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Setup

In this second lab, we focus on the physical layout of B-Tree and on performance improvement that can be

achieved by using a B-Tree index to access a relation. In this first part we first setup our database prototype.

Then, to establish a baseline for comparison, we check the number of blocks that must be read from the disk

when querying a relation through a simple scan of all records.

1. In the IOTest class, add calls to the printStatistics function before and after scanning the Foo relation.

How many blocks are read when NUMRECORDS is 50, 1000, and 10000?

We see here that to scan a relation (that is, reading each record of each block of the relation), for:

• 50 records we need to read 1 blocks

• 1000 records we need to read 19 blocks

• 10000 records we need to read 184 blocks

If we want to find out whether a record such that A = 8 and B = 5 exists, scanning the relation might

not be the most efficient way.

Index Initialization

We will now add a B-Tree Index to our relation in the database, and describe the layout of the B-Tree on disk.

1. Add a B-Tree index (using BTIndexFactory) on the Foo relation, in the createDatabase function. The

B-Tree will use (A,B) as its schema (and will hence be dense for the relation).

The code should read:

foo.createIndex(FOO_SCHEMA, new BTIndexFactory());

2. Pen and paper exercise Consider the leaves of the B-Tree. Is there an ordering of the keys inside these

leaves? How many keys do you expect to find in the leaves in total, if the number of records in the relation

is 10000?

Since the index is dense, each record of the relation corresponds to a key in the index. Furthermore, all

the keys in a BTree are stored at the leaf level. Therefore, there are 10000 keys stored in leaf blocks.
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Furthermore, a BTree guarantees a lexicographic ordering of the keys, according to their schema. That

is, with our schema (A1, B1) the key k1 = (a1, b1) is smaller that the key k2 = (a2, b2) if either a1 < a2,

or a1 = a2 ∧ b1 < b2.

Note that the keys are not only ordered inside a single leaf block, but also accross all the leaf blocks. That

is, remember that the leaf blocks of the BTree are chained together as a linked list. If the block b1 occurs

before the block b2 in the list, then all keys k1 in the block b1 will be smaller than all the keys k2 in the

block b2.

3. Pen and paper exercise In our B-Tree, inner nodes have a header of 4 bytes, and each (key, block

address) pair is the size of the key plus 4 bytes. The leaf nodes also use 4 bytes for their header, but

stores each (key, record address) on the size of the key + 8 bytes. How many leaf blocks do we need to

store 10000 records? What is the height of the B-Tree in this circumstance?

Note that the size of the blocks can be found in the implementation: a block is 512 bytes wide.

We first calculate the capacity of inner and of leaf blocks (i.e. the number of (key, address) pairs they

can contain). In both cases, the space that we can use inside a block is 512− header size = 508. We also

know that each key is 8 bytes wide (the size of two 4-bytes integer values, A and B). Therefore, a single

(key, block address) pair inside an inner block will be 12 bytes long, while a single (key, record address)

pair inside a leaf block will be 16 bytes long. We can hence conclude that inner blocks have a capacity of

b508/12c = 42 slots, while leaf blocks have a capacity of b508/16c = 31 slots.

Note that, while there are 42 slots in an inner block, the header of an inner block contains an additional

pointer. Hence, an inner block is made of 42 keys and 43 pointers to other blocks. That is, each inner

block has a branching factor of at most 43 inside the tree.

From the capacity of each kind of block, we can deduce that we need d10000/31e = 323 leaf blocks to

store the keys. Furthermore, we need dlog43(323)e = 2 levels of inner blocks to access these leaves. In

particular, we will need d323/43e = 8 inner blocks pointing to leaf blocks, and d8/43e = 1 block (the root

of the BTree) to point to these inner blocks. That is, the height of our BTree is 3.

Querying the Index

In this second part, we will use the index to answer a few queries. We will also improve the implementation

by chaining leaf blocks, to enable range queries (e.g. finding the records such that A = 8 and B >= 5). When

statistics are to be computed, we will only consider the situation where 10000 blocks are loaded.

1. Using the index, fetch the record for which A = 5 and B = 2. Note that since keys inside the B-Tree are

represented as Record objects, the createRecord function can be used to create the query key for the

index.

Check the number of disk reads and of pin requests for this operation. Explain this result by means of

the result from exercise 3 of part I (index initialization).

Compare with the disk reads and of pin requests when scanning the relation.

We get 4 blocks read from the disk, and 5 pin requests for looking up the record from the B-Tree. In

comparaison we needed to read 184 blocks from the disk (and a similar number of pin requests) to scan

the whole relation.

These 4 blocks are the following:

• 1 block keeps track of the root of the BTree. The rationale is that when many keys are inserted

into the index, at some point each leaf block and each inner block (and in particular the root

itself) will be filled to its capacity. The next key insertion will result in the root being split into



two blocks, and a new inner block will be created to act as the root. However, to load the index

from disk, we need to be able to refer to a block address that remains constant. Therefore, we use

one block that acts as a descriptor of the BTree; in particular, this block keeps track of the root

of the BTree.

• 2 inner blocks of the BTree.

• 1 leaf block of the BTree.

The additional pin request is due to some implementation details: when the iterator is returned, it pins

the leaf of the BTree from which the iteration starts, to ensure that it will stay available.

2. Describe how the BTIndexIterator class uses the chaining of leaf blocks to provide ranged queries.

The iterator returns each key from a block in turn. When it has returned the last key of its currently

loaded block, the iterator loads the next block from the leaves chain and uses the first key of that block

the next time it returns a key.

3. Looking at the code of the BTIndexBlockLeaf class, determine which operations need to be aware of block

chaining. Update the code accordingly.

Two accessors are provided to get/set the next block address. These need to be implemented by accessing

the header of the leaf block. These accessors are called when a leaf block is split (in the split function)

to maintain the chain of leaf blocks:

• Set the next pointer of the newly created block to our current next pointer:

sibling.setNextPtr(this.getNextPtr());

• Set the next pointer of our block to the address of the newly created block.

this.setNextPtr(sibling.getBlockAddress());

4. Using the index, fetch the records for which A = 8 and B >= 5. How does this compare with scanning

the relation?

This time, we need to lookup the key (A = 8, B = 5) in the index. This gives us an iterator that we can

use to scan over all the records that are greater or equal than the lookup key. Therefore, we can print all

the keys up to the first keys for which the A-value is greater than 8.

Since the B-values range from 0 to 999, and since a leaf block can only contain up to 31 keys, we can see

that we will need to access d994/31e = 33 blocks to perform this operation. This is less than the cost of

scanning the whole relation.

Querying the index (continued)

In this section, we try a variety of query operations to understand the limits of the B-Tree index. For the

purpose of this exercise, you can assume that the B-values range from 0 to 1000, while the A-values range from

0 to 9

1. Explain how you can perform the following queries on the B-Tree.

• Find the records such that A = 2 and B >= 4.

Similar to the last exercise of the previous section.

• Find the records such that A < 3.

We can start from a lower bound of the first record, i.e. (A = 0, B = 0), and scan all the records

from the BTree until A = 3. As a rough estimation, we will need to access a 3 ∗ 999/31 ≈ 100

blocks, which is still cheaper that reading the whole relation.



• Find the records such that A = 3 and B < 4.

We can start from a lower bound of the A = 3 records, i.e. (A = 3, B = 0), and scan all the

records from the BTree until B = 4. As a rough estimation, we will need to access 1 block.

• Find the records such that B = 3.

Here, we essentially need to start scanning from the key (A = 0, B = 3), and we can stop at

(A = 9, B = 3). Therefore, we need to read almost all the leafs of the BTree (323 blocks) mostly

to retrieve spurious results that we will need to discard (e.g. all keys where 4 ≤ B ≤ 999).

Since this BTree will not help us processing the query, we can try to find alternative ways of

processing this query efficiently. As we have seen in the first part of the lab, scanning the whole

relation is more efficient (less disk blocks need to be read). Another BTree over the schema (B,A)

would also be more appropriate (why?).

• Find the records such that B < 4.

This is essentially the same situation as for B = 3.

• Find the records such that A > 3 and B > 7.

For this query, most in the relation will be part of the result: since for each value of A, we have all

values of B from 0 to 1000 in our database, almost 7/10 percent of the relation must be returned.

While our index can easily help identifying all records such that A > 3, we will need to read

approximately 323 ∗ 7/10 = 227 leaf blocks of the BTree. Therefore, it will be more advantageous

to read the 184 blocks of the relation directly.

Fundamentally, this is due to the fact that our BTree maintains more bookkeeping information

per record than the relation itself. For instance, in the BTree, each key is associated with its

position in the original relation.

2. Supplemental Write the code implementing the previous queries, and compare the performance with

scanning the relation.


