
Optimization of Logical Queries

Task:

Consider the following relational schema:

• Emp(eid, did, sal, hobby)

• Dept(did, dname, floor, phone)

• Finance(did, budget, sales, expenses)

For the following SQL statement:

1. Translate the query into the relational algebra.

2. Remove redundant joins from the select-project-join subexpressions in the
obtained logical query plan.

3. By means of the algebraic laws, further optimize the obtained expression.

Solution of the exercises 1

Optimization of Logical Queries

Task (continued)

SELECT D.floor

FROM Dept D, Emp E

WHERE

(D.floor = 1

OR D.floor IN

(SELECT D2.floor FROM Dept D2, Finance F1

WHERE F1.budget > 150 AND D2.did = F1.did)

)

AND E.did = D.did

AND E.did IN (SELECT F2.did FROM Finance F2, Emp E2

WHERE F2.did = E.did AND E2.did = D.did

AND E2.eid = E.eid AND F2.expenses = 300)

Solution of the exercises 2

Optimization of Logical Queries

Solution: translation into the relational algebra

First, we normalize the query to a form with only EXISTS and NOT EXISTS
subqueries:

SELECT D.floor

FROM Dept D, Emp E

WHERE

(D.floor = 1 OR EXIST

(SELECT D2.floor FROM Dept D2, Finance F1

WHERE F1.budget > 150 AND D2.did = F1.did

AND D2.floor = D.floor))

AND E.did = D.did

AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2

WHERE F2.did = E.did AND E2.did = D.did

AND E2.eid = E.eid AND F2.expenses = 300

AND E.did = F2.did)

Solution of the exercises 3

Optimization of Logical Queries

Conjunctive Normal Form

SELECT D.floor

FROM Dept D, Emp E

WHERE (D.floor = 1

AND E.did = D.did

AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2

WHERE F2.did = E.did AND E2.did = D.did

AND E2.eid = E.eid AND F2.expenses = 300 AND E.did = F2.did)

) OR (

EXIST (SELECT D2.floor FROM Dept D2, Finance F1

WHERE F1.budget > 150 AND D2.did = F1.did

AND D2.floor = D.floor)

AND E.did = D.did

AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2

WHERE F2.did = E.did AND E2.did = D.did

AND E2.eid = E.eid AND F2.expenses = 300 AND E.did = F2.did))

Solution of the exercises 4

Optimization of Logical Queries

Normalize to UNION

Q1 = SELECT D.floor

FROM Dept D, Emp E

WHERE D.floor = 1

AND E.did = D.did

AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2

WHERE F2.did = E.did AND E2.did = D.did

AND E2.eid = E.eid AND F2.expenses = 300

AND E.did = F2.did)

Solution of the exercises 5

Optimization of Logical Queries

Normalize to UNION

Q2 = SELECT D.floor

FROM Dept D, Emp E

WHERE

EXIST (SELECT D2.floor FROM Dept D2, Finance F1

WHERE F1.budget > 150 AND D2.did = F1.did

AND D2.floor = D.floor)

AND E.did = D.did

AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2

WHERE F2.did = E.did AND E2.did = D.did

AND E2.eid = E.eid AND F2.expenses = 300

AND E.did = F2.did)

The new query is Q1 UNION Q2.

Solution of the exercises 6

Optimization of Logical Queries

Translation of the innermost subqueries

SELECT F2.did FROM Finance F2, Emp E2

WHERE F2.did = E.did AND E2.did = D.did

AND E2.eid = E.eid AND F2.expenses = 300

AND E.did = F2.did

This subquery is translated as follows:

e1 = πF2.did,E.∗,D.∗σF2.did=E.did∧E2.did=D.did∧E2.eid=E.eid

σF2.expenses=300∧E.did=F2.did(ρD(Dept)×ρE(Emp)×ρF2(Finance)×ρE2(Emp))

Solution of the exercises 7

Optimization of Logical Queries

Translation of the innermost subqueries

SELECT D2.floor FROM Dept D2, Finance F1

WHERE F1.budget > 150 AND D2.did = F1.did

AND D2.floor = D.floor

This subquery is translated as follows:

e2 = πD2.floor,D.∗σF1.budget>150∧D2.did=F1.did

σD2.floor=D.floor(ρD(Dept)× ρD2(Dept)× ρF1(Finance))

Solution of the exercises 8

Optimization of Logical Queries

Translation of the Middle Queries

Q1 = SELECT D.floor FROM Dept D, Emp E

WHERE D.floor = 1 AND E.did = D.did

AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2

WHERE F2.did = E.did AND E2.did = D.did

AND E2.eid = E.eid AND F2.expenses = 300

AND E.did = F2.did)

The translation of the from part gives

e3 = (ρD(Dept)× ρE(Emp))

To de-correlate we compute:

f = ê3 on πD.∗,E.∗(e1)

Note that ê3 is empty and hence

f = πD.∗,E.∗(e1)

To this expression we add the WHERE and SELECT clause:

e4 = πD.floor(σD.floor=1∧E.did=D.did(πD.∗,E.∗(e1))

Solution of the exercises 9

Optimization of Logical Queries

Translation of the Middle Queries

Q2 = SELECT D.floor FROM Dept D, Emp E

WHERE EXIST (SELECT D2.floor FROM Dept D2, Finance F1

WHERE F1.budget > 150 AND D2.did = F1.did

AND D2.floor = D.floor)

AND E.did = D.did

AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2

WHERE F2.did = E.did AND E2.did = D.did

AND E2.eid = E.eid AND F2.expenses = 300 AND E.did = F2.did)

The translation of the from part gives

e5 = (ρD(Dept)× ρE(Emp))

To de-correlate we compute:

f ′ = ê5 on (πD.∗,E.∗(e1) on πD.∗(e2))

Note that ê5 is empty and hence

f ′ = (πD.∗,E.∗(e1) on πD.∗(e2))

Solution of the exercises 10

To this expression we add the WHERE and SELECT clause:

e6 = πD.floorσE.did=D.did(πD.∗,E.∗(e1) on πD.∗(e2))

Solution of the exercises 11

Optimization of Logical Queries

Translation of the Whole Query

Q1 UNION Q2

Since the schemas of e4 and e6 are the same, the union is straightforward:

e = e4 ∪ e6

Written in full:

e = πD.floorσD.floor=1∧E.did=D.did

πD.∗,E.∗σF2.did=E.did∧E2.did=D.did∧E2.eid=E.eid∧F2.expenses=300∧E.did=F2.did

(ρD(Dept)× ρE(Emp)× ρF2(Finance)× ρE2(Emp))

∪
πD.floorσE.did=D.did(

[πD.∗,E.∗σF2.did=E.did∧E2.did=D.did∧E2.eid=E.eid∧F2.expenses=300∧E.did=F2.did

(ρD(Dept)× ρE(Emp)× ρF2(Finance)× ρE2(Emp))]

on [πD.∗σF1.budget>150∧D2.did=F1.did∧D2.floor=D.floor

(ρD(Dept)× ρD2(Dept)× ρF1(Finance))])

Solution of the exercises 12

Optimization of Logical Queries

Redundant Joins Removal

The query comprises the following maximal select-project-join subexpressions:

• πD.floorσD.floor=1∧E.did=D.didπD.∗,E.∗σ...(ρD(Dept)× ρE(Emp)×
ρF2(Finance)× ρE2(Emp))

• [πD.∗,E.∗σ...(ρD(Dept)× ρE(Emp)× ρF2(Finance)× ρE2(Emp))]

• (ρD(Dept)× ρD2(Dept)× ρF1(Finance))

Note that “F1.budget > 150” cannot be included in a select-project-join
expression. Also note that the third expression does not contain redundant joins
(Why?).

Solution of the exercises 13

Optimization of Logical Queries

Redundant Joins Removal

The first expression corresponds to:

Q1(“1”)←Dept(a1, a2, “1”, a4), Emp(b1, a1, b3, b4), Finance(a1, c2, c3, “300”),

Emp(b1, a1, d3, d4)

The first and third atoms cannot be removed (Why?)

We check whether we can remove the second atom:
Q2(“1”)← Dept(a1, a2, “1”, a4), Finance(a1, c2, c3, “300”), Emp(b1, a1, d3, d4)

The corresponding canonical database: D2(“1”) =
{Dept(a1, a2, “1”, a4), Finance(a1, c2, c3, “300”), Emp(b1, a1, d3, d4)}
Clearly (“1”) ∈ Q1(D2) because of the matching

a1 7→ a1 a2 7→ a2 a4 7→ a4

b1 7→ b1 b3 7→ b3 b4 7→ b4
c2 7→ c2 c3 7→ c3 d3 7→ b3 d4 7→ b4

hence Q2 ⊆ Q1. The other direction always holds. Hence Q1 ≡ Q2

Solution of the exercises 14

Optimization of Logical Queries

Redundant Joins Removal

No other atom can be removed (Why?).

The optimal query is hence
Q2(“1”)← Dept(a1, a2, “1”, a4), Finance(a1, c2, c3, “300”), Emp(b1, a1, d3, d4)

Translating this query back to the relational algebra, we obtain:

πD.floor([σD.floor=1∧E2.did=D.did∧F2.did=E2.did∧E2.did=D.did∧F2.expenses=300

(ρD(Dept)× ρF2(Finance)× ρE2(Emp))])

Solution of the exercises 15

Optimization of Logical Queries

Redundant Joins Removal

The second expression corresponds to:

Q1(a1, a2, “1”, a4, b1, b3, b4)←Dept(a1, a2, “1”a4), Emp(b1, a1, b3, b4),

Finance(a1, c2, c3, “300”), Emp(b1, a1, d3, d4)

We cannot remove the second atom, this time. However the fourth atom can be
shown to be spurious.

The optimal query is hence

Q2(a1, a2, “1”, a4, b1, b3, b4)←Dept(a1, a2, “1”a4), Emp(b1, a1, b3, b4),

Finance(a1, c2, c3, “300”)

Translating this query back to the relational algebra, we obtain:

πD.∗,E.∗σE.did=D.did∧F2.did=E.did∧E.did=D.did∧F2.expenses=300

(ρD(Dept)× ρE(Emp)× ρF2(Finance))

Solution of the exercises 16

Optimization of Logical Queries

Redundant Joins Removal

The third expression corresponds to:

Q1(a1, . . . , a4, b1, . . . , b4, c1, . . . , c4)←Dept(a1, a2, a3, a4), Dept(b1, b2, b3, b4),

Finance(c1, c2, c3, c4)

No atoms can be removed (otherwise we obtain variables in the head that do
not occur in the body).

Solution of the exercises 17

Optimization of Logical Queries

Redundant Joins Removal

The optimized expression is therefore:

e = πD.floor([σD.floor=1∧E2.did=D.did∧F2.did=E2.did∧E2.did=D.did∧F2.expenses=300

(ρD(Dept)× ρF2(Finance)× ρE2(Emp))])

∪
πD.floor([πD.∗,E.∗σE.did=D.did∧F2.did=E.did∧E.did=D.did∧F2.expenses=300

(ρD(Dept)× ρE(Emp)× ρF2(Finance))]

on [πD.∗σF1.budget>150∧D2.did=F1.did∧D2.floor=D.floor

(ρD(Dept)× ρD2(Dept)× ρF1(Finance))])

Solution of the exercises 18

Cost-based plan selection

Task

(refer to the handouts for the full exercise)

Construct a sufficiently optimal physical query plan for:

πE.eid,D.did,P.pidσE.sal=50000(E) on σD.budget≥20000(D) on P

Assume that employee salaries are uniformly distributed over the range
[10009, 110008] and that project budgets are uniformly distributed over
[10000, 30000]. There are clustered indexes available on E.sal, D.did and
P.pid.

Solution of the exercises 19

Cost-based plan selection

Solution

Subexpression:
σE.sal=50000(E)

First possibility: we use the clustered index on E.sal to get the records such
that E.sal = 50000.

The number of tuples that satisfy the salary requirement is estimated to:⌈
1

110008− 10009
selectivity × 20000 employees

⌉
= 1 tuples

Hence, the probing the result can be stored in 1 block:

20 bytes

4000 bytes/block
= 1 block

A table scan would cost:

20 bytes/tuple × 20000

4000 bytes/block
= 100 block I/Os

Solution of the exercises 20

Cost-based plan selection

Solution

Subexpression:
σD.budget≥20000(D)

The number of tuples returned is estimated to 2500:⌈
30000− 20000

30000− 10000
selectivity × 5000 projects

⌉
= 2500 tuples

This corresponds to 25 Blocks:

40 bytes/tuple × 2500

4000 bytes/block
= 25 blocks

Since no index is available, a table scan is our only possibility:

40 bytes/tuple × 5000

4000 bytes/block
= 50 blocks

Solution of the exercises 21

Cost-based plan selection

Solution

Subexpression:
P

A table scan on P requires 500 block I/O’s. This is also the estimated number
of blocks returned:

2000 bytes/tuple × 1000

4000 bytes/block
= 500 block

.

Solution of the exercises 22

Cost-based plan selection

Solution

Now, we must determine an ordering for the joins. We consider all pairs of joins
and keep the one with the smallest cost.

σe.sal=50000(E)︸ ︷︷ ︸
e1

and σd.budget≥20000(D)︸ ︷︷ ︸
e2

The selection on each side requires one buffer to execute, leaving only 10 buffers
for the join.

The output of e1 contains only 1 tuples, and can therefore be computed in 1
block. Since 1 = B(e1) ≤M = 10, we can apply the one-pass join algorithm.
Its cost is

B(e1) +B(e2) = 1 + 25 = 26 I/O’s

An index-join cannot be used on e2 since it is not a base relation. All other join
methods always cost more than one-pass join. Hence the one-pass join is
preferred.

Solution of the exercises 23

Cost-based plan selection

Solution

The second join pair is:

σD.budget≥20000(D)︸ ︷︷ ︸
e1

and P︸︷︷︸
e2

We have 11 buffers at out disposal, given that we need 1 buffer to perform the
selection in e1. It is not possible to use the a one-pass join, since
25 = B(e1) ≥M = 11 and 500 = B(P) ≥M = 11.

The non-optimized sort-merge join has a cost of:

2B(e1) dlogM B(e1)e + 2B(P) dlogM B(P)e +B(e1) +B(P)

= 2× 25× 2 + 2× 500× 3 + 25 + 500

= 3625 I/O’s

We cannot use the optimization here, since there is not enough memory to
perform the last merge of the merge-sort along with that of the sort-join:

49 necessary buffers =

⌈
B(e1)

M

⌉
+

⌈
B(P)

M

⌉
6≤M = 11 available buffers

Solution of the exercises 24

Cost-based plan selection

Solution

Assuming that the clustered index on P.pid is a BTree . It ensues that P is
already sorted on this join attribute. Given that we just have to sort e1, the cost
is:

2B(e1) dlogM B(e1)e +B(e1) +B(P)

Futhermore, we can optimize the last merge:

4 necessary buffers =

⌈
B(e1)

M

⌉
+ 1 ≤M = 11 available buffers

The cost thereof is:

2B(e1)(dlogM B(e1)e − 1) +B(e1) +B(P)

= 2× 25× 1 + 25 + 500

= 575 I/Os

Solution of the exercises 25

Cost-based plan selection

Solution

The cost of an hash-join is:

2B(e1) dlogM−1B(e1)− 1e + 2B(P) dlogM−1B(e1)− 1e +B(e1) +B(P)

= 2× 25× 1 + 2× 500× 1 + 25 + 500

= 1075 I/O’s

It is also possible to use an index-join, using the clustered index on P.did. This
method has a cost of:

B(e2) + T (e2)×
⌈
V (P, pid)× SizePtuple

Sizeblock

⌉
= 25 + 2500× 1 = 2525 I/O’s

Hence, the optimized sort-merge join (using the sorted index) is therefore
preferred if the index on P.did is a BTree. The hash-join is preferred otherwise.

Solution of the exercises 26

Cost-based plan selection

Solution

The third join pair is:
σE.sal=50000(E)︸ ︷︷ ︸

e1

and P︸︷︷︸
e2

Note that this join is a full cartesian product. A one-pass join is available at the
following cost:

B(e1) +B(P) = 1 + 500 = 501 I/O’s

No index can help up for this join, and the one-pass join algorithm gives the best
cost.

Solution of the exercises 27

Cost-based plan selection

Solution

The join-pair with the least cost is therefore:

σe.sal=50000(E)︸ ︷︷ ︸
e1

and σD.budget≥20000(D)︸ ︷︷ ︸
e2

Where an one-pass join on E.did is used. Therefore, only 2 buffers are
necessary (why?).

The estimated number of tuples in the output of this join is:

T (e1)× T (D)

max(V (e1, did), V (D, did))
=

1× 2500

5
= 500

These records are 60 bytes long and make up 8 blocks

We assume that V (D, did) is 5.

Solution of the exercises 28

Cost-based plan selection

Solution

We still need to find the best way to join the whole expression

σe.sal=50000(E) on σD.budget≥20000(D)︸ ︷︷ ︸
e3

and P

The output of e3 fits in 8 blocks. Given that 8 = B(e3) ≤M = 12, a one-pass
join is possible. The cost thereof is:

B(e3) +B(e2) = 8 + 500 = 508

This joins can also be performed by means of an index-join, using the clustered
index on P.pid.

B(e3) + T (e3)×
⌈
V (P, pid)× SizePtuple

Sizeblock

⌉
= 8 + 500× 1 = 508 I/O’s

Hence, using this evaluation method, we cannot decide wether the one-pass join
or the index-join will be best.

Solution of the exercises 29

Cost-based plan selection

Solution

The projection πE.eid,D.did,P.pid can be performed on the fly at the same time as
the last join.

Notice that we did not need to materialize any of the intermediate results.

Solution of the exercises 30

