be used. This only leaves the possibility of a sort-based
and hash-based join. Since we need 1 buffer for the index scan on e2, we only
have M = 7 buffers available.

• Sort-based.

2B(e2) dlogM B(e2)e+ 2B(e3) dlogM B(e3)e+B(e2) +B(e3)

= 2 · 272 · 3 + 2 · 125 · 3 + 272 + 125

= 2779 I/O

The optimization is possible since

6 + 3 =

⌈
B(e2)

M dlogM B(e2)e−1

⌉
+

⌈
B(e3)

M dlogM B(e3))e−1

⌉
6≤M = 7

• Hash-based algorithm. The cost is given by: (we only need to partition
the smallest relation).

2B(e2)
⌈
logM−1B(e3)− 1

⌉
+ 2B(e3)

⌈
logM−1B(e3)− 1

⌉
+B(e2) +B(e3)

= 2 · 272 · 2 + 2 · 125 · 2 + 272 + 125

= 1985 I/O

The hash-based algorithm would hence be preferred.

We hence select to join first e1 with e3. The number of tuples in the output is
estimated to be:

T (e1) · T (e3)

max(V (e1, E), V (e3, E)
=

10 · 10000

5000
= 20record

Which fits in one block.
The one-pass join of e1 with e3 requires 1 block (to hold e1). We hence have 7

buffers remaining. This is more than enough to store e1 on e3 and hence the remaining
join with e2 can hence done using the one-pass algorithm. This costs

B(e1 on e3) +B(e2) = 1 + 272 = 273 I/O.

EXAM INFO-H-417 13 January 2014 Page 12 of 15



Name: Student id:

Projection The projection can be done at the same time as the join computation
and hence does not occur extra I/O.

(Note that all subresults are pipelined.)

EXAM INFO-H-417 13 January 2014 Page 13 of 15



Name: Student id:

Question 5. (20 pts) Consider the following sequence of log records:

<START S>;

<S, A, 30>;

<START T>;

<T, G, 40>;

<START U>;

<COMMIT S>;

<U, B, 20>;

<T, C, 60>;

<START V>;

<U, D, 70>;

<V, F, 40>;

<COMMIT U>;

<T, E, 30>;

<COMMIT T>;

<V, B, 50>;

<COMMIT V>

Assume that a nonquiscent checkpoint is created right after the <U, B, 20> log
record is written.

1. When will the corresponding <END CKPT> record be written if we use an undo-
logging strategy? When will this corresponding record be written if we use a
redo-logging strategy?

2. Describe succinctly what happens when a crash occurs right after the <T, E,

30> record is written and we use undo-logging. Make sure to take the checkpoint
into account. Alternatively, what happens if the crash occurs right after the
<V, B, 50> record is written?

3. Describe succinctly what happens when a crash occurs right after the <T, E,

30> record is written and we use redo-logging. Make sure to take the checkpoint
into account. Alternatively, what happens if the crash occurs right after the
<V, B, 50> record is written?

Response .

1. Undo logging At the time of start of the checkpoint, the uncommitted trans-
actions are T and U . The corresponding end chekcpoint will be written once
both of these transactions have completed (committed or aborted). At the
earliest, this will hence be right after the <COMMIT T> record is written to the
log.

Redo logging At the time of start of the checkpoint, the uncommitted trans-
actions are T and U . The <END CKPT> is written once all database elements
that were modified to buffers but not yet written to disk by transactions that
had already committed when the <START CKPT> record was written have been
written to disk. From the above information, we do not know when this will
be.

EXAM INFO-H-417 13 January 2014 Page 14 of 15



Name: Student id:

2. crash after <T, E, 30>. At this point, the checkpoint is not finished yet. As
such, we need to undo, starting from the end of the log and moving all the way
to the beginning beginning, all transactions for which a <COMMIT> record does
not appear. In particular, we need to undo T and V .

crash after crash after . At this point, the checkpoint is already finished.
As such, we need to scan back to the last successfully completed checkpoint.
In particular, we only need to undo V .

3. We first need to scan the log backwards to determine the last successfully
completed checkpoint. Depending on when the modified buffers have been
written to disk, this may mean that we only need to scan back to the non-
quiescent checkpoint or, if this has not completed yet, to the beginning of the
log.

Then we need to redo (moving forward in the log again) all actions of transac-
tions with a commit record on disk. So, if crash after <T, E, 30>, this can
be at most S and U (if the checkpoint was not finished) or U (if the checkpoint
was finished). If crash after <T, E, 30>, this can be all actions of S, U , and
T (if the checkpoint was not finished) or T and U (if it was finished).

EXAM INFO-H-417 13 January 2014 Page 15 of 15


