
Physical Data Organisation and Index Structures

Project Assignment

2011-2012

Description

Implement the BTree indexing mechanism as described in Section 14.2 of
“Database Systems: The Complete Book”. On the course’s website you’ll
find the basis of a simple DBMS written in Java. It contains most of the
components of a typical DBMS implementation, and is organized as follows:

• The byte sequences that we read from and write to disk are represented
in Java by means of the java.nio.ByteBuffer class. Since you will
also have to use this class, it is useful to first read its documentation.

• The classes derived from be.ulb.db.Schema.AttributeType repre-
sent the types of values that we can store in an attribute. Derived
classes exist for integers, strings, booleans, block addresses, and record
addresses. This class also offers the functionality to read and write an
instance of an AttributeType from/to a ByteBuffer.

• Schema information is represented by means of the

be.ulb.db.schema.Schema

class. It provides the functionality to (1) create a new schema given the
names of the attributes and their corresponding types; (2) calculate the
number of bytes needed to represent a record with the given schema;
(3) retrieve the type of an attribute in the schema; (4) and so on.

• Records are represented by means of the be.ulb.db.Record class.
Only fixed length records are supported. A Record has an internal
ByteBuffer that is used to store the actual sequence of bytes contained
in the record. Every record has an associated Schema. The Record

class provides functionality to read and write the separate fields of
the record. This class also enforces that values read or written are
compatible with the types declared in the Schema.

• The be.ulb.db.diskmanager.DiskManager class is responsible for
the actual reading and writing of ByteBuffers to secondary storage.

1



This class is also responsible for the creation of the initial database file,
and for the allocation of blocks on disk. For the purpose of this project,
you will not have to use the diskmanager directly. The address of a
block on disk is represented by means of the be.ulb.db.BlockAddress
class.

• As already mentioned, when disk blocks are loaded into memory, they
are represented by means of ByteBuffer objects. It is the responsibil-
ity of the buffer manager (be.ulb.db.buffermanager.BufferManager)
to manage these in-memory buffers, and to make them available to the
other components of the DBMS. In particular, the Buffermanager will
try too minimize the number of I/O operations, to reuse buffers that
are no longer used, etc. More information concerning the tasks of a
buffer manager can be found in Section 15.7.

• Disk blocks are hence read from secondary storage into a ByteBuffer

object. These are, however, only “raw” sequences of bytes that need to
interpreted. Nothing prevents us from storing information in particu-
lar kinds of blocks (e.g., index blocks) different from the way in which
actual records are stored in other blocks. For each separate representa-
tion strategy, a new class needs to be derived from be.ulb.db.Block.
This derived class needs to provide a suitable interface to add records
(and the like) to the block, remove records, search records, etc. A con-
crete example is given by the be.ulb.file.MainBlock class, which
provides the functionality to store records with the same schema in
an unordered fashion in the block, to read the records back from the
block, and to remove them.

• Loading a block on disk into a ByteBuffer, and linking this ByteBuffer
to a Java object derived from Block is done by means of the pinBlock
method of the BufferManager. Releasing the Block object (and its
associated ByteBuffer) is done by means of the unpinBlock method.
Allocating room for a new block on disk can be done by means of
newBlock, while releasing this space can be done by freeBlock (both
in BufferManager).

• Collections of block form files. The framework has two kinds of files:
be.ulb.db.file.DirectoryFile and be.ulb.db.file.MainFile. A
DirectoryFile is meant to store “compact” files from which data is
rarely deleted. The MainFile is better suited to store the data of
a relation. Both files are collections of MainBlocks, and are hence
unordered.

• When we add a record to a file, the address of that record in the file
(represented by a be.ulb.db.RecordAddress object) is returned. A
RecordAddress consists of the BlockAddress in which the record is

2



stored, together with the index of the record inside the block (we do
not use pointer swizzling).

• The abstract class be.ulb.db.index.Index describes the functional-
ity that an index should provide. Each Index derivative should be able
to add (key value, record address) pairs, delete such pairs, and retrieve
all addresses with a particular key value. Key values are represented
by means of Record objects that satisfy the Schema of the Index.

• Relations are represented by means of the be.ulb.db.Relation class.
Relation objects have a MainFile in which they store their data, and
know the indexes that are available on the file. Relation objects offer
the functionality to create new indexes, remove indexes, or use indexes.
They also allow adding records to the relation, deleting records, and
searching for records. The related indexes are updated accordingly.
Indexes are used during searching when possible. All information con-
cerning a relation (its name, the address of its first block, its schema,
the indexes, and so on) are saved in the system catalog, which is rep-
resented by means of the be.ulb.db.catalog.Catalog class.

• The be.ulb.db.Database class provides the functionality to create a
new database or load an already existing database. This class is re-
sponsible for creating instances of the BufferManager, the DiskManager
and the Catalog.

In particular

• Implement the BTree index mechanism (section 14.2) in the class

BTIndex.java

of the framework. Use the framework described above. It suffices
to only allow unique key values when adding to the index (duplicate
search keys hence do not need to be supported). Be sure to imple-
ment all functionality: insertion, search, and deletion (including the
necessary reorganisations when inserting and deleting!).

• The best way to proceed is to derive a new class from Block in which
you can add, search, and delete (key value, address) pairs in a sorted
manner. An example of how you can store records in a block is given
in be.ulb.db.file.MainBlock. It is also advisable to implement a
toString() method that can display the contents of a block in a
human-readable way. This toString() method will be most useful
during the testing and debugging of your project!

3



• The derived Block class can then be used to implement your BTIndex
class. Again, it is advisable to implement a toString() method that
can display the contents of your BTree in a human-readable manner.

• You can use Tester.java to test your implementation.

Careful! You are not allowed to modify the framework itself!

Assignment

1. This project work contributes 6/20 to the overall grade, and the writ-
ten exam contributes the remaining 14/20 points. You will be judged
on the correctness and completeness of your solution, as well as on the
cleanness of your code. That implies that you should:

• Abstract by means of classes whenever appropriate.

• Use and re-use function whenever appropriate.

• Use exceptions correctly.

• Add sufficient and clear comments to your code.

2. This project work should be done individually. This implies that you
individually write your code and individually solve the problems that
occur. Fraud occurs from the moment that source code is shown to
another student, or source code is exchanged (be it willingly or not).
We have advanced software to identify project solutions that may be
subject to fraud. Violators will be punished according to article 34 of
the exam regulations shown in Figure 1.

3. This assignment is obligatory. If you do not make the assignment, you
cannot pass the course in the first exam session.

4. You will have to create a mercurial repository1 in the INFO-H-417

repository group at http://informa2.ulb.ac.be to submit your code.
The username and password to login to this system correspond to your
ULB/VUB NetID. The repository will be named project-<student>,
where student corresponds to your username. It is recommended that
you create this repository as soon as possible to avoid last minute tech-
nical difficulties

5. Your solution should be pushed to the repository no later than 27 may
2012. You get a penalty of -1/6 points for each day that your solution
is delayed.

1http://mercurial.selenic.com/wiki/Tutorial

4



Art.34 In case of fraud or plagiarism during an examination
or during a test at an interim date during the academic year, or
in relation with the preparation of written reports or papers, the
course professor reports the case in writing prior to the jury delib-
eration to the relevant academic authority levels for disciplinary
matters. A copy of that fraud report is addressed to the jury chair-
men. The student can ask to be heard by a jury chairperson prior
to the jury deliberation, in presence of the related course professor.
Without prejudice to the disciplinary processes at the University
Faculty level, in case of fraud the student points for the related
course are brought down to 0/20. The jury further can:

• decide to cancel the examination session;

• decide to refuse the student access to both examination ses-
sions of that academic year.

Figure 1: Excerpt of the Exam Regulations concerning fraud.

5


