
INFO-H-417: Database Systems Architecture – Lab 1

Lecturer: Stijn Vansummeren

Teaching-Assistant: Stefan Eppe

http://cs.ulb.ac.be/public/teaching/infoh417

Academic Year 2013–2014

Architecture of our Database System

In this first part, we will explore the architecture of a database framework.

1. Clone the database implementation from the http://wit-projects.ulb.ac.be/rhodecode/INFO-H-417/

Labs/Lab-1 git repository.

2. Compile this project from eclipse and run it. It should indicate that it creates a database.

3. Read the following description of the framework, and make sure you can access the following classes from

eclipse: DiskManager, BufferManager, MainBlock, Relation, and IOTest

The be.ulb.db.diskmanager.DiskManager class is responsible for the actual reading and writing of blocks

from secondary storage. The blocks read and written from secondary storage are specified by by means of their

address, represented as be.ulb.db.BlockAddress objects. The DiskManager is also responsible for reserving

space on the secondary storage when creating the database, and maintaining a list of free blocks for future

allocations.

It is the responsibility of the buffer manager (be.ulb.db.buffermanager.BufferManager) to keep track of

which blocks are loaded in main memory, and to make them available to the other components of the DBMS.

In particular, the Buffermanager will try to minimize the number of I/O operations, to reuse buffers that are

no longer used, etc. More information concerning the tasks of a buffer manager can be found in Section 15.7 of

TCB.

Various kinds of blocks exists, each corresponding to a different strategy for representing data in memory and

on disk. All blocks are derived from the base class be.ulb.db.Block. For instance, the be.ulb.file.MainBlock

class provides the functionality to store records with the same schema in an unordered fashion in the block, to

read the records back from the block, and to remove them.

The records inside a MainBlock can be identified through a be.ulb.db.RecordAddress: these addresses

are composed of a BlockAddress that identifies the MainBlock in which the record is stored, and of a slot

identifier that indicates where the record is stored inside the block. For storing whole relations, MainBlocks are

linked together, and managed by be.ulb.db.file.MainFile objects. The be.ulb.db.Relation class provides

facilities to organize records inside a relation, by relying on MainFile for the actual storage. The Relation

class also provides management and maintenance of index structures over the relation.

Finally, the be.ulb.db.Database class provides the functionality to create a new database or load an

already existing database. In particular, this class is responsible for creating instances of the BufferManager,

the DiskManager to manage blocks. It also creates a Catalog that provides access to all relations in the

database.

The TestIO class serves as a test bench for our Database. As provided, it only instantiates an empty relation

in a new database, and scans this relation. In the next parts of this lab, we will first modify the code to load

test data in our database, and then count the number of I/O operations needed for reading these data from the

disk.

1



Main Relation Construction

In this second part, we will build a relation in our database engine and print it out on screen.

1. The database currently contains an empty relation named Foo. Describe the Schema of this relation. In

particular: what are the attributes of this relation, what size occupies each attribute, and what is the

length of a record?

2. Populate the table with a single record. For this purpose, fill in the createRecord(id) procedure to

create a record whose A-field is 42 and B-field is 1. For this purpose, you will need to create a new Record

object, passing FOO SCHEMA as the schema. You will need to put the different values in the record.

Add this record to the Foo relation, in the function that populates the database. Run the program and

check that the record appears on screen.

3. Update createRecord(id) to match its documentation. Instead of adding just one record, fill the relation

with NUMRECORDS records.

4. Based on the schema of the relation, give a rough estimate of the number of blocks used to store 50, 1000,

and 10000 records. Note that each block has a size determined by the BLOCKSIZE constant (expressed in

bytes).

I/O operations

In this third part, we edit the disk manager to provide statistics on the number of blocks read from the disk.

1. Open the DiskManager class. Describe the various methods that it supports. In particular, pay attention

to the methods that may load blocks from disk.

2. Edit the DiskManager class to add the capability to count the number of blocks read from the disk. In

particular, provide a public method to get this statistics.

3. Print the statistics of the number of blocks read before and after printing the Foo relation on screen, when

NUMRECORDS is 50, 1000 and 10000. Compare to your first estimate.1

4. Can we reduce the number of reads if we need to print the records for which A = 4? Explain.

Buffers Management

Supplemental exercises:

1. Open the BufferManager class. Check the pinBlock method. How does it differ from reading blocks in

the DiskManager?

2. Edit the BufferManager class to add the capability to count the number of blocks pinning requests. In

particular, provide a public method to get this statistics.

3. Compare the number of pin requests to the number of blocks read before and after printing the Foo

relation on screen, for different values of NUMRECORDS. Do they differ significantly? Explain.

4. Print the Foo relation a second time. Is there a change in the number of blocks read and of pin request?

Explain.

1Many of the differences can be explained by headers that occur in each MainBlock and bookkeeping information attached to

each record. The constructor of MainBlock hints at what kind of additional information is stored.


